Effects of intercropping with legumes on the activities of key enzymes of carbon and nitrogen metabolism in potato leaves and crop yield
-
摘要:
马铃薯连作会产生诸多危害, 研究与豆类作物间作对马铃薯叶片碳氮代谢关键酶活性及作物产量的影响, 进而选择适宜的马铃薯栽培模式, 对提高农业生产效益、保护生态环境以及推动农业可持续发展有重要意义。本研究于2020年5月至2021年9月在宁夏海原县开展, 以马铃薯品种‘青薯9号’为材料, 采取随机区组试验, 设置马铃薯单作(IP)、大豆单作(IS)、蚕豆单作(IB)、马铃薯与大豆间作(PS)、马铃薯与蚕豆间作(PB) 5种种植模式, 测定马铃薯叶片碳代谢、氮代谢相关指标及作物产量。结果表明: 与豆类作物间作能显著提高马铃薯叶片碳氮代谢相关酶活性、增加群体产量, 提高土地利用率, 其中以马铃薯与大豆间作(PS)表现最佳。相关性分析表明, 碳氮代谢各指标均与产量呈极显著正相关, 碳代谢关键酶(蔗糖合成酶、蔗糖磷酸合成酶)与氮代谢关键酶(谷氨酰胺合成酶、硝酸还原酶)之间存在极显著正相关。主成分分析表明, 与豆类作物间作时, 可溶性糖、蔗糖磷酸合成酶、谷氨酰胺合成酶及硝酸还原酶对马铃薯产量的提升起主导作用。马铃薯与豆类间作土地当量比均大于1, 其中马铃薯与大豆间作(PS)两年平均土地当量比为1.20, 表现出显著的间作优势。综上, 马铃薯叶片碳氮代谢酶之间存在显著的正向影响, 且对产量形成有促进作用, 与豆类间作可显著提升马铃薯叶片碳氮代谢酶活性, 进而提高群体产量。在宁夏南部半干旱区, 为克服马铃薯连作障碍、促进农业可持续发展、提升经济效益, 可推广马铃薯与豆类间作模式, 以马铃薯与大豆间作最宜。
Abstract:As continuous cropping of potatoes produces many hazards, it is important to study the effects of intercropping with legumes on the activities of key enzymes of carbon and nitrogen metabolism in potato leaves and crop yields and to select suitable potato cultivation modes to improve the efficiency of agricultural production, protect the ecological environment, and promote the sustainable development of agriculture. We measured the activities of key enzymes relative to carbon and nitrogen metabolism of potato leaf, and crops yields. The results showed that intercropping with legumes could significantly increase the activities of carbon and nitrogen metabolism-related enzymes in potato leaves, increase the yield of the population, and improve the land utilization rate; intercropping between potato and soybean (PS) performed the best. Correlation analysis showed that all enzymes activities of carbon and nitrogen metabolism were positively correlated with yield and that there was a significant positive correlation between the key enzymes of carbon metabolism (sucrose synthase and sucrose phosphate synthase) and the key enzymes of nitrogen metabolism (glutamine synthase and nitrate reductase). Principal component analysis showed that soluble sugars, sucrose phosphate synthetase, glutamine synthetase, and nitrate reductase played dominant roles in improving potato yield during intercropping with legumes. The land equivalent ratios of intercropping between potatoes and legumes were all greater than 1, and the average two-year land equivalent ratio of intercropping between potato and soybean (PS) was 1.20, showing significant intercropping advantages. In conclusion, there is a significant positive correlation between potato leaf carbon and nitrogen metabolism enzymes, which promotes yield formation, and intercropping with beans can significantly enhance potato leaf carbon and nitrogen metabolism enzyme activity, thus improving group yield. In the semi-arid region of southern Ningxia, to overcome the obstacles of potato succession, promote sustainable agricultural development, and enhance economic benefits, we can promote intercropping modes of potatoes and beans, with intercropping of potato and soybean (PS) being the most suitable.
