Response of wheat grain protein content to organic material return in China: A Meta-analysis
-
摘要:
有机物料(秸秆、有机肥)还田会影响小麦籽粒的营养质量。本研究基于中国各试验站点2023年9月30日前发表的文献数据进行Meta分析, 综合了65篇文献中393个观测值, 以施氮量、土壤本底有机质、年均温、年均降雨量等亚组, 评估有机物料还田对中国小麦籽粒蛋白质含量的影响。结果表明: 秸秆还田可提升小麦籽粒蛋白质含量(grain protein content, GPC)。综合比对秸秆还田不同亚组发现, 151~200 kg·hm−2施氮量下秸秆还田对小麦GPC提升效果最佳, 秸秆还田量>9 000 kg·hm−2对小麦GPC提升最大, 秸秆还田下土壤本底有机质≥21 g·kg−1可显著提升小麦GPC, 水稻和玉米秸秆还田对提升小麦GPC有显著的正向效应, 21~25 ℃年均温和>800 mm年均降雨量下秸秆还田对小麦GPC提升最好。有机肥还田降低了小麦GPC, 其中有机肥替代75%和100%无机肥显著降低小麦GPC, 有机肥替代25%和50%无机肥对小麦GPC降幅较小。综合比对有机肥还田下不同亚组发现, 151~200 kg·hm−2和251~300 kg·hm−2施氮量下, 有机肥替代25%和50%无机肥可提升小麦GPC, 高比例有机肥替代无机肥下土壤本底有机质≥21 g·kg−1 可降低对小麦GPC的部分损失, 且有机肥替代50%无机肥在年均温21~25 ℃和年均降雨量>800 mm下均可提升小麦GPC。秸秆还田对于中国小麦GPC的响应均呈正效应, 而有机肥还田以负效应为主。研究结果可为中国有机物料还田提高小麦籽粒蛋白质含量提供科学依据。
-
关键词:
- 有机物料 /
- 小麦籽粒; 蛋白质含量 /
- 秸秆还田 /
- 有机肥 /
- Meta分析
Abstract:The return of organic materials (such as straw and organic fertilizers) to the field affects the nutritional quality of wheat grains. This study conducted a Meta-analysis based on literature data published by Chinese research stations before September 30, 2023. A total of 393 observations from 65 studies were synthesized, and subgroups such as nitrogen application rate, soil baseline organic matter content, annual average temperature, and annual average rainfall were used to assess the impact of organic materials return on wheat grain protein content (GPC) in China. The results showed that straw return could enhance wheat GPC. Among different subgroups of straw return, the improvement in GPC was most pronounced under a nitrogen rate of 151–200 kg·hm−2. A straw return amount >9 000 kg·hm−2 had the greatest positive effect, while soil baseline organic matter content ≥21 g·kg−1 under straw return significantly boosted wheat GPC. The return of rice and maize straw also had a significant positive effect. Optimal improvements in GPC were observed under an average annual temperature of 21–25 °C and average annual precipitation >800 mm. In contrast, organic fertilizer applicaiton reduced wheat GPC. Specifically, the complete (100%) and partial (75%) replacement of inorganic fertilizer with organic fertilizer significantly decreased GPC, while reductions were smaller with 25% and 50% organic fertilizer substitution. For organic fertilizer return subgroups, nitrogen rate of 151–200 and 251–300 kg·hm−2 combined with 25% or 50% organic fertilizer substitution improved wheat GPC. High soil background organic matter content (baseline organic matter content ≥21 g·kg−1) partially mitigated the loss in GPC. Furthermore, 50% organic fertilizer substitution improved GPC under an annual average temperature of 21–25 ℃ and average annual precipitation >800 mm. Overall, straw return had a positive effect on wheat GPC across regions in China, whereas organic fertilizer return primarily showed a negative effect. These findings provide scientific evidence for enhancing wheat grain protein content through organic materials return in China.
