面源污染智慧监管的破局方案: 从精准观测到精细管理

熊俊峰, 林晨, 黄佳聪, 陈沐松, 谢晖, 马荣华

熊俊峰, 林晨, 黄佳聪, 陈沐松, 谢晖, 马荣华. 面源污染智慧监管的破局方案: 从精准观测到精细管理[J]. 中国生态农业学报 (中英文), 2025, 33(2): 203−217. DOI: 10.12357/cjea.20240374
引用本文: 熊俊峰, 林晨, 黄佳聪, 陈沐松, 谢晖, 马荣华. 面源污染智慧监管的破局方案: 从精准观测到精细管理[J]. 中国生态农业学报 (中英文), 2025, 33(2): 203−217. DOI: 10.12357/cjea.20240374
XIONG J F, LIN C, HUANG J C, CHEN M S, XIE H, MA R H. A breakthrough program for intelligent regulation of non-point source pollution: From accurate observation to fine management[J]. Chinese Journal of Eco-Agriculture, 2025, 33(2): 203−217. DOI: 10.12357/cjea.20240374
Citation: XIONG J F, LIN C, HUANG J C, CHEN M S, XIE H, MA R H. A breakthrough program for intelligent regulation of non-point source pollution: From accurate observation to fine management[J]. Chinese Journal of Eco-Agriculture, 2025, 33(2): 203−217. DOI: 10.12357/cjea.20240374
熊俊峰, 林晨, 黄佳聪, 陈沐松, 谢晖, 马荣华. 面源污染智慧监管的破局方案: 从精准观测到精细管理[J]. 中国生态农业学报 (中英文), 2025, 33(2): 203−217. CSTR: 32371.14.cjea.20240374
引用本文: 熊俊峰, 林晨, 黄佳聪, 陈沐松, 谢晖, 马荣华. 面源污染智慧监管的破局方案: 从精准观测到精细管理[J]. 中国生态农业学报 (中英文), 2025, 33(2): 203−217. CSTR: 32371.14.cjea.20240374
XIONG J F, LIN C, HUANG J C, CHEN M S, XIE H, MA R H. A breakthrough program for intelligent regulation of non-point source pollution: From accurate observation to fine management[J]. Chinese Journal of Eco-Agriculture, 2025, 33(2): 203−217. CSTR: 32371.14.cjea.20240374
Citation: XIONG J F, LIN C, HUANG J C, CHEN M S, XIE H, MA R H. A breakthrough program for intelligent regulation of non-point source pollution: From accurate observation to fine management[J]. Chinese Journal of Eco-Agriculture, 2025, 33(2): 203−217. CSTR: 32371.14.cjea.20240374

面源污染智慧监管的破局方案: 从精准观测到精细管理

基金项目: 国家重点研发计划项目(2021YFD1700600)、江苏省基础研究计划项目(BK20240113)和国家自然科学基金项目(42371387, 42201400)资助
详细信息
    作者简介:

    熊俊峰, 主要研究方向为环境遥感和水土过程监测。E-mail: jfxiong@niglas.ac.cn

    通讯作者:

    林晨, 主要研究方向为流域生态系统和资源环境变化监测。E-mail: clin@niglas.ac.cn

  • 中图分类号: X832; X52

A breakthrough program for intelligent regulation of non-point source pollution: From accurate observation to fine management

Funds: This study was supported by the National Key Research and Development Program of China (2021YFD1700600), Basic Research Program of Jiangsu (BK20240113) and the National Natural Science Foundation of China (42371387, 42201400)
More Information
  • 摘要:

    农业面源污染不仅造成了地表水环境恶化, 而且严重制约了农业绿色可持续发展, 近年来愈发得到各部门高度重视, 相关监测方案和管理体系逐步建立, 但是仍存在面源污染治理成效较低的问题。本文总结了面源污染监测在不同尺度下的监测对象、时空精度、污染源识别方案和管理措施现状, 指出了监测精度不足、污染源识别动态性不足、污染源和管理措施匹配性不足的瓶颈, 这也直接或间接导致面源污染监测体系不健全、智能化不足、精细化程度较低和污染治理效率较低等问题。随着信息化和数字化发展, 物联网平台通过集成天空地一体化监测设备与算法, 成为智能化监管的关键抓手, 为面源污染精细化监测提供了技术支撑, 构建农业面源污染物联网智能观测体系, 解决模型关键参数观测精度问题, 利用“面源污染模型+指纹示踪”的面源多污染源识别与追踪技术体系, 解决污染源精准定位问题, 考虑多污染源和多治理模式的成效评估及方案优选, 解决精准化和差别化治理问题。最终实现面源管控的系统性、集成性和智能性水平提升, 打通从“监测”到“治理”的关键突破路径。物联网智能监测平台应用与示范在太湖流域逐步开展, 为农业面源污染智慧监管破局提供了重要参考。

    Abstract:

    Agricultural non-point source pollution not only causes deterioration of the surface water environment but also seriously restricts the green and sustainable development of agriculture. In recent years, relevant monitoring plans and management systems with increasing emphasis on non-point source pollution control have gradually been established in China. However, there are still some problems with the low effectiveness of non-point source pollution control. We summarized the status of monitoring targets, spatiotemporal resolution, source identification methods, and management measures for non-point pollution monitoring at different scales. This pointed out the problems of discontinuous monitoring of non-point source pollution, insufficient spatiotemporal refinement and estimation accuracy of non-point source pollution load, lack of dynamic identification of pollution sources, and insufficient matching between pollution sources and management measures, which directly or indirectly lead to an imperfect monitoring system, insufficient intelligence, low level of refinement, and low efficiency of pollution control for non-point source pollution. With the development of informatization and digitization, the Internet of Things platform has become a key lever for intelligent supervision by integrating sky and ground monitoring equipment and algorithms and providing technical support for finely monitoring non-point source pollution. The construction of an intelligent observation system for Internet of Things for agricultural non-point source pollutant to improve the observation accuracy of key parameters, using the “non-point source model + fingerprint tracing” technology system for identifying and tracking multiple sources of non-point source pollutants sources area, and considering the effectiveness evaluation and scheme optimization of multi-source and multi governance models to solve the problem of precise and differentiated governance was proposed. Finally, the systematic, integrated, and intelligent level of non-point source control will be improved, and connect the key breakthrough path from “monitoring” to “governance”. The application and demonstration of the Internet of Things intelligent monitoring platform were carried out in the Taihu Basin, which has both plain and hilly complex terrain, a dense population, and active agricultural activities. This typical case has integrated monitoring instruments, a non-point source pollution simulation model, pollution source identification, and other parts, providing an important reference for the intelligent supervision of agricultural non-point source pollution.