-
Keywords:
- Potato /
- Legume /
- Intercropping /
- Carbon and nitrogen metabolism enzymes /
- Land equivalent ratio /
- Yield
-
-
图 3 2020年和2021年与大豆和蚕豆间作对不同生育期马铃薯叶片氮代谢关键酶活性的影响
S: 苗期; B: 现蕾期; TF: 块茎形成期; TE: 块茎膨大期; M: 成熟期; IP: 马铃薯单作; PS: 马铃薯与大豆间作; PB: 马铃薯与蚕豆间作。同生育期不同小写字母表示不同处理间在P<0.05水平差异显著。S: seedling stage; B: budding stage; TF: tuber formation stage; TE: tuber expansion stage; M: maturity stage; IP: potato monoculture; PS: potato and soybean intercropping; PB: potato and faba bean intercropping. Different lowercase letters represent significant differences among treatments at P<0.05 level at the same growth stage.
Figure 3. Effect of intercropping with soybean and faba bean on activities of key enzymes of nitrogen metabolism in potato leaves at different growth stages in 2020 and 2021
图 2 2020年和2021年与大豆和蚕豆间作对不同生育期马铃薯叶片碳代谢关键酶活性的影响
S: 苗期; B: 现蕾期; TF: 块茎形成期; TE: 块茎膨大期; M: 成熟期; IP: 马铃薯单作; PS: 马铃薯与大豆间作; PB: 马铃薯与蚕豆间作。同生育期不同小写字母表示不同处理间在P<0.05水平差异显著。S: seedling stage; B: budding stage; TF: tuber formation stage; TE: tuber expansion stage; M: maturity stage; IP: potato monoculture; PS: potato and soybean intercropping; PB: potato and faba bean intercropping. Different lowercase letters represent significant differences among treatments at P<0.05 level at the same growth stage.
Figure 2. Effect of intercropping with soybean and faba bean on activities of key enzymes of carbon metabolism in potato leaves at different growth stages in 2020 and 2021
图 4 2020年和2021年与大豆和蚕豆间作对不同生育期马铃薯叶片可溶性糖和可溶性蛋白的影响
S: 苗期; B: 现蕾期; TF: 块茎形成期; TE: 块茎膨大期; M: 成熟期; IP: 马铃薯单作; PS: 马铃薯与大豆间作; PB: 马铃薯与蚕豆间作。同生育期不同小写字母表示不同处理间在P<0.05水平差异显著。S: seedling stage; B: budding stage; TF: tuber formation stage; TE: tuber expansion stage; M: maturity stage; IP: potato monoculture; PS: potato and soybean intercropping; PB: potato and faba bean intercropping. Different lowercase letters represent significant differences among treatments at P<0.05 level at the same growth stage.
Figure 4. Effect of intercropping with soybean and faba bean on contents of soluble sugar and soluble protein of potato leaves at different growth stages in 2020 and 2021
图 5 马铃薯叶片碳氮代谢酶活性与产量的相关性分析
A: 可溶性糖; B: 可溶性蛋白; SS: 蔗糖合成酶; SPS: 蔗糖磷酸合成酶; GS: 谷氨酰胺合成酶; NR: 硝酸还原酶; Yield: 产量; *: P<0.05; **: P<0.01. A: soluble sugar; B: soluble protein; SS: sucrose synthase; SPS: sucrose phosphate synthase; GS: glutamine synthase; NR: nitrate reductase.