-
Keywords:
- organic materials /
- wheat grain; protein content /
- straw return /
- organic fertilizer /
- Meta-analysis
-
-
图 1 外源有机物投入对中国小麦籽粒蛋白质含量的影响
虚线代表效应值 ln RR ++=0; 括号内数字为样本数; 点和误差线分别代表效应值及95%的置信区间, 如果95%的置信区间没有跨越零线表示处理与对照间存在显著差异, 若亚组各水平95%置信区间横线之间无重叠, 则认为不同水平间存在差异显著的统计学关联。The dashed line represents the effect value (ln RR ++)=0; numbers in parentheses are sample sizes. Points and error lines represent the effect value and 95% confidence intervals, respectively. If the 95% confidence intervals do not cross the zero line, there is a significant difference between the treatment and the control. If there is no overlap between the horizontal lines of the 95% confidence intervals for a certain subgroup, there is a statistically significant correlation of differences between the factors.
Figure 1. Effects of exogenous organic materials on yield and grain protein content in China
图 2 秸秆还田下不同处理对小麦籽粒蛋白质含量的影响
虚线代表效应值 (ln RR ++)=0; 括号内数字为样本数。点和误差线分别代表效应值及95%的置信区间, 如果95%的置信区间没有跨越零线表示处理与对照间存在显著差异, 若亚组各水平95%置信区间横线之间无重叠, 则认为不同水平间存在差异显著的统计学关联。WR: 麦稻; WM: 麦玉; R: 水稻; M: 玉米; W: 小麦。The dashed line represents the effect value (ln RR++)=0; numbers in parentheses are sample sizes. Points and error lines represent the effect value and 95% confidence intervals, respectively. If the 95% confidence intervals do not cross the zero line, there is a significant difference between the treatment and the control. If there is no overlap between the horizontal lines of the 95% confidence intervals for a certain subgroup, there is a statistically significant correlation of differences between the factors. WR: wheat and rice; WM: wheat and maize; R: rice; M: maize; W: wheat.
Figure 2. Effects of different straw returning treatments on wheat grain protein content
图 3 有机肥和无机肥下不同处理对小麦籽粒蛋白质含量的影响
虚线代表效应值 ln RR ++ =0; 括号内数字为样本数。点和误差线分别代表效应值及95%的置信区间,如果95%的置信区间没有跨越零线表示处理与对照间存在显著差异, 若亚组各水平95%置信区间横线之间无重叠, 则认为不同水平间存在差异显著的统计学关联。The dashed line represents the effect value (ln RR++)=0; numbers in parentheses are sample sizes. Points and error lines represent the effect value and 95% confidence intervals, respectively. If the 95% confidence intervals do not cross the zero line, there is a significant difference between the treatment and the control. If there is no overlap between the horizontal lines of the 95% confidence intervals for a certain subgroup, there is a statistically significant correlation of differences between the factors.
Figure 3. Effects of different treatments of organic and inorganic fertilizers on wheat grain protein content
图 4 有机肥替代下不同处理对小麦籽粒蛋白质含量的影响
虚线代表效应值 ln RR ++ =0; 括号内数字为样本数, 点和误差线分别代表效应值及95%的置信区间,如果95%的置信区间没有跨越零线表示处理与对照间存在显著差异, 若亚组各水平95%置信区间横线之间无重叠, 则认为不同水平间存在差异显著的统计学关联。The dashed line represents the effect value (ln RR++)=0; numbers in parentheses are sample sizes. Points and error lines represent the effect value and 95% confidence intervals, respectively. If the 95% confidence intervals do not cross the zero line, there is a significant difference between the treatment and the control. If there is no overlap between the horizontal lines of the 95% confidence intervals for a certain subgroup, there is a statistically significant correlation of differences between the factors.