  • 图  1   面源污染“精准观测—精细管理”的破局路径

    Figure  1.   Breakthrough path of “precise observation–fine management” for non-point source pollution

    图  2   “卫星遥感+物联网”观测体系

    Figure  2.   “Satellite remote sensing + Internet of Things” observation system

    图  3   基于“面源污染模型+指纹示踪”的多污染源精准定位、识别与追踪

    Figure  3.   Accurate localization, identification and tracking of multi-source areas based on “non-point source pollutant model + fingerprint tracing”

    图  4   农业面源污染精细管理

    Figure  4.   Fine management of agricultural non-point source pollution

    图  5   面源污染物联网装备体系管理平台

    Figure  5.   Internet of Things Equipment System Management Platform for non-point source pollution

    表  1   不同尺度下面源污染负荷监测时空分辨率及其主要监测对象[5,7,20-35]

    Table  1   Spatiotemporal resolution and main monitoring objects of non-point source pollution monitoring at different scales[5,7,20-35]

    监测尺度
    Scale of monitoring
    时间分辨率
    Temporal resolution
    监测单元/空间分辨率
    Monitoring unit /
    spatial resolution
    主要监测对象
    Main monitoring object
    地块/圩区
    Land plot / polder area
    逐分钟至逐月
    Minute by minute to month by month
    田块/最高可达米级
    Field plot / up to meter level
    农田径流、农田淋溶、农艺措施、畜禽养殖排污、农村生活污水排污、土壤理化特征和植被特征
    Farmland runoff, farmland leaching, agronomic measures, discharge of livestock and poultry production wastewater, discharge of rural domestic wastewater, soil physical and chemical characteristics, and plant characteristics
    小流域/县区
    Small basin / county or district
    逐小时至逐年
    Hour by hour to year by year
    子流域/最高可达十米级
    Sub-basin / up to ten-meter level
    农艺措施、畜禽养殖排污、农村生活污水排污、大气沉降、流域水文水质、气象要素、土壤理化特征和植被特征
    Agronomic measures, discharge of livestock and poultry production wastewater, discharge of rural domestic wastewater, atmospheric deposition, hydrology and water quality of basin, meteorological element, soil physical and chemical characteristics, and plant characteristics
    大流域/省级及以上
    Large watershed / provincial or higher scale
    逐月至逐年
    Month by month to year by year
    行政边界或者子流域/千米级及以上
    Administrative boundary or sub-basin / kilometer or higher level
    下载: 导出CSV

    表  2   农业面源污染监测对象、技术和时空分辨率[36-47]

    Table  2   Monitoring objects, technologies, and spatiotemporal resolution of agricultural non-point source pollution monitoring[36-47]

    监测对象
    Monitoring object
    监测技术
    Monitoring technology
    监测指标
    Monitoring indicator
    时间分辨率
    Temporal resolution
    空间分辨率/数量
    Spatial resolution / number
    农田径流
    Farmland runoff
    流量计法、堰测法、人工模拟降雨和导流管-径流桶法
    Flow meter method, weir measurement method, artificial simulated rainfall, and diversion pipe-runoff bucket method
    全氮、氨态氮、硝态氮、总磷、可溶性磷等
    Total nitrogen, ammoniacal
    nitrogen, nitrate, total phosphorus,
    dissolved phosphorus, etc.
    逐分钟至逐月
    Minute by minute to month by month
    根据地块布设监测点位
    Set up monitoring points according to the plot
    农田淋溶
    Farmland leaching
    淋溶盘法、淋溶集水槽法、
    渗漏池法、抽滤管法和土柱实验法
    Leaching tray method, leaching collection tank method, leakage pool method, filtration tube method, and lysimeter method
    全氮、氨态氮、硝态氮、
    总磷和可溶性磷等
    Total nitrogen, ammoniacal nitrogen, nitrate, total phosphorus, dissolved phosphorus, etc.
    逐分钟至逐月
    Minute by minute to month by month
    根据地块布设监测点位
    Set up monitoring points according to the plot
    农艺措施
    Agronomic measure
    入户调研法和统计年鉴法
    Household survey method and statistical yearbook method
    化肥施用量、水肥比例
    和用水量等
    Chemical fertilizer application, ratio of water to fertilizer, water consumption, etc.
    逐季度至逐年
    Season by season to year by year
    根据地块或片区调研
    Investigation based
    on the plot or area
    畜禽养殖排污
    Discharge of livestock and poultry production wastewater
    系数法和代谢笼采样法
    Coefficient method and
    metabolic cage sampling method
    全氮、全磷和化学需氧量等
    Total nitrogen, total phosphorus, chemical oxygen demand, etc.
    根据饲养阶段
    设置监测时间
    Set monitoring time according to
    feeding stage
    根据养殖场分布格局
    布设监测点位
    Set up monitoring points according to the distribution of farm
    农村生活污水排污
    Discharge of rural domestic wastewater
    污水收集设施测定
    Measurement of sewage
    collection facility
    全氮、全磷和化学需氧量等
    Total nitrogen, total phosphorus, chemical oxygen demand, etc.
    逐月至逐年
    Month by month to year by year
    根据居民点分布格局
    布设监测点位
    Set up monitoring points according to the distribution of residential area
    大气沉降
    Atmospheric deposition
    大气沉降桶测定法
    Atmospheric deposition bucket measurement method
    全氮和全磷等
    Total nitrogen, total phosphorus, etc.
    逐月至逐年
    Month by month to year by year
    根据研究区布设监测点位
    Set up monitoring points according to the the research area
    流域水文水质
    Hydrology and water quality of basin
    流量计法、水文站监测、水质仪法等
    Flow meter method, hydrological station monitoring and water quality meter method, etc
    流量、流速、全氮、全磷和化学需氧量等
    Flow rate, flow velocity, total nitrogen, total phosphorus, chemical oxygen demand, etc.
    逐分钟至逐月
    Minute by minute to month by month
    根据流域水系结构和水文特征
    布设监测点位
    Set up monitoring points based on the water system structure and hydrological characteristics of the watershed
    气象要素
    Meteorological element
    气象监测仪器法
    Meteorological monitoring
    instrument method
    降水量、降水强度和温度等
    Precipitation, precipitation intensity, temperature, etc.
    逐分钟至逐月
    Minute by minute to month by month
    根据研究区地形地貌等特征
    布设监测点位
    Set up monitoring points based on the terrain and landforms of the research area
    土壤理化特征
    Soil physical and chemical characteristics
    实地样品采集和地统计方法
    Field sample collection and geostatistical methods
    土壤有机质、全氮和全磷等
    Soil organic matter, total nitrogen, total phosphorus, etc.
    逐季节至逐年
    Season by season to year by year
    根据土地利用等地表特征
    布设监测点位
    Set up monitoring points based on surface features such as land use
    植被特征
    Plant characteristics
    点取法、样方法、遥感估算法
    Point sampling method, quadrat sampling method, remote sensing estimation method
    植被覆盖度
    Vegetation cover
    逐日至逐年
    Day by day to
    year by year
    根据土地利用和植被类型等地表特征布设监测点位, 或者根据遥感影像分辨率确定监测点位
    Set up monitoring points based on surface features such as land use and vegetation types, or determine monitoring points based on remote sensing image resolution
    下载: 导出CSV