Figure 5. Correlation between key enzyme activities relative to carbon and nitrogen metabolism and potato yield
表 1 试验区土壤基础肥力
Table 1 Soil basic properties of the tested area
年份
YearpH 有机质
Organic matter
(g·kg−1)全氮
Total nitrogen
(g·kg−1)碱解氮
Available nitrogen
(mg·kg−1)速效磷
Available phosphorus
(mg·kg−1)速效钾
Available potassium
(mg·kg−1)2020 8.04 10.95 0.84 62.67 42.18 177.45 2021 8.07 10.42 1.05 58.42 41.29 165.17 表 2 2020年和2021年马铃薯与大豆和蚕豆间作对作物当量产量、土地当量比及种间相对竞争的影响
Table 2 Effects of intercropping of potato with soybean and faba bean on crop equivalent yield, land equivalent ratio, and relative interspaces competition in 2020 and 2021
年份
Year处理
Treatment当量产量
Equivalent yield (kg·hm−2)偏土地当量比
Partial land equivalent ratio土地当量比
Land equivalent ratio种间相对
竞争力
Relative interspecies competitiveness马铃薯
Potato大豆
Soybean蚕豆
Faba bean马铃薯
Potato大豆
Soybean蚕豆
Faba bean2020 SC 29 082.24±422.09a 4792.50±540.94a 3333.00±247.35a PS 16 570.78±105.80b 3039.19±105.79b 0.57 0.63 1.20 −0.13 PB 15 316.25±418.18c 2011.35±128.34b 0.53 0.60 1.13 −0.15 2021 SC 27 132.24±337.48a 4532.50±200.55a 3146.03±181.87a PS 15 615.78±100.60b 2816.69±134.53b 0.58 0.62 1.20 −0.09 PB 14 416.25±193.33c 1901.76±131.46b 0.53 0.60 1.14 −0.15 变异来源
Source of variationY ** NS NS T ** ** ** Y×T * NS NS SC: 单作(马铃薯、大豆和蚕豆单作分别为IP、IS和IB处理); PS: 马铃薯与大豆间作; PB: 马铃薯与蚕豆间作; Y: 年份; T: 处理; Y×T: 年份×处理。NS: 不显著; *: P<0.05水平差异显著; **: P<0.01水平差异显著。表格中同年同列不同小写字母表示处理间在P<0.05水平显著。SC: sole cropping (potato, soybean and faba bean monocropping are IP, IS and IB treatments, respectively); PS: potato and soybean intercropping; PB: potato and faba bean intercropping; Y: year; T: treatment; Y×T: year × treatment. NS: no significant difference; *: significant differences at P<0.05 level; **: significant differences at P<0.01 level. Different lowercase letters in the same column for the same year indicate significant differences among treatments at P<0.05 level. 表 3 马铃薯叶片碳氮代谢关键酶活性与产量的主成分分析
Table 3 Principal component analysis of the activities of key enzymes of carbon and nitrogen metabolism in potato leaves in relation to yield
指标 Index PC1 PC2 PC3 可溶性糖 Soluble sugar 0.893 −0.255 −0.324 可溶性蛋白 Soluble protein 0.817 −0.494 0.266 蔗糖合成酶 Sucrose synthase 0.803 0.529 0.083 蔗糖磷酸合成酶 Sucrose phosphate synthase 0.935 0.176 −0.204 谷氨酰胺合成酶 Glutamine synthase 0.928 0.175 0.202 硝酸还原酶 Nitrate reductase 0.960 −0.217 −0.014 产量 Yield 0.974 0.092 0.022 特征值 Eigenvalue 0.895 0.706 0.266 方差贡献率 Variance contribution (%) 81.635 10.079 3.799 累计方差贡献率 Cumulative variance contribution (%) 81.635 91.714 95.513 -
[1] 姚玉璧, 杨金虎, 肖国举, 等. 气候变暖对马铃薯生长发育及产量影响研究进展与展望[J]. 生态环境学报, 2017, 26(3): 538−546 YAO Y B, YANG J H, XIAO G J, et al. Progress and prospect of research on the impact of climate warming on potato growth and yield[J]. Ecology and Environmental Sciences, 2017, 26(3): 538−546