Figure 4. Effects of different treatments on wheat grain protein content under organic fertilizer substitution
表 1 有机物料还田下小麦籽粒蛋白质含量的影响因素分类
Table 1 Classification of factors influencing wheat grain protein content under organic material return
有机物料
Organic material亚组 Subgroup 类别 Category 秸秆还田
Straw returning施氮量
Nitrogen rate
/(kg·hm−2)<100 (14) 101~150 (8) 151~200 (12) 201~250 (15) 251~300 (20) 301~350 (7) 秸秆还田量
Straw return amount
/(kg·hm−2)<4 501 (3) 4 501~9 000 (20) >9 000 (3) 秸秆类型
Straw type小麦 Wheat (25) 玉米 Maize (18) 水稻 Rice (14) 小麦+玉米周年
Wheat+maize anniversary (14)小麦+水稻周年
Wheat+rice anniversary (3)土壤本底有机质含量
Soil baseline organic matter content /(g·kg−1)<11 (6) 11~15 (27) 16~20 (21) >20 (14) 年均温
Average annual temperature
/℃10~15 (14) 16~20 (46) 21~25 (3) >25 (10) 年均降雨量
Average annual precipitation
/mm<400 (14) 400~800 (21) >800 (28) 有机肥
Organic fertilizer施氮量
Nitrogen rate
/(kg·hm−2)<100 (13) 101~150 (12) 151~200 (11) 201~250 (18) 251~300 (10) 301~350 (8) 土壤本底有机质含量
Soil baseline organic matter content /(g·kg−1)<11 (16) 11~15 (39) >20 (7) 年均温
Average annual temperature
/℃10~15 (4) 16~20 (56) 21~25 (3) 年均降雨量
Average annual precipitation
/mm<400 (5) 400~800 (58) >800 (3) 括号内数据为样本数。Data in parentheses are sample numbers. -
[1] WANG J Q, HASEGAWA T, LI L Q, et al. Changes in grain protein and amino acids composition of wheat and rice under short-term increased [CO2] and temperature of canopy air in a paddy from East China[J]. New Phytologist, 2019, 222(2): 726−734 doi: 10.1111/nph.15661
[2] HAZARD B, TRAFFORD K, LOVEGROVE A, et al. Strategies to improve wheat for human health[J]. Nature Food, 2020, 1(8): 475−480 doi: 10.1038/s43016-020-0134-6
[3] SHEWRY P R, HALFORD N G. Cereal seed storage proteins: structures, properties and role in grain utilization[J]. Journal of Experimental Botany, 2002, 53(370): 947−958 doi: 10.1093/jexbot/53.370.947
[4] SOBOLEWSKA M, WENDA-PIESIK A, JAROSZEWSKA A, et al. Effect of habitat and foliar fertilization with K, Zn and Mn on winter wheat grain and baking qualities[J]. Agronomy, 2020, 10(2): 276 doi: 10.3390/agronomy10020276
[5] Food and Agriculture Organization of the United Nations. The State of Food Security and Nutrition in the World 2022. Safeguarding Against Economic Slowdowns and Downturns[R/OL]. Rome: Food and Agriculture Organization of the United Nations, 2022 https://policycommons.net/artifacts/2483950/the-state-of-food-securityand-nutrition-in-the-world-2022/3506270/ on 25 Feb 2023. CID: 20.500.12592/ 5fqf9k
[6] TILMAN D, BALZER C, HILL J, et al. Global food demand and the sustainable intensification of agriculture[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260−20264
[7] ZHANG X, DAVIDSON E A, MAUZERALL D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015, 528(7580): 51−59 doi: 10.1038/nature15743
[8] 孔祥飞, 李超, 杨广, 等. 基于Meta分析研究气候变化对中国小麦籽粒蛋白质含量的影响[J]. 农业工程学报, 2023, 39(11): 118−127 doi: 10.11975/j.issn.1002-6819.202210081 KONG X F, LI C, YANG G, et al. Effects of climate change on the protein content of wheat grains in China using Meta-analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(11): 118−127 doi: 10.11975/j.issn.1002-6819.202210081