    表  3   面源污染源识别技术特点[47-59]

    Table  3   Technical characteristics of source identification of non-point source pollution[47-59]

    名称
    Name
    操作方法
    Operation method
    时空分辨率
    Spatiotemporal resolution
    优势
    Advantage
    限制
    Limitation
    面源污染模型模拟
    Simulation of non-point source pollution model
    基于地面观测、径流小区试验以及卫星遥感技术构建模型, 模拟区域营养盐负荷和划分流失等级
    Develop models based on ground observations, runoff plot experiments and remote sensing to simulate regional nutrient loads and classify loss levels
    取决于面源污染模型机
    理和输入参数, 主要分
    辨率为月际和子流域
    Depending on the mechanism and input parameters of the non-point source pollution model, and the main resolutions are month and
    sub-basin
    应用广泛, 适用于模拟大范
    围长时间尺度的面源污染模拟
    Widely applicable and suitable for simulating large-scale and long-term non-point source pollution simulation
    需要大量观测数据, 各类模
    型适用边界不同, 不确定性高
    Require a large amount of observational data, and different models have different applicable boundaries. High uncertainty
    同位素示踪
    Isotope tracing
    通过富集、分离和纯化各形态氮, 测定氮氧同位素组成, 对比理论平衡值和判断氮来源
    Determinating nitrogen and oxygen isotope compositions, comparing with theoretical equilibrium values, and determining nitrogen sources via enrichment, isolation and purification of nitrogen forms
    取决于降水事件和试验条
    件, 最高可达日级和田块
    Depending on precipitation events and experimental conditions, the resolution can reach up to daily and field
    能准确有效识别不同污染源,
    能建立受纳水体和污染源的
    直接联系
    Accurately and effectively identify different pollution sources, and establish direct connections between receiving water bodies and source areas
    主要溯源氮流失, 输移过程
    中各形态氮间会相互转化,
    操作复杂, 来源判别数量
    有限, 成本高昂
    Mainly focusing on the traceability of nitrogen
    losses, and inter-conversion
    between different forms of nitrogen during transport.
    Complexity of operation,
    limited number of source
    identification, and high cost
    指纹示踪
    Fingerprint tracing
    通过测定泥沙和污染源土壤样本的地化性质, 构建泥沙指纹示踪模型, 结合污染物输出系数, 开发颗粒态污染物示踪模型
    By measuring the geochemical properties of sediment and source samples, develop sediment fingerprint tracing model, and particulate pollutants tracing model combined with pollutant output coefficients
    取决于降水事件和试验条件, 最高可达日级和田块类型
    Depending on precipitation events and experimental conditions, the resolution can reach up to day level and field
    能建立受纳水体和污染源
    的直接联系, 并定量获取
    污染源位置/类型的贡献率
    Establish direct connection between the receiving water
    body and the source area, and quantitatively obtain the contribution rate of different pollution source location / type
    主要溯源颗粒态污染物, 操
    作复杂, 来源判别数量有限,
    不确定性高, 成本高昂
    Mainly focusing on traceability of particulate pollutants. Complex operation, limited number of source identifications, high uncertainty, and high cost
    下载: 导出CSV
  • [1] 杨世琦. 基于国家粮食安全下的农业面源污染综合防治体系思考[J]. 中国农业科学, 2022, 55(17): 3380−3394 doi: 10.3864/j.issn.0578-1752.2022.17.010

    YANG S Q. Thought of pollution comprehensive prevention and control system of non-point sources based on national food security[J]. Scientia Agricultura Sinica, 2022, 55(17): 3380−3394 doi: 10.3864/j.issn.0578-1752.2022.17.010

    [2] 吴文斌, 史云, 周清波, 等. 天空地数字农业管理系统框架设计与构建建议[J]. 智慧农业, 2019, 1(2): 64−72

    WU W B, SHI Y, ZHOU Q B, et al. Framework and recommendation for constructing the SAGI digital agriculture system[J]. Smart Agriculture, 2019, 1(2): 64−72

    [3] 陈敏, 王雪蕾, 高吉喜, 等. 农业面源污染立体遥感监测体系构建设想[J]. 环境保护, 2020, 48(14): 49−53

    CHEN M, WANG X L, GAO J X, et al. Construction of stereo remote sensing monitoring system for agricultural non-point source pollution[J]. Environmental Protection, 2020, 48(14): 49−53

    [4] 胡钰, 林煜, 金书秦. 农业面源污染形势和 “十四五” 政策取向−基于两次全国污染源普查公报的比较分析[J]. 环境保护, 2021, 49(1): 31−36

    HU Y, LIN Y, JIN S Q. The situation of agricultural non-point source pollution and the policy orientation of the 14th Five-Year Plan: Based on the comparative analysis of two pollution census bulletins[J]. Environmental Protection, 2021, 49(1): 31−36

    [5] 施卫明, 王远, 闵炬. 中国农业面源污染防控研究进展与工程案例[J]. 土壤学报, 2023, 60(5): 1309−1323

    SHI W M, WANG Y, MIN J. Progress in research and engineering application cases of agricultural non-point source pollution control in China[J]. Acta Pedologica Sinica, 2023, 60(5): 1309−1323

    [6] 杨林章, 薛利红, 施卫明, 等. 农村面源污染治理的“4R” 理论与工程实践−案例分析[J]. 农业环境科学学报, 2013, 32(12): 2309−2315

    YANG L Z, XUE L H, SHI W M, et al. Reduce-Retain-Reuse-Restore technology for the controlling the agricultural non-point source pollution in countryside in China: A case study[J]. Journal of Agro-Environment Science, 2013, 32(12): 2309−2315

    [7] 李影, 秦丽欢, 雷秋良, 等. 小流域农业面源污染监测断面设置与污染物通量估算研究进展[J]. 湖泊科学, 2022, 34(5): 1413−1427 doi: 10.18307/2022.0501

    LI Y, QIN L H, LEI Q L, et al. Review on agricultural non-point source pollution monitoring sections layout and pollutant loading estimation in small watershed[J]. Journal of Lake Sciences, 2022, 34(5): 1413−1427 doi: 10.18307/2022.0501

    [8] 杨林章, 冯彦房, 施卫明, 等. 我国农业面源污染治理技术研究进展[J]. 中国生态农业学报, 2013, 21(1): 96−101

    YANG L Z, FENG Y F, SHI W M, et al. Review of the advances and development trends in agricultural non-point source pollution control in China[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 96−101

    [9] 李家科, 彭凯, 郝改瑞, 等. 黄河流域非点源污染负荷定量化与控制研究进展[J]. 水资源保护, 2021, 37(1): 90−102

    LI J K, PENG K, HAO G R, et al. Research progress on quantification and control of non-point source pollution load in the Yellow River Basin[J]. Water Resources Protection, 2021, 37(1): 90−102