[2] 勉卫忠, 李愉. 马铃薯在宁夏的传播及其影响[J]. 农业考古, 2022(4): 67−73 doi: 10.3969/j.issn.1006-2335.2022.4.nykg202204010 MIAN W Z, LI Y. The spread and influence of potato in Ningxia[J]. Agricultural Archaeology, 2022(4): 67−73 doi: 10.3969/j.issn.1006-2335.2022.4.nykg202204010
[3] 段雅欣, 禄兴丽, 刘继虎, 等. 间作豆科作物对马铃薯产量及土壤性状影响的研究进展[J]. 东北农业科学, 2023, 48(3): 96−101, 133 DUAN Y X, LU X L, LIU J H, et al. Research progress on the effect of intercropping legumes on potato yield and soil properties[J]. Journal of Northeast Agricultural Sciences, 2023, 48(3): 96−101, 133
[4] 苏浩, 张锐澎, 吴思炫, 等. 连作障碍产生机理及防控现状[J]. 土壤, 2024, 56(2): 242−254 SU H, ZHANG R P, WU S X, et al. Mechanisms of continuous cropping obstacles and current situation of prevention and control[J]. Soils, 2024, 56(2): 242−254
[5] 俞霞, 肖世豪, 李淑娟, 等. 禾本科-豆科间作模式中作物产量和氮素利用的研究进展[J]. 生态学杂志, 2021, 40(8): 2601−2609 YU X, XIAO S H, LI S J, et al. Review on crop yield and nitrogen utilization in cereal-legume intercropping system[J]. Chinese Journal of Ecology, 2021, 40(8): 2601−2609
[6] 耿赛男, 李岚涛, 苗玉红, 等. 大豆和玉米影响后茬作物氮素供应的研究进展[J]. 植物营养与肥料学报, 2022, 28(5): 919−932 doi: 10.11674/zwyf.2021498 GENG S N, LI L T, MIAO Y H, et al. Research advances on the mechanisms of soybean and maize influence nitrogen supply in subsequent crops[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(5): 919−932 doi: 10.11674/zwyf.2021498
[7] 满本菊, 王建鹏, 刘吉利, 等. 马铃薯豆类间作复合系统氮素吸收利用特性研究[J]. 干旱地区农业研究, 2022, 40(2): 153−162 doi: 10.7606/j.issn.1000-7601.2022.02.19 MAN B J, WANG J P, LIU J L, et al. Study on nitrogen uptake and utilization characteristics of potato and beans intercropping system[J]. Agricultural Research in the Arid Areas, 2022, 40(2): 153−162 doi: 10.7606/j.issn.1000-7601.2022.02.19
[8] 杨晓贺. 马铃薯同大豆间作防控大豆蚜的两种人工调控措施[J]. 中国马铃薯, 2013, 27(6): 348−352 doi: 10.3969/j.issn.1672-3635.2013.06.007 YANG X H. Two artificial adjustment measures for control of soybean aphid in intercropping of soybean and potato[J]. Chinese Potato Journal, 2013, 27(6): 348−352 doi: 10.3969/j.issn.1672-3635.2013.06.007
[9] 刘朝茂, 李成云. 玉米与大豆、马铃薯间作对玉米叶片衰老、产量及病害控制的影响[J]. 江苏农业科学, 2017, 45(6): 75−78 LIU C M, LI C Y. Effects of intercropping maize with soybean and potato on maize leaf senescence, yield and disease control[J]. Jiangsu Agricultural Science, 2017, 45(6): 75−78
[10] 任毛飞, 毛桂玲, 刘善振, 等. 光质对植物生长发育、光合作用和碳氮代谢的影响研究进展[J]. 植物生理学报, 2023, 59(7): 1211−1228 REN M F, MAO G L, LIU S Z, et al. Research progress on the effects of light quality on plant growth and development, photosynthesis, and carbon and nitrogen metabolism[J]. Plant Physiology Journal, 2023, 59(7): 1211−1228
[11] 丁怡梦, 陈慕琪, 丁文锐, 等. 谷类作物碳氮代谢互作机制的研究进展[J]. 植物生理学报, 2024, 60(5): 753−761 DING Y M, CHEN M Q, DING W R, et al. Research advances on the carbon-nitrogen metabolic interaction mechanisms in cereal crops[J]. Plant Physiology Journal, 2024, 60(5): 753−761