[9] LIN H C, HUBER J A, GERL G, et al. Nitrogen balances and nitrogen-use efficiency of different organic and conventional farming systems[J]. Nutrient Cycling in Agroecosystems, 2016, 105(1): 1−23 doi: 10.1007/s10705-016-9770-5
[10] JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041−3046
[11] 高玮, 王学霞, 谢建治, 等. 控释掺混肥对麦玉轮作体系作物产量和温室气体排放的影响[J]. 环境科学, 2024, 45(5): 2891−2904 GAO W, WANG X X, XIE J Z, et al. Effects of controlled-release blended fertilizer on crop yield and greenhouse gas emissions in wheat-maize rotation system[J]. Environmental Science, 2024, 45(5): 2891−2904
[12] 刘高远, 和爱玲, 杜君, 等. 有机肥替代化肥对砂姜黑土区小麦-玉米轮作系统N2O排放的影响[J]. 中国农业科学, 2023, 56(16): 3156−3167 doi: 10.3864/j.issn.0578-1752.2023.16.009 LIU G Y, HE A L, DU J, et al. Effect of organic fertilizer replacing chemical fertilizer on nitrous oxide emission from wheat-maize rotation system in lime concretion black soil[J]. Scientia Agricultura Sinica, 2023, 56(16): 3156−3167 doi: 10.3864/j.issn.0578-1752.2023.16.009
[13] LI W G, MA L, SHI F, et al. Regulation of soil water and nitrate by optimizing nitrogen fertilization and the addition of manure based on precipitation: An 8-year field record[J]. Agriculture, Ecosystems & Environment, 2023, 354: 108586
[14] WANG H Y, ZHANG Y T, CHEN A Q, et al. An optimal regional nitrogen application threshold for wheat in the North China Plain considering yield and environmental effects[J]. Field Crops Research, 2017, 207: 52−61 doi: 10.1016/j.fcr.2017.03.002
[15] 任科宇. 氮肥优化减施和有机肥替代下我国粮食作物的氮肥利用率[D]. 北京: 中国农业科学院, 2020 REN K Y. Nitrogen use efficiency of grain crops in China under optimized nitrogen reduction and organic fertilizer replacement[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020
[16] 刘淑军, 李冬初, 黄晶, 等. 近30年来我国小麦和玉米秸秆资源时空变化特征及还田减肥潜力[J]. 中国农业科学, 2023, 56(16): 3140−3155 doi: 10.3864/j.issn.0578-1752.2023.16.008 LIU S J, LI D C, HUANG J, et al. Spatial-temporal variation characteristics of wheat and maize stalk resources and chemical fertilizer reduction potential of returning to farmland in recent 30 years in China[J]. Scientia Agricultura Sinica, 2023, 56(16): 3140−3155 doi: 10.3864/j.issn.0578-1752.2023.16.008
[17] 高忠坡, 倪嘉波, 李宁宁. 我国农作物秸秆资源量及利用问题研究[J]. 农机化研究, 2022, 44(4): 1−6, 25 doi: 10.3969/j.issn.1003-188X.2022.04.001 GAO Z P, NI J B, LI N N. Research on the quantity and utilization of crop straw resources in China[J]. Journal of Agricultural Mechanization Research, 2022, 44(4): 1−6, 25 doi: 10.3969/j.issn.1003-188X.2022.04.001
[18] ZHANG X Y, FANG Q C, ZHANG T, et al. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis[J]. Global Change Biology, 2020, 26(2): 888−900 doi: 10.1111/gcb.14826
[19] 杨竣皓, 骆永丽, 陈金, 等. 秸秆还田对我国主要粮食作物产量效应的整合(Meta)分析[J]. 中国农业科学, 2020, 53(21): 4415−4429 doi: 10.3864/j.issn.0578-1752.2020.21.010 YANG J H, LUO Y L, CHEN J, et al. Effects of main food yield under straw return in China: A meta-analysis[J]. Scientia Agricultura Sinica, 2020, 53(21): 4415−4429 doi: 10.3864/j.issn.0578-1752.2020.21.010