    [10] 谢晓琳, 钱锋, 赵健, 等. 流域农业面源污染防治科学问题与技术研发需求[J]. 环境科学学报, 2023, 43(12): 152−157

    XIE X L, QIAN F, ZHAO J, et al. Scientific issues and technological development needs for the prevention and control of agricultural non-point source pollution in river basins[J]. Acta Scientiae Circumstantiae, 2023, 43(12): 152−157

    [11] 黄国鲜, 聂玉玺, 张清寰, 等. 流域农业面源污染迁移过程与模型研究进展[J]. 环境工程技术学报, 2023, 13(4): 1364−1372

    HUANG G X, NIE Y X, ZHANG Q H, et al. Research progress of agricultural non-point source pollution migration process and model in basins[J]. Journal of Environmental Engineering Technology, 2023, 13(4): 1364−1372

    [12] 孙棋棋, 张春平, 于兴修, 等. 中国农业面源污染最佳管理措施研究进展[J]. 生态学杂志, 2013, 32(3): 772−778

    SUN Q Q, ZHANG C P, YU X X, et al. Best management practices of agricultural non-point source pollution in China: A review[J]. Chinese Journal of Ecology, 2013, 32(3): 772−778

    [13] 钱海铭, 张运林, 李娜, 等. 典型降雨过程中河流饮用水源地水质高频监测研究[J]. 生态环境学报, 2023, 32(3): 579−589

    QIAN H M, ZHANG Y L, LI N, et al. High frequency monitoring of water quality dynamics for river drinking water source during the typical rainfall process[J]. Ecology and Environmental Sciences, 2023, 32(3): 579−589

    [14] 梁丽娜, 赵亚慧, 吴佳俊, 等. 基于CiteSpace的国内外农业面源污染研究进展与前沿分析[J]. 中国农业资源与区划, 2023, 44(4): 99−112

    LIANG L N, ZHAO Y H, WU J J, et al. Research progress and frontier analysis of agricultural non-point source pollution at home and abroad based on CiteSpace[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2023, 44(4): 99−112

    [15] 杨林章, 吴永红. 农业面源污染防控与水环境保护[J]. 中国科学院院刊, 2018, 33(2): 168−176

    YANG L Z, WU Y H. Prevention and control of agricultural non-point source pollution and aquatic environmental protection[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 168−176

    [16] 王萌, 耿润哲. 农业面源氮污染控制措施滞后效应形成机理与评估方法研究进展[J]. 生态学报, 2024, 44(8): 3132−3141

    WANG M, GENG R Z. A review on the mechanisms and assessing methods for time lags in the responses of nitrogen loss to best management practices[J]. Acta Ecologica Sinica, 2024, 44(8): 3132−3141

    [17] 王萌, 杨生光, 耿润哲. 农业面源污染防治的监测问题分析[J]. 中国环境监测, 2022, 38(2): 61−66

    WANG M, YANG S G, GENG R Z. Analysis on monitoring and practices of agricultural non-point source pollution control[J]. Environmental Monitoring in China, 2022, 38(2): 61−66

    [18] 武淑霞, 刘宏斌, 刘申, 等. 农业面源污染现状及防控技术[J]. 中国工程科学, 2018, 20(5): 23−30 doi: 10.15302/J-SSCAE-2018.05.004

    WU S X, LIU H B, LIU S, et al. Review of current situation of agricultural non-point source pollution and its prevention and control technologies[J]. Strategic Study of CAE, 2018, 20(5): 23−30 doi: 10.15302/J-SSCAE-2018.05.004

    [19] 徐长春, 熊炜, 刘婕. 国家重点研发计划农业面源专项服务绿色发展的主要成效与机制探索[J]. 农业资源与环境学报, 2023, 40(3): 699−704

    XU C C, XIONG W, LIU J. Research projects promoting green development within China’s agricultural sector: Insights from the National Key R & D Program of China for prevention and control of agricultural non-point source pollution and heavy metal contaminated croplands[J]. Journal of Agricultural Resources and Environment, 2023, 40(3): 699−704

    [20] 陈洁, 朱广伟, 许海, 等. 不同雨强对太湖河网区河道入湖营养盐负荷影响[J]. 环境科学, 2019, 40(11): 4924−4931

    CHEN J, ZHU G W, XU H, et al. Influence of rainfall intensity on the nutrient loading from an inflowing river in the plain river network of the Taihu Catchment[J]. Environmental Science, 2019, 40(11): 4924−4931

    [21] 杨育红, 阎百兴. 降雨-土壤-径流系统中氮磷的迁移[J]. 水土保持学报, 2010, 24(5): 27−30, 58

    YANG Y H, YAN B X. Transport of nitrogen and phosphorus in rainfall-soil-runoff interaction system[J]. Journal of Soil and Water Conservation, 2010, 24(5): 27−30, 58

    [22] 唐柄哲. 不同施肥类型及耕作方式下紫色土坡耕地径流氮、磷流失研究[D]. 重庆: 西南大学, 2016

    TANG B Z. Study on nitrogen and phosphorus loss from runoff of sloping farmland in purple soil under different fertilization types and farming methods[D]. Chongqing: Southwest University, 2016

    [23] 马林, 王洪媛, 刘刚, 等. 中国北方农田氮磷淋溶损失污染与防控机制[J]. 中国生态农业学报(中英文), 2021, 29(1): 1−10

    MA L, WANG H Y, LIU G, et al. Mitigation of nitrogen and phosphorus leaching from cropland in northern China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(1): 1−10

    [24] 王静, 王允青, 叶寅, 等. 不同农艺措施对巢湖沿岸坡耕地不同形态磷径流输出的控制效果[J]. 中国生态农业学报, 2017, 25(6): 911−919

    WANG J, WANG Y Q, YE Y, et al. Effect of agronomic measures on phosphorous loss via runoff in sloping croplands around Chaohu Lake[J]. Chinese Journal of Eco-Agriculture, 2017, 25(6): 911−919

    [25] 王静, 王允青, 郭熙盛, 等. 不同农艺措施对巢湖沿岸坡耕地水土及径流氮输出的控制效果[J]. 水土保持学报, 2016, 30(4): 38−43

    WANG J, WANG Y Q, GUO X S, et al. Effects of different agronomic measures on runoff, sediment and nitrogen losses from sloping cropland around Chaohu Lake[J]. Journal of Soil and Water Conservation, 2016, 30(4): 38−43

    [26] 王蓉, 秦华鹏, 赵智杰. 基于SWMM模拟的快速城市化地区洪峰径流和非点源污染控制研究[J]. 北京大学学报(自然科学版), 2015, 51(1): 141−150

    WANG R, QIN H P, ZHAO Z J. Control studies of peak flow and non-point source pollution for urbanized area based on SWMM[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(1): 141−150

    [27] 余子贤, 钱瑶, 李家兵, 等. 基于 “源-汇”景观的典型半城市化小流域非点源污染风险评价[J]. 生态学报, 2022, 42(20): 8276−8287