[12] 蔺芳, 刘晓静, 童长春, 等. 4种间作模式下牧草根系特性及其碳、氮代谢特征研究[J]. 草业学报, 2019, 28(9): 45−54 doi: 10.11686/cyxb2019024 LIN F, LIU X J, TONG C C, et al. A study of root system characteristics and carbon and nitrogen metabolism of alfalfa and four grass forages in monoculture or intercropped[J]. Acta Prataculturae Sinica, 2019, 28(9): 45−54 doi: 10.11686/cyxb2019024
[13] 王瑞, 李向岭, 郭栋, 等. 增施氮肥对夏玉米花后高温胁迫下籽粒碳氮代谢的影响[J]. 作物学报, 2023, 49(12): 3342−3351 WANG R, LI X L, GUO D, et al. Effects of application nitrogen on carbon and nitrogen metabolism of summer maize grain under post-silking heat stress[J]. Acta Agronomica Sinica, 2023, 49(12): 3342−3351
[14] 陈心怡, 朱盈, 马中涛, 等. 光强和氮肥互作对南方软米粳稻灌浆结实期碳氮代谢影响及其与产量品质间关系[J]. 作物学报, 2023, 49(11): 3042−3062 CHEN X Y, ZHU Y, MA Z T, et al. Effects of light intensity and nitrogen fertilizer interaction on carbon and nitrogen metabolism at grain-filling stage and its relationship with yield and quality of southern soft japonica rice[J]. Acta Agronomica Sinica, 2023, 49(11): 3042−3062
[15] 邢永锋, 许卫猛, 魏常敏, 等. 缓释氮肥对砂姜黑土区夏玉米产量及氮代谢的影响[J]. 分子植物育种, 2024, 22(11): 3685−3695 XING Y F, XU W M, WEI C M, et al. Effects of slow-release N fertilizer on summer maize yield and nitrogen metabolism in lime concretion black soil[J]. Molecular Plant Breeding, 2024, 22(11): 3685−3695
[16] 马襄鸿, 曹国军, 邓奥严, 等. 半干旱区水钾互作对春玉米碳代谢及产量的影响[J]. 扬州大学学报(农业与生命科学版), 2023, 44(3): 89−97 MA X H, CAO G J, DENG A Y, et al. Effects of water potassium interaction on carbon metabolism and yield of spring maize in semi-arid area[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2023, 44(3): 89−97
[17] 陈建勋, 王晓峰. 植物生理学实验指导[M]. 广州: 华南理工大学出版社, 2015 CHEN J X, WANG X F. Experimental Instruction of Plant Physiology[M]. Guangzhou: South China University of Technology Press, 2015
[18] 肖家欣. 植物生理学实验[M]. 合肥: 安徽人民出版社, 2010 XIAO J X. Plant Physiology Experiment[M]. Hefei: Anhui People’s Publishing House, 2010
[19] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006 GAO J F. Experimental Guidance for Plant Physiology[M]. Beijing: Higher Education Press, 2006
[20] 赵建华, 孙建好, 陈亮之, 等. 玉/豆间作产量优势中补偿效应和选择效应的角色[J]. 作物学报, 2022, 48(10): 2588−2596 ZHAO J H, SUN J H, CHEN L Z, et al. Role of complementarity and select effect for yield advantage of maize/legumes intercropping systems[J]. Acta Agronomica Sinica, 2022, 48(10): 2588−2596
[21] 张迪迪, 陈哲, 刘金华, 等. 玉米对氮素形态的反应及机制研究进展[J]. 植物营养与肥料学报, 2024, 30(5): 1020−1031 doi: 10.11674/zwyf.2023497 ZHANG D D, CHEN Z, LIU J H, et al. Research progress on the response and mechanism of maize (Zea mays L.) to nitrogen forms[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(5): 1020−1031 doi: 10.11674/zwyf.2023497
[22] 王妍, 冯金玲, 吴小慧, 等. 施肥对闽楠幼苗光合碳固定的影响[J]. 林业科学, 2022, 58(5): 40−52 doi: 10.11707/j.1001-7488.20220505 WANG Y, FENG J L, WU X H, et al. Effects of fertilization on photosynthetic carbon fixation of Phoebe bournei seedlings[J]. Scientia Silvae Sinicae, 2022, 58(5): 40−52 doi: 10.11707/j.1001-7488.20220505