[20] 周正萍, 田宝庚, 陈婉华, 等. 不同耕作方式与秸秆还田对土壤养分及小麦产量和品质的影响[J]. 作物杂志, 2021(3): 78−83 ZHOU Z P, TIAN B G, CHEN W H, et al. Effects of different tillage methods and straw returning on soil nutrients and wheat yield and quality[J]. Crops, 2021(3): 78−83
[21] LIU P Z, LIN Y R, LI Z P, et al. Optimization of fertilization scheme based on sustainable wheat productivity and minor nitrate residue in organic dry farming: An empirical study[J]. Science of the Total Environment, 2024, 912: 169238 doi: 10.1016/j.scitotenv.2023.169238
[22] HEDGES L V, GUREVITCH J, CURTIS P S. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80(4): 1150 doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
[23] WU W, WANG Y, WANG L, et al. Booting stage is the key timing for split nitrogen application in improving grain yield and quality of wheat — A global meta-analysis[J]. Field Crops Research, 2022, 287: 108665 doi: 10.1016/j.fcr.2022.108665
[24] 原亚琦, 廉焘徽, 杨清山, 等. 基于Meta分析评价耕作与秸秆还田对小麦籽粒品质的影响[J]. 山西农业科学, 2023, 51(12): 1379−1387 doi: 10.3969/j.issn.1002-2481.2023.12.05 YUAN Y Q, LIAN T H, YANG Q S, et al. Evaluation of effects of tillage and straw return on grain quality of wheat based on meta-analysis[J]. Journal of Shanxi Agricultural Sciences, 2023, 51(12): 1379−1387 doi: 10.3969/j.issn.1002-2481.2023.12.05
[25] 田超, 程爽, 邢志鹏, 等. 麦秸秆全量还田下耕整地方式对机插水稻产量和品质的影响[J]. 农业工程学报, 2023, 39(15): 46−56 doi: 10.11975/j.issn.1002-6819.202304052 TIAN C, CHENG S, XING Z P, et al. Effects of wheat straw returning and land preparation on rice yield and quality under mechanical transplanting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(15): 46−56 doi: 10.11975/j.issn.1002-6819.202304052
[26] 丁天宇, 郭自春, 钱泳其, 等. 秸秆还田方式对砂姜黑土有机碳组分和孔隙结构的影响[J]. 农业工程学报, 2023, 39(16): 71−78 doi: 10.11975/j.issn.1002-6819.202305110 DING T Y, GUO Z C, QIAN Y Q, et al. Effects of straw return methods on the soil organic carbon fractions and pore structure characteristics of Shajiang black soil (Vertisol)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(16): 71−78 doi: 10.11975/j.issn.1002-6819.202305110
[27] 吴宇, 蔡洪梅, 许波, 等. 不同季秸秆全量还田对小麦根系分泌物的影响[J]. 中国生态农业学报(中英文), 2022, 30(12): 1938−1948 doi: 10.12357/cjea.20220199 WU Y, CAI H M, XU B, et al. Effects of all straw return on root secretions of wheat in different seasons[J]. Chinese Journal of Eco-Agriculture, 2022, 30(12): 1938−1948 doi: 10.12357/cjea.20220199
[28] CUI Y F, MENG J, WANG Q X, et al. Effects of straw and biochar addition on soil nitrogen, carbon, and super rice yield in cold waterlogged paddy soils of North China[J]. Journal of Integrative Agriculture, 2017, 16(5): 1064−1074 doi: 10.1016/S2095-3119(16)61578-2
[29] 南雄雄, 田霄鸿, 张琳, 等. 小麦和玉米秸秆腐解特点及对土壤中碳、氮含量的影响[J]. 植物营养与肥料学报, 2010, 16(3): 626−633 doi: 10.11674/zwyf.2010.0316 NAN X X, TIAN X H, ZHANG L, et al. Decomposition characteristics of maize and wheat straw and their effects on soil carbon and nitrogen contents[J]. Plant Nutrition and Fertilizer Science, 2010, 16(3): 626−633 doi: 10.11674/zwyf.2010.0316