    YU Z X, QIAN Y, LI J B, et al. Risk assessment of non-point source pollution in a typical semi-urbanized small watershed based on source-sink landscape[J]. Acta Ecologica Sinica, 2022, 42(20): 8276−8287

    [28]

    PAN Y, GUO J X, YANG L, et al. Numerical simulations of non-point source pollution in a small urban catchment: Identification of pollution risk areas and effectiveness of source-control measures[J]. Water, 2021, 13(1): 96 doi: 10.3390/w13010096

    [29] 崔然, 刘敏, 潘宁. 小流域面源污染监测技术指标体系及监测方法研究[J]. 化工设计通讯, 2022, 48(3): 163−166

    CUI R, LIU M, PAN N. A preliminary study on the technical index system and monitoring methods of non-point source pollution monitoring in small watersheds[J]. Chemical Engineering Design Communications, 2022, 48(3): 163−166

    [30] 王静. 巢湖流域农业面源污染氮源解析及农艺控制技术研究[D]. 武汉: 华中农业大学, 2020

    WANG J. Study on nitrogen source analysis and agronomic control technology of agricultural non-point source pollution in Chaohu Lake Basin[D]. Wuhan: Huazhong Agricultural University, 2020

    [31] 王雪蕾, 王新新, 朱利, 等. 巢湖流域氮磷面源污染与水华空间分布遥感解析[J]. 中国环境科学, 2015, 35(5): 1511−1519

    WANG X L, WANG X X, ZHU L, et al. Spatial analysis on diffuse pollution and algal bloom characteristic with remote sensing in Chao Lake Basin[J]. China Environmental Science, 2015, 35(5): 1511−1519

    [32] 边博, 朱伟, 李冰, 等. 太湖流域西部地区面源污染特征及其控制技术[J]. 水资源保护, 2015, 31(1): 48−55

    BIAN B, ZHU W, LI B, et al. Characteristics and control techniques of non-point pollution in the western region of Taihu Basin[J]. Water Resources Protection, 2015, 31(1): 48−55

    [33] 蔡明, 李怀恩, 庄咏涛. 估算流域非点源污染负荷的降雨量差值法[J]. 西北农林科技大学学报(自然科学版), 2005, 33(4): 102−106

    CAI M, LI H E, ZHUANG Y T. Rainfall deduction method for estimating non-point source pollution load for watershed[J]. Journal of Northwest A & F University (Natural Science Edition), 2005, 33(4): 102−106

    [34] 沈虹, 张万顺, 彭虹. 汉江中下游土壤侵蚀及颗粒态非点源磷负荷研究[J]. 水土保持研究, 2010, 17(5): 1−6

    SHEN H, ZHANG W S, PENG H. Research on soil erosion and particulate phosphorus load of non-point source pollution in the middle and lower reaches of the Hanjiang River Basin[J]. Research of Soil and Water Conservation, 2010, 17(5): 1−6

    [35]

    SRINIVAS R, SINGH A P, DHADSE K, et al. An evidence based integrated watershed modelling system to assess the impact of non-point source pollution in the riverine ecosystem[J]. Journal of Cleaner Production, 2020, 246: 118963 doi: 10.1016/j.jclepro.2019.118963

    [36] 夏小江. 太湖地区稻田氮磷养分径流流失及控制技术研究[D]. 南京: 南京农业大学, 2012

    XIA X J. Study on runoff loss of nitrogen and phosphorus in paddy fields in Taihu Lake Area and its control techniques[D]. Nanjing: Nanjing Agricultural University, 2012

    [37] 张翼. 上海郊区稻田氮磷流失监测及其生态阻断系统构建[D]. 长春: 吉林农业大学, 2014

    ZHANG Y. Monitoring of nitrogen and phosphorus loss from paddy fields in Shanghai suburb and construction of ecological blocking system[D]. Changchun: Jilin Agricultural University, 2014

    [38] 郭丰, 严冬春. 三峡库区水土流失与面源污染自动监测系统[J]. 中国水土保持, 2010(10): 30−32

    GUO F, YAN D C. Automatic monitoring system of soil and water loss and area-source pollution of the Three Gorges Reservoir Area[J]. Soil and Water Conservation in China, 2010(10): 30−32

    [39] 隋媛媛. 东北黑土区典型小流域农业面源污染源解析及防控措施效果评估[D]. 哈尔滨: 中国科学院东北地理与农业生态研究所, 2016

    SUI Y Y. Source analysis of agricultural non-point source pollution in typical small watershed in black soil region of Northeast China and effect evaluation of prevention and control measures[D]. Harbin: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2016

    [40] 匡舒雅, 李天宏, 赵志杰. 基于L-THIA模型的四川省濑溪河流域非点源污染负荷分析[J]. 环境科学研究, 2018, 31(4): 688−696

    KUANG S Y, LI T H, ZHAO Z J. Non-point source pollution loads analysis of Laixi River Watershed, Sichuan based on L-THIA Model[J]. Research of Environmental Sciences, 2018, 31(4): 688−696

    [41]

    DING L, QI C C, ZHANG W Q. Distribution characteristics of non-point source pollution of TP and identification of key source areas in Nanyi Lake (China) Basin: Based on InVEST model and source list method[J]. Environmental Science and Pollution Research, 2023, 30(55): 117464−117484 doi: 10.1007/s11356-023-30405-y

    [42]

    BRAUER N, O’GEEN A T, DAHLGREN R A. Temporal variability in water quality of agricultural tailwaters: Implications for water quality monitoring[J]. Agricultural Water Management, 2009, 96(6): 1001−1009 doi: 10.1016/j.agwat.2009.01.011

    [43]

    LIU W L, YOUSSEF M A, BIRGAND F P, et al. Processes and mechanisms controlling nitrate dynamics in an artificially drained field: Insights from high-frequency water quality measurements[J]. Agricultural Water Management, 2020, 232: 106032 doi: 10.1016/j.agwat.2020.106032

    [44] 曹佳霖, 胡茂川, 贺凯, 等. 广东省农业面源污染现状及变化的多尺度评价[J]. 生态与农村环境学报, 2023, 39(7): 924−933

    CAO J L, HU M C, HE K, et al. Multi-scale assessment of agricultural non-point source pollution loadings and its changing characteristics in Guangdong Province[J]. Journal of Ecology and Rural Environment, 2023, 39(7): 924−933

    [45]

    MOTEVALLI A, NAGHIBI S A, HASHEMI H, et al. Inverse method using boosted regression tree and k-nearest neighbor to quantify effects of point and non-point source nitrate pollution in groundwater[J]. Journal of Cleaner Production, 2019, 228: 1248−1263 doi: 10.1016/j.jclepro.2019.04.293

    [46]

    TOMCZYK N, NASLUND L, CUMMINS C, et al. Nonpoint source pollution measures in the Clean Water Act have no detectable impact on decadal trends in nutrient concentrations in U.S. inland waters[J]. Ambio, 2023, 52(9): 1475−1487 doi: 10.1007/s13280-023-01869-6