[23] 蔡明. 宁夏半干旱区马铃薯燕麦间作复合系统氮素吸收利用研究[D]. 银川: 宁夏大学, 2020 CAI M. Study on nitrogen absorption and utilization of potato-oat intercropping system in semi-arid area of Ningxia[D]. Yinchuan: Ningxia University, 2020
[24] 田洵. 施氮量对不同马铃薯品种生长发育及氮代谢的影响[D]. 哈尔滨: 东北农业大学, 2016 TIAN X. Effects of nitrogen application rate on growth and development and nitrogen metabolism of different potato varieties[D]. Harbin: Northeast Agricultural University, 2016
[25] 王娇, 李萍, 宗毓铮, 等. 大气CO2浓度和气温升高对玉米灌浆期碳氮代谢的影响[J]. 中国生态农业学报(中英文), 2023, 31(2): 325−335 doi: 10.12357/cjea.20220395 WANG J, LI P, ZONG Y Z, et al. Effects of increased atmospheric CO2 concentration and temperature on carbon and nitrogen metabolism in maize at the grain filling stage[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 325−335 doi: 10.12357/cjea.20220395
[26] 孙海燕, 安源, 杜丹凤, 等. 化肥减量配施腐植酸对玉米碳氮代谢及干物质量的影响[J]. 山东农业科学, 2023, 55(5): 107−114 SUN H Y, AN Y, DU D F, et al. Effects of chemical fertilizer reduction combined with humic acid on carbon-nitrogen metabolism and dry matter amount of maize[J]. Shandong Agricultural Sciences, 2023, 55(5): 107−114
[27] 王顶, 伊文博, 李欢, 等. 玉米间作和施氮对土壤微生物代谢功能多样性的影响[J]. 应用生态学报, 2022, 33(3): 793−800 WANG D, YI W B, LI H, et al. Effects of intercropping and nitrogen application on soil microbial metabolic functional diversity in maize cropping soil[J]. Chinese Journal of Applied Ecology, 2022, 33(3): 793−800
[28] 李春阳, 胡瑞芳, 张馨月, 等. 不同甜高粱品种蔗糖合成酶、蔗糖磷酸合成酶活性与糖分积累的关系[J]. 江苏农业科学, 2016, 44(11): 139−141 LI C Y, HU R F, ZHANG X Y, et al. Relationship between sucrose synthase, sucrose phosphate synthase activity and sugar accumulation in different sweet Sorghum varieties[J]. Jiangsu Agricultural Sciences, 2016, 44(11): 139−141
[29] 于洋, 孙旭冉, 王诗雅, 等. 氧化石墨烯对芸豆花期碳氮代谢及生长的影响[J]. 应用生态学报, 2024, 35(7): 1843−1849 YU Y, SUN X R, WANG S Y, et al. Effect of graphene oxide on carbon and nitrogen metabolism and growth of kidney bean at flowering stage[J]. Chinese Journal of Applied Ecology, 2024, 35(7): 1843−1849
[30] 满本菊. 宁夏半干旱区马铃薯豆类间作系统下作物生长生理特性及土壤养分研究[D]. 银川: 宁夏大学, 2022 MAN B J. Study on physiological characteristics of crop growth and soil nutrients under potato-bean intercropping system in semi-arid area of Ningxia[D]. Yinchuan: Ningxia University, 2022
[31] 张佳蕾, 郭峰, 孟静静, 等. 酸性土施用钙肥对花生产量和品质及相关代谢酶活性的影响[J]. 植物生态学报, 2015, 39(11): 1101−1109 doi: 10.17521/cjpe.2015.0107 ZHANG J L, GUO F, MENG J J, et al. Effects of calcium fertilizer on yield, quality and related enzyme activities of peanut in acidic soil[J]. Chinese Journal of Plant Ecology, 2015, 39(11): 1101−1109 doi: 10.17521/cjpe.2015.0107
[32] 郭伟, 马倩, 于立河. 不同作物根系分泌物对芸豆碳氮代谢及抗氧化酶活性的影响[J]. 黑龙江八一农垦大学学报, 2018, 30(4): 6−11 doi: 10.3969/j.issn.1002-2090.2018.04.002 GUO W, MA Q, YU L H. Effect of root exudates from various crops on carbon-nitrogen metabolism and antioxidant enzyme activities of kidney bean[J]. Journal of Heilongjiang Bayi Agricultural University, 2018, 30(4): 6−11 doi: 10.3969/j.issn.1002-2090.2018.04.002