[30] 柴如山, 王擎运, 叶新新, 等. 我国主要粮食作物秸秆还田替代化学氮肥潜力[J]. 农业环境科学学报, 2019, 38(11): 2583−2593 doi: 10.11654/jaes.2019-0751 CHAI R S, WANG Q Y, YE X X, et al. Nitrogen resource quantity of main grain crop straw in China and the potential of synthetic nitrogen substitution under straw returning[J]. Journal of Agro-Environment Science, 2019, 38(11): 2583−2593 doi: 10.11654/jaes.2019-0751
[31] CUI Z L, ZHANG H Y, CHEN X P, et al. Pursuing sustainable productivity with millions of smallholder farmers[J]. Nature, 2018, 555(7696): 363−366 doi: 10.1038/nature25785
[32] 康健, 匡彦蓓, 盛捷. 10种作物秸秆的营养品质分析[J]. 草业科学, 2014, 31(10): 1951−1956 doi: 10.11829/j.issn.1001-0629.2013-0412 KANG J, KUANG Y B, SHENG J. Analysis of nutritive value of 10 forages straw[J]. Pratacultural Science, 2014, 31(10): 1951−1956 doi: 10.11829/j.issn.1001-0629.2013-0412
[33] 张学林, 吴梅, 何堂庆, 等. 秸秆分解对两种类型土壤无机氮和氧化亚氮排放的影响[J]. 中国农业科学, 2022, 55(4): 729−742 doi: 10.3864/j.issn.0578-1752.2022.04.009 ZHANG X L, WU M, HE T Q, et al. Effects of crop residue decomposition on soil inorganic nitrogen and greenhouse gas emissions from fluvo-aquic soil and Shajiang black soil[J]. Scientia Agricultura Sinica, 2022, 55(4): 729−742 doi: 10.3864/j.issn.0578-1752.2022.04.009
[34] 王景, 陈曦, 张雅洁, 等. 好气和厌氧条件下小麦秸秆的腐解特征研究[J]. 中国农业大学学报, 2015, 20(3): 161−168 doi: 10.11841/j.issn.1007-4333.2015.03.23 WANG J, CHEN X, ZHANG Y J, et al. Characteristic of wheat straw decomposition under aerobic and anaerobic condition in soil[J]. Journal of China Agricultural University, 2015, 20(3): 161−168 doi: 10.11841/j.issn.1007-4333.2015.03.23
[35] 杨丽珍, 赵广才, 常旭虹, 等. 高有机质土壤条件下施氮对强筋小麦产量及品质的影响[J]. 麦类作物学报, 2006, 26(6): 60−64 doi: 10.3969/j.issn.1009-1041.2006.06.014 YANG L Z, ZHAO G C, CHANG X H, et al. Effect of nitrogen treatment on yield and quality of strong gluten wheat under the condition of high soil organic matter[J]. Journal of Triticeae Crops, 2006, 26(6): 60−64 doi: 10.3969/j.issn.1009-1041.2006.06.014
[36] 胡玮, 李桂花, 任意, 等. 不同碳氮比有机肥组合对低肥力土壤小麦生物量和部分土壤肥力因素的影响[J]. 中国土壤与肥料, 2011(2): 22−27 doi: 10.3969/j.issn.1673-6257.2011.02.004 HU W, LI G H, REN Y, et al. The effects of combined organic manure in different carbon-to-nitrogen ratio on wheat biomass and soil fertility in low fertility soil[J]. Soil and Fertilizer Sciences in China, 2011(2): 22−27 doi: 10.3969/j.issn.1673-6257.2011.02.004
[37] DE DEYN G B, QUIRK H, BARDGETT R D. Plant species richness, identity and productivity differentially influence key groups of microbes in grassland soils of contrasting fertility[J]. Biology Letters, 2011, 7(1): 75−78 doi: 10.1098/rsbl.2010.0575
[38] 肖广敏, 刘蕾, 赵诣, 等. 有机物料投入对中国农田土壤有机碳含量影响的整合分析[J]. 中国土壤与肥料, 2023(8): 23−32 doi: 10.11838/sfsc.1673-6257.22404 XIAO G M, LIU L, ZHAO Y, et al. Effects of organic materials input on soil organic carbon in China based on Meta-analysis[J]. Soil and Fertilizer Sciences in China, 2023(8): 23−32 doi: 10.11838/sfsc.1673-6257.22404
[39] BURNS R G, DEFOREST J L, MARXSEN J, et al. Soil enzymes in a changing environment: Current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58: 216−234 doi: 10.1016/j.soilbio.2012.11.009
[40] ZHAO S C, LI K J, ZHOU W, et al. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-Central China[J]. Agriculture, Ecosystems & Environment, 2016, 216: 82–88