    [47]

    POLYAKOV V, FARES A, KUBO D, et al. Evaluation of a non-point source pollution model, AnnAGNPS, in a tropical watershed[J]. Environmental Modelling & Software, 2007, 22(11): 1617−1627

    [48]

    KIRSCH K, KIRSCH A, ARNOLD J G. Predicting sediment and phosphorus loads in the Rock River Basin using SWAT[J]. Transactions of the ASAE, 2002, 45(6): 1757−1769

    [49]

    HUANG J C, GAO J F, YAN R H. A Phosphorus Dynamic model for lowland Polder systems (PDP)[J]. Ecological Engineering, 2016, 88: 242−255 doi: 10.1016/j.ecoleng.2015.12.033

    [50]

    SINGH J, KNAPP H V, ARNOLD J G, et al. Hydrological modeling of the Iroquois River watershed using HSPF and SWAT[J]. Journal of the American Water Resources Association, 2005, 41(2): 343−360 doi: 10.1111/j.1752-1688.2005.tb03740.x

    [51] 李雪, 曹芳芳, 陈先春, 等. 敏感区域目标污染物空间溯源分析−以新安江流域跨省界断面为例[J]. 中国环境科学, 2013, 33(9): 1714−1720

    LI X, CAO F F, CHEN X C, et al. Spatial source apportionment analysis of target pollutant for sensitive area — A case study in Xin’anjiang River Basin for interprovincial assessment section[J]. China Environmental Science, 2013, 33(9): 1714−1720

    [52] 李力, 任斐鹏, 王志刚, 等. 利用氮稳定同位素识别农业面源污染源的研究进展[J]. 长江科学院院报, 2014, 31(7): 21−28

    LI L, REN F P, WANG Z G, et al. A review on identifying agricultural NPS pollution sources by using stable N isotope[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(7): 21−28

    [53] 苏斌, 史正涛, 叶燎原, 等. 宝象河雨季径流过程氮素输移特征及来源示踪[J]. 环境化学, 2019, 38(3): 686−696

    SU B, SHI Z T, YE L Y, et al. Nitrogen transport characteristics and sources apportionment during Baoxiang River runoff process in rainy season[J]. Environmental Chemistry, 2019, 38(3): 686−696

    [54] 赵甜甜, 田康, 胡文友, 等. 磷酸盐氧同位素技术在土壤磷循环中的应用[J]. 土壤学报, 2022, 59(5): 1204−1214

    ZHAO T T, TIAN K, HU W Y, et al. The application of phosphate oxygen isotopes in soil phosphorus cycling[J]. Acta Pedologica Sinica, 2022, 59(5): 1204−1214

    [55] 田丽艳, 郭庆军, 何会军, 等. 磷酸盐氧同位素技术在环境科学中的研究进展[J]. 生态学杂志, 2016, 35(7): 1947−1956

    TIAN L Y, GUO Q J, HE H J, et al. Progress on phosphate oxygen isotope technology in environmental science[J]. Chinese Journal of Ecology, 2016, 35(7): 1947−1956

    [56]

    COLLINS A L, BLACKWELL M, BOECKX P, et al. Sediment source fingerprinting: Benchmarking recent outputs, remaining challenges and emerging themes[J]. Journal of Soils and Sediments, 2020, 20(12): 4160−4193 doi: 10.1007/s11368-020-02755-4

    [57] 周慧平, 周宏伟, 陈玉东. 指纹技术识别泥沙来源: 不确定性研究进展[J]. 土壤学报, 2019, 56(6): 1279−1289

    ZHOU H P, ZHOU H W, CHEN Y D. Sediment source fingerprinting: Progress in uncertainty analysis[J]. Acta Pedologica Sinica, 2019, 56(6): 1279−1289

    [58] 周慧平, 常维娜, 张龙江. 基于泥沙指纹识别的小流域颗粒态磷来源解析[J]. 农业工程学报, 2015, 31(13): 251−256

    ZHOU H P, CHANG W N, ZHANG L J. Particulate phosphorus sources apportionment in small watershed based on sediment fingerprinting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(13): 251−256

    [59] 周慧平, 陈玉东, 常维娜. 指纹技术识别泥沙来源: 进展与展望[J]. 水土保持学报, 2018, 32(5): 1−7

    ZHOU H P, CHEN Y D, CHANG W N. Sediment source fingerprinting: Progresses and prospects[J]. Journal of Soil and Water Conservation, 2018, 32(5): 1−7

    [60] 王沛芳, 娄明月, 钱进, 等. 农田退水净污湿地对污染物的净化效果及机理分析[J]. 水资源保护, 2020, 36(5): 1−10

    WANG P F, LOU M Y, QIAN J, et al. Analysis of purification effect and mechanism of pollutant by the farmland drainage wetland[J]. Water Resources Protection, 2020, 36(5): 1−10

    [61] 刘坤, 任天志, 吴文良, 等. 英国农业面源污染防控对我国的启示[J]. 农业环境科学学报, 2016, 35(5): 817−823

    LIU K, REN T Z, WU W L, et al. Prevention and control of agricultural non-point source pollutions in UK and suggestions to China[J]. Journal of Agro-Environment Science, 2016, 35(5): 817−823

    [62] 薛利红, 何世颖, 段婧婧, 等. 基于养分回用-化肥替代的农业面源污染氮负荷削减策略及技术[J]. 农业环境科学学报, 2017, 36(7): 1226−1231

    XUE L H, HE S Y, DUAN J J, et al. Agricultural non-point source pollution nitrogen load reduction strategy and technology of nutrient reusing in agricultural fields to replace fertilizer[J]. Journal of Agro-Environment Science, 2017, 36(7): 1226−1231

    [63] 谢晖, 邱嘉丽, 董建玮, 等. 流域水文模型在面源污染模拟与管控中的应用研究进展[J]. 生态学报, 2022, 42(15): 6076−6091

    XIE H, QIU J L, DONG J W, et al. Research of the HSPF model on nonpoint source pollution modeling and management: Progresses and perspectives[J]. Acta Ecologica Sinica, 2022, 42(15): 6076−6091

    [64] 夏永秋, 赵娣, 严星, 等. 我国农业面源污染过程模拟的困境与展望[J]. 农业环境科学学报, 2022, 41(11): 2327−2337

    XIA Y Q, ZHAO D, YAN X, et al. Dilemma and prospect of modelling in agricultural non-point source pollution in China[J]. Journal of Agro-Environment Science, 2022, 41(11): 2327−2337

    [65]

    LEE D H, KIM J H, PARK M H, et al. Automatic calibration and improvements on an instream chlorophyll a simulation in the HSPF model[J]. Ecological Modelling, 2020, 415: 108835 doi: 10.1016/j.ecolmodel.2019.108835