[33] 黄瑞冬, 阚魏, 蒋文春. 高粱叶片硝酸还原酶活性及含氮量与产量相关性分析[J]. 沈阳农业大学学报, 2008, 39(5): 611−614 doi: 10.3969/j.issn.1000-1700.2008.05.022 HUANG R D, KAN W, JIANG W C. Correlation between nitrate reductase activities, nitrogen content in leaves and yield in Sorghum[J]. Journal of Shenyang Agricultural University, 2008, 39(5): 611−614 doi: 10.3969/j.issn.1000-1700.2008.05.022
[34] 韩静, 王一帆, 高玉红, 等. 胡麻间作模式对作物养分吸收利用及产量的影响[J]. 中国生态农业学报(中英文), 2024, 32(6): 997−1008 doi: 10.12357/cjea.20230690 HAN J, WANG Y F, GAO Y H, et al. Effect of crop nutrient uptake utilization and yield in the flax intercropping pattern[J]. Chinese Journal of Eco-Agriculture, 2024, 32(6): 997−1008 doi: 10.12357/cjea.20230690
[35] 卢秉林, 车宗贤, 包兴国, 等. 不同氮肥减施量下玉米针叶豌豆间作体系的产量及效益[J]. 植物营养与肥料学报, 2021, 27(9): 1560−1570 doi: 10.11674/zwyf.2021075 LU B L, CHE Z X, BAO X G, et al. Yield and economic benefit of corn/needle leaf pea intercropping system under different nitrogen fertilizer reduction rates[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1560−1570 doi: 10.11674/zwyf.2021075
[36] 陈光荣, 杨文钰, 张国宏, 等. 薯/豆套作模式下不同熟期大豆品种的生长补偿效应[J]. 中国农业科学, 2016, 49(3): 455−467 doi: 10.3864/j.issn.0578-1752.2016.03.005 CHEN G R, YANG W Y, ZHANG G H, et al. Compensation effect of different soybean varieties in potato/soybean intercropping systems[J]. Scientia Agricultura Sinica, 2016, 49(3): 455−467 doi: 10.3864/j.issn.0578-1752.2016.03.005
[37] CHEN G R, YANG W Y, ZHANG G H, et al. Effects of potato/soybean intercropping on photosynthetic characteristics and yield of three soybean varieties[J]. the Journal of Applied Ecology, 2015, 26(11): 3345−3352
[38] 李娜, 田云龙, 张蕾, 等. 中国化肥减量增效行动与技术研究[J]. 农业资源与环境学报, 1–23 [2024-03-13]. https://doi.org/10.13254/j.jare.2023.0676 LI N, TIAN Y L, ZHANG L, et al. Research on actions and technologies for fertiliser reduction and efficiency in China[J]. Journal of Agricultural Resources and Environment, 1–23 [2024-03-13]. https://doi.org/10.13254/j.jare.2023.0676
[39] WAHBI S, MAGHRAOUI T, HAFIDI M, et al. Enhanced transfer of biologically fixed N from faba bean to intercropped wheat through mycorrhizal symbiosis[J]. Applied Soil Ecology, 2016, 107: 91−98 doi: 10.1016/j.apsoil.2016.05.008
-
期刊类型引用(7)
1. 王子怡,李向强,张佳祺,肖凯. 节水灌溉对冬小麦/夏玉米周年两熟作物光合和细胞保护参数及产量性状的影响. 中国科技论文在线精品论文. 2023(03): 343-354 . 百度学术
2. 刘英博,周际,陈颖露,姚旭擎,杨晓琳,杜太生. 基于CiteSpace的华北冬小麦-夏玉米周年优化灌溉制度的节水潜力分析. 中国农业大学学报. 2022(06): 1-20 . 百度学术
3. 张旭洋,林青,黄修东,徐绍辉. 大沽河流域土壤水-地下水流耦合模拟及补给量估算. 土壤学报. 2019(01): 101-113 . 百度学术
4. 张凯,刘战东,强小嫚,米兆荣,冯荣成,孙景生. 深松处理对豫北农田土壤水分与作物耗水的影响. 农业机械学报. 2019(10): 251-258 . 百度学术
5. 史鑫蕊,徐强,胡克林,李思恩. 灌水次数对绿洲春玉米田氮素损失及水氮利用效率的影响. 农业工程学报. 2018(03): 118-126 . 百度学术
6. 屈涛,范永胜,宋树柏,赵霞,马晓红,蒋雯,朱坤. 豫北麦区抗旱减灾应对措施. 农业科技通讯. 2017(08): 273-274 . 百度学术
7. 杜玲,徐长春,尹小刚,遆晋松,陈阜. 气候变化对河北低平原冬小麦需水量及水分生态适应性的影响. 中国农业大学学报. 2017(12): 1-9 . 百度学术
其他类型引用(6)