[41] SINGH D K, PANDEY P C, NANDA G, et al. Long-term effects of inorganic fertilizer and farmyard manure application on productivity, sustainability and profitability of rice-wheat system in Mollisols[J]. Archives of Agronomy and Soil Science, 2019, 65(2): 139−151 doi: 10.1080/03650340.2018.1491032
[42] LIU E K, YAN C R, MEI X R, et al. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in Northwest China[J]. Geoderma, 2010, 158(3/4): 173−180
[43] HAN Y, LV F L, LIN X D, et al. Crop yield and nutrient efficiency under organic manure substitution fertilizer in a double cropping system: A 6-year field experiment on an anthrosol[J]. Agronomy, 2022, 12(9): 2047 doi: 10.3390/agronomy12092047
[44] YANG X Y, LI P R, ZHANG S L, et al. Long-term-fertilization effects on soil organic carbon, physical properties, and wheat yield of a loess soil[J]. Journal of Plant Nutrition and Soil Science, 2011, 174(5): 775−784 doi: 10.1002/jpln.201000134
[45] WANG X L, YAN J K, ZHANG X, et al. Organic manure input improves soil water and nutrients use for sustainable maize (Zea mays L.) productivity on the Loess Plateau[J]. PLoS One, 2020, 15(8): e0238042 doi: 10.1371/journal.pone.0238042
[46] 柳添译. 土壤有机质和氮磷钾肥对土壤碳氮组分及氮肥利用率的影响[D]. 哈尔滨: 东北农业大学, 2022 LIU T Y. Effects of soil organic matter and nitrogen, phosphorus and potassium fertilizer on soil carbon and nitrogen components and nitrogen use efficiency[D]. Harbin: Northeast Agricultural University, 2022
[47] 李孝刚, 彭曙光, 靳志丽, 等. 有机物料对植烟土壤氮素矿化及微生物性质的影响[J]. 土壤学报, 2021, 58(1): 225−234 doi: 10.11766/trxb201907220320 LI X G, PENG S G, JIN Z L, et al. Effects of application of organic materials on nitrogen mineralization and microbial properties in tobacco planting soil[J]. Acta Pedologica Sinica, 2021, 58(1): 225−234 doi: 10.11766/trxb201907220320
[48] 田小明, 李俊华, 王成, 等. 连续3年施用生物有机肥对土壤养分、微生物生物量及酶活性的影响[J]. 土壤, 2014, 46(3): 481−488 TIAN X M, LI J H, WANG C, et al. Effects of continuous application of bio-organic fertilizer for three years on soil nutrients, microbial biomass and enzyme activity[J]. Soils, 2014, 46(3): 481−488
[49] 焦晓光, 高崇升, 隋跃宇, 等. 不同有机质含量农田土壤微生物生态特征[J]. 中国农业科学, 2011, 44(18): 3759−3767 doi: 10.3864/j.issn.0578-1752.2011.18.007 JIAO X G, GAO C S, SUI Y Y, et al. Research on soil microbial ecology under different soil organic matter levels in farmland[J]. Scientia Agricultura Sinica, 2011, 44(18): 3759−3767 doi: 10.3864/j.issn.0578-1752.2011.18.007
[50] LIU S T, ZHANG H Y, LIU Q J, et al. Effect of long-term application of manure and nitrogen fertilizer on infiltration for a wheat-maize rotation system[J]. Land Degradation & Development, 2018, 29(10): 3250−3261
[51] 彭有亮, 费良军, 介飞龙, 等. 浑水灌溉和有机肥对土壤水分运移、蒸发及淋溶的影响[J]. 农业工程学报, 2023, 39(14): 125−135 doi: 10.11975/j.issn.1002-6819.202303221 PENG Y L, FEI L J, JIE F L, et al. Effects of organic fertilizer on soil water transport, evaporation and leaching under muddy water irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(14): 125−135 doi: 10.11975/j.issn.1002-6819.202303221