    [66] 杨世琦. 全域尺度的农田面源污染对水环境质量的影响分析[J]. 灌溉排水学报, 2022, 41(9): 110−116

    YANG S Q. Effects of nonpoint source pollution on water environmental quality at national scale[J]. Journal of Irrigation and Drainage, 2022, 41(9): 110−116

    [67] 吴一平, 宋燕妮, 张广创, 等. 流域面源污染研究进展与展望[J]. 农业环境科学学报, 2024, 43(4): 711−720

    WU Y P, SONG Y N, ZHANG G C, et al. Progress and prospect of research on watershed nonpoint source pollution[J]. Journal of Agro-Environment Science, 2024, 43(4): 711−720

    [68]

    WANG R, MIN J, KRONZUCKER H J, et al. N and P runoff losses in China’s vegetable production systems: Loss characteristics, impact, and management practices[J]. Science of the Total Environment, 2019, 663: 971−979 doi: 10.1016/j.scitotenv.2019.01.368

    [69]

    SEE L, GILLIAMS S, CONCHEDDA G, et al. Dynamic global-scale crop and irrigation monitoring[J]. Nature Food, 2023, 4: 736−737 doi: 10.1038/s43016-023-00841-7

    [70]

    DEUTSCH C A, TEWKSBURY J J, TIGCHELAAR M, et al. Increase in crop losses to insect pests in a warming climate[J]. Science, 2018, 361(6405): 916−919 doi: 10.1126/science.aat3466

    [71]

    HOU X J, FENG L, DAI Y H, et al. Global mapping reveals increase in lacustrine algal blooms over the past decade[J]. Nature Geoscience, 2022, 15: 130−134 doi: 10.1038/s41561-021-00887-x

    [72] 赵宇博, 王雪霁, 刘骁, 等. 精细光谱探测与计量分析技术在长江干流水质水环境监测中的应用[J]. 地理学报, 2024, 79(1): 45−57

    ZHAO Y B, WANG X J, LIU X, et al. Application of fine spectral detection and quantitative analysis technology in water quality and environmental monitoring of the Yangtze River main stream[J]. Acta Geographica Sinica, 2024, 79(1): 45−57

    [73]

    YI Q T, ZHANG Y, XIE K, et al. Tracking nitrogen pollution sources in plain watersheds by combining high-frequency water quality monitoring with tracing dual nitrate isotopes[J]. Journal of Hydrology, 2020, 581: 124439 doi: 10.1016/j.jhydrol.2019.124439

    [74] 耿润哲, 梁璇静, 殷培红, 等. 面源污染最佳管理措施多目标协同优化配置研究进展[J]. 生态学报, 2019, 39(8): 2667−2675

    GENG R Z, LIANG X J, YIN P H, et al. A review: multi-objective collaborative optimization of best management practices for non-point sources pollution control[J]. Acta Ecologica Sinica, 2019, 39(8): 2667−2675

    [75] 尹京晨, 丁晗, 李泽利, 等. 基于SPARROW模型的面源污染模拟研究进展[J]. 环境工程, 2022, 40(6): 253−260, 294

    YIN J C, DING H, LI Z L, et al. Research progress of non-point source pollution simulation based on SPARROW model[J]. Environmental Engineering, 2022, 40(6): 253−260, 294

    [76] 李思思, 张亮, 刘宏斌, 等. 基于径流路径的分布式面源污染模型研发与应用进展[J]. 生态学报, 2022, 42(6): 2477−2488

    LI S S, ZHANG L, LIU H B, et al. Progress on the development and application of a runoff pathway-based Spatially and Temporally distributed Model for Non-Point Source pollution[J]. Acta Ecologica Sinica, 2022, 42(6): 2477−2488

    [77] 常珺枫, 刘莹, 李陈, 等. 农田氮磷流失特征及影响因素研究[J]. 中国农学通报, 2023, 39(15): 69−75

    CHANG J F, LIU Y, LI C, et al. Characteristics of nitrogen and phosphorus loss in farmland and the influencing factors[J]. Chinese Agricultural Science Bulletin, 2023, 39(15): 69−75

    [78] 王金亮, 谭少军, 李梦冰, 等. 基于流域面源污染过程的“源-汇”景观格局分析研究进展[J]. 中国生态农业学报(中英文), 2023, 31(10): 1657−1667

    WANG J L, TAN S J, LI M B, et al. Research progress in source-sink landscape pattern analysis based on non-point source pollution processes in watersheds[J]. Chinese Journal of Eco-Agriculture, 2023, 31(10): 1657−1667

    [79] 刘宏斌, 邹国元, 范先鹏, 等. 农田面源污染监测方法与实践[M]. 北京: 科学出版社, 2015

    LIU H B, ZOU G Y, FAN X P, et al. Establishment and Application of Monitoring Technology on Nonpoint Pollution from Arable Land[M]. Beijing: Science Press, 2015

    [80]

    HUANG J C, GAO J F, YAN R H. How can we reduce phosphorus export from lowland polders? Implications from a sensitivity analysis of a coupled model[J]. Science of the Total Environment, 2016, 562: 946−952 doi: 10.1016/j.scitotenv.2016.04.068

    [81] 孙亚乔, 王晓冬, 校康, 等. 淡水环境中氮污染同位素示踪的研究进展[J]. 生态环境学报, 2020, 29(8): 1693−1702

    SUN Y Q, WANG X D, XIAO K, et al. Research progress of nitrogen pollution isotope tracing in freshwater environment[J]. Ecology and Environmental Sciences, 2020, 29(8): 1693−1702

    [82] 王诗绘, 马玉坤, 沈珍瑶. 氮氧稳定同位素技术用于水体中硝酸盐污染来源解析方面的研究进展[J]. 北京师范大学学报(自然科学版), 2021, 57(1): 36−42

    WANG S H, MA Y K, SHEN Z Y. Identification of nitrate source in receiving water with dual NO3 isotopes [ δ(15N) and δ(18O)][J]. Journal of Beijing Normal University (Natural Science), 2021, 57(1): 36−42

    [83] 陈太丽, 史忠林, 王永艳, 等. 三峡水库典型支流消落带泥沙颗粒态磷复合指纹示踪研究[J]. 农业工程学报, 2019, 35(20): 118−124

    CHEN T L, SHI Z L, WANG Y Y, et al. Fingerprinting particulate phosphorus absorbed by sediments for riparian zone deposits in tributary of Three Gorges Reservoir[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(20): 118−124

    [84] 邹国元, 曹兵, 李丽霞, 等. 缓控释肥料研发需要长期坚持[J]. 中国生态农业学报(中英文), 2023, 31(8): 1220−1229

    ZOU G Y, CAO B, LI L X, et al. It is necessary to develop the slow and controlled release fertilizer continuously[J]. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1220−1229

    [85] 宋大平, 左强, 刘本生, 等. 农业面源污染中氮排放时空变化及其健康风险评价研究−以淮河流域为例[J]. 农业环境科学学报, 2018, 37(6): 1219−1231

    SONG D P, ZUO Q, LIU B S, et al. Estimation of spatio-temporal variability and health risks of nitrogen emissions from agricultural non-point source pollution: A case study of the Huaihe River Basin, China[J]. Journal of Agro-Environment Science, 2018, 37(6): 1219−1231

    [86] 胡春宏, 张晓明, 赵阳. 水土流失系统治理对河湖生态环境提升的作用与举措[J]. 中国水利, 2022(7): 16−20

    HU C H, ZHANG X M, ZHAO Y. Functions of soil and water conservation for restoration of rivers and lakes eco-environment and measure study[J]. China Water Resources, 2022(7): 16−20

    [87] 沈仁芳, 吴永红, 徐滢, 等. 中、美、日三个国家农业面源污染防治比较研究[J]. 中国发展, 2022, 22(5): 69−73

    SHEN R F, WU Y H, XU Y, et al. Comparative study on agricultural non-point source pollution control in China, the United States and Japan[J]. China Development, 2022, 22(5): 69−73

    [88]

    LI S S, LIU H B, ZHANG L, et al. Potential nutrient removal function of naturally existed ditches and ponds in paddy regions: Prospect of enhancing water quality by irrigation and drainage management[J]. Science of the Total Environment, 2020, 718: 137418 doi: 10.1016/j.scitotenv.2020.137418

    [89] 胡博, 罗良国, 武永锋, 等. 环竺山湾湖小流域种植业面源污染减排潜力研究[J]. 农业环境科学学报, 2016, 35(7): 1368−1375

    HU B, LUO L G, WU Y F, et al. Potential of mitigating nonpoint source pollution from farmlands around Zhushan Bay in Tai Lake watershed[J]. Journal of Agro-Environment Science, 2016, 35(7): 1368−1375

    [90] 黄佳聪, 张京, 季雨来, 等. 太湖流域平原农业面源污染模拟与管控的思考[J]. 农业环境科学学报, 2022, 41(11): 2365−2370

    HUANG J C, ZHANG J, JI Y L, et al. Thoughts on modelling and control of agricultural non-point source pollution in the lowland areas of Lake Taihu basin, China[J]. Journal of Agro-Environment Science, 2022, 41(11): 2365−2370

    [91]

    CHEN L, LIU F, WANG Y, et al. Nitrogen removal in an ecological ditch receiving agricultural drainage in subtropical central China[J]. Ecological Engineering, 2015, 82: 487−492 doi: 10.1016/j.ecoleng.2015.05.012

    [92]

    YANG J C, NI J F, LI Y, et al. The intelligent path planning system of agricultural robot via reinforcement learning[J]. Sensors, 2022, 22(12): 4316 doi: 10.3390/s22124316

    [93] 韩佳伟, 朱文颖, 张博, 等. 装备与信息协同促进现代智慧农业发展研究[J]. 中国工程科学, 2022, 24(1): 55−63 doi: 10.15302/J-SSCAE-2022.01.007

    HAN J W, ZHU W Y, ZHANG B, et al. Equipment and information collaboration to promote development of modern smart agriculture[J]. Strategic Study of CAE, 2022, 24(1): 55−63 doi: 10.15302/J-SSCAE-2022.01.007

    [94] 欧阳威, 刘迎春, 冷思文, 等. 近三十年非点源污染研究发展趋势分析[J]. 农业环境科学学报, 2018, 37(10): 2234−2241

    OUYANG W, LIU Y C, LENG S W, et al. An analysis of research trends about non-point source pollution over the last three decades[J]. Journal of Agro-Environment Science, 2018, 37(10): 2234−2241

    [95] 武淑霞, 刘宏斌, 黄宏坤, 等. 我国畜禽养殖粪污产生量及其资源化分析[J]. 中国工程科学, 2018, 20(5): 103−111 doi: 10.15302/J-SSCAE-2018.05.016

    WU S X, LIU H B, HUANG H K, et al. Analysis on the amount and utilization of manure in livestock and poultry breeding in China[J]. Strategic Study of CAE, 2018, 20(5): 103−111 doi: 10.15302/J-SSCAE-2018.05.016

    [96] 张风宝, 杨明义, 张加琼, 等. 黄土高原淤地坝沉积泥沙在小流域土壤侵蚀研究中的应用[J]. 水土保持通报, 2018, 38(6): 365−371

    ZHANG F B, YANG M Y, ZHANG J Q, et al. Progress on application of sediment in check dam to study soil erosion of small watershed on Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2018, 38(6): 365−371

    [97] 林金石, 黄炎和, 张旭斌, 等. 南方花岗岩区典型崩岗侵蚀产沙来源分析[J]. 水土保持学报, 2012, 26(3): 53−57

    LIN J S, HUANG Y H, ZHANG X B, et al. Apportioning typical collapsing hill’s erosion sediment sources of granite region in southern China[J]. Journal of Soil and Water Conservation, 2012, 26(3): 53−57

    [98] 杨明义, 徐龙江. 黄土高原小流域泥沙来源的复合指纹识别法分析[J]. 水土保持学报, 2010, 24(2): 30−34

    YANG M Y, XU L J. Fingerprinting suspended sediment sources in a small catchment on the Loess Plateau[J]. Journal of Soil and Water Conservation, 2010, 24(2): 30−34

    [99] 夏珊珊. 沿海平原水资源优化配置与河网水沙输移计算[D]. 杭州: 浙江大学, 2010

    XIA S S. Optimal allocation of water resources and calculation of water and sediment transport in river network in coastal plain[D]. Hangzhou: Zhejiang University, 2010

    [100] 郑博福, 刘海燕, 吴汉卿, 等. 中国农田磷流失风险评价及其关键驱动因素[J]. 农业工程学报, 2024, 40(2): 332−343

    ZHENG B F, LIU H Y, WU H Q, et al. Risk assessment and key driving factors of phosphorus loss in farmland of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(2): 332−343

    [101] 王永生, 刘彦随. 中国乡村生态环境污染现状及重构策略[J]. 地理科学进展, 2018, 37(5): 710−717 doi: 10.18306/dlkxjz.2018.05.014

    WANG Y S, LIU Y S. Pollution and restructuring strategies of rural ecological environment in China[J]. Progress in Geography, 2018, 37(5): 710−717 doi: 10.18306/dlkxjz.2018.05.014

    [102] 贺斌, 胡茂川. 广东省各区县农业面源污染负荷估算及特征分析[J]. 生态环境学报, 2022, 31(4): 771−776

    HE B, HU M C. Evaluation of agriculture non-point pollution load and its characteristics in all districts and counties of Guangdong[J]. Ecology and Environmental Sciences, 2022, 31(4): 771−776

图(5)  /  表(3)
计量
  • 文章访问数:  585
  • HTML全文浏览量:  66
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-28
  • 修回日期:  2024-08-29
  • 录用日期:  2024-08-31
  • 网络出版日期:  2024-09-01
  • 刊出日期:  2025-02-09

目录

    /

    返回文章
    返回