Characteristics of nitrogen absorption and utilization of super hybrid rice grown under two yield levels
-
摘要:
探明不同产量水平下超级杂交稻的氮素吸收利用特性, 可为我国西南稻区超级杂交稻高产栽培和育种提供理论和实践依据。以2个超级杂交稻品种(‘德优4727’ ‘泸优727’)和2个高产常规稻品种(‘金农丝苗’ ‘黄华占’)为材料, 于2018—2020年在四川省德阳市(高产点)和泸州市(中产点)两个生态点进行大田和盆栽试验, 研究两种产量水平下超级杂交稻氮素吸收、转运及利用效率的差异。结果表明: 大田条件下不同生态点间超级杂交稻产量、氮素吸收积累利用特性差异显著。高产点超级杂交稻产量、氮肥偏生产力较中产点分别增加8.3%~23.2%、8.3%~23.1%。高产点超级杂交稻播种(SO)—幼穗分化(PI)、PI—齐穗(HD)阶段氮素吸收量和氮素吸收速率(除2018年幼穗分化—齐穗外)均高于中产点, HD—成熟(MA)阶段仍保持较高的氮素吸收量。高产点超级杂交稻成熟期氮素总吸收量较中产点增加15.6%~33.7%。尽管高产点超级杂交稻氮素收获指数较中产点平均增加4.6% (2018年除外), 但成熟期仍有大量氮素滞留在超级杂交稻的秸秆中, 造成高产点氮素籽粒生产效率较中产点平均减少11.3%。方差分析表明, 盆栽条件下土壤、土壤×地点、土壤×品种互作对超级杂交稻产量、氮素吸收量、氮素籽粒生产效率影响不显著。高产点盆栽超级杂交稻产量、氮素吸收量、氮素籽粒生产效率变化趋势与大田试验相似。高产点SO—PI平均温度高于中产点, HD—MA平均温度低于中产点; 高产点SO—PI、PI—HD和HD—MA太阳辐射积累量(除2018年PI-HD外)均高于中产点。相关分析表明, 高产点籽粒产量与PI—HD氮素吸收量、氮素收获指数呈显著正相关; 氮素籽粒生产效率与SO—PI的氮素吸收量和平均温度呈显著负相关。中产点籽粒产量与氮素籽粒生产效率、总吸氮量呈显著正相关; 氮素籽粒生产效率与SO—PI和HD—MA的平均温度呈显著负相关。因此, 不同产量水平超级杂交稻产量和氮素吸收利用特性差异主要与不同生育期内的平均温度和太阳辐射有关。
Abstract:This study aims to investigate the characteristics of nitrogen (N) uptake and utilization in super hybrid rice grown under two yield levels to provide a theoretical and practical basis for super high-yield rice cultivation and super hybrid rice breeding in southwest China. Field and pot experiments were conducted in Deyang City (a high-yielding site, HYS) and Luzhou City (a medium-yielding site, MYS) between 2018 and 2020. Each year, two super-hybrid rice cultivars (‘Deyou4727’ and ‘Luyou727’) and two high-yielding inbred rice cultivars (‘Jinnongsimiao’ and ‘Huanghuazhan’) were planted at each site. Differences in N uptake, translocation, and utilization characteristics between the two yield levels and the four rice cultivars were studied. The results showed marked differences in grain yield, N uptake, and utilization between the two sites in the field experiment. Super-hybrid rice produced higher grain yield and partial factor productivity of applied N (PFPN) in HYS in comparison to those in MYS by 8.3%−23.2% and 8.3%−23.1%, respectively. Super-hybrid rice exhibited higher N uptake and rate of N uptake from sowing (SO) to panicle initiation (PI) and PI to full heading (HD) in HYS in comparison to MYS (except for the duration from PI to HD in 2018). However, HYS demonstrated higher N accumulation during the grain-filling period of super-hybrid rice. Consequently, super-hybrid rice demonstrated 15.6%−33.7% higher total N uptake in HYS in comparison to MYS. On average, despite HYS showing a 4.6% higher N harvest index in super-hybrid rice compared to MYS (except in 2018), a substantial amount of N was still retained in the straw at the maturity stage. Consequently, HYS demonstrated 11.3% lower N use efficiency for grains production (NUEGP) than MYS. Analysis of variance revealed that the effects of soil, the interactions of year (Y)×soil (S), S×location (L), and S × cultivar (C) were not significant for grain yield, N uptake, or NUEGP of super-hybrid rice grown in the pot experiments. The trends in grain yield, N uptake, and NUEGP of super-hybrid rice grown in the pot experiments were similar to those in the field experiments. HYS experienced a higher mean temperature during the SO-PI phase, whereas the mean temperature was lower in HYS compared to MYS. The cumulative solar radiation during SO-PI, PI-HD, and HD-MA was higher in the HYS than in the MYS (except for PI-HD in 2018). Further analysis indicated that rice grain yield was significantly and positively related to N uptake accumulation during PI-HD, as well as the N harvest index in the HYS. There was a significant negative relationship of NUEGP with N uptake accumulation, and mean temperature during the SO-PI in the HYS. There was a significant positive relationship between rice grain yield and NUEGP and total N uptake in the MYS. Additionally, NUEGP was significantly negatively correlated with mean temperature during the SO-PI and HD-MA in the MYS. Our findings indicated that the differences in grain yield, N absorption, and utilization characteristics of super-hybrid rice at different ecological sites are primarily related to the climatic factors (including mean temperature and solar radiation during the growing season) of the planted site.
-
-
图 1 2018—2020年高产点(德阳, DY)和中产点(泸州, LZ)超级杂交稻生长期间平均温度和太阳辐射积累量
SO—PI: 播种—幼穗分化; PI—HD: 幼穗分化—齐穗; HD—MA: 齐穗—成熟。SO—PI: sowing to panicle initiation; PI—HD: panicle initiation to full heading; HD—MA: full heading to maturity.
Figure 1. Mean temperature and cumulative solar radiation during super hybrid rice growing season in high-yield location (Deyang, DY) and medium-yield location (Luzhou, LZ) from 2018 to 2020
图 2 大田条件下水稻籽粒产量和氮素籽粒生产效率与相关指标的相关分析
红色代表正相关, 蓝色代表负相关。*和**分别表示在P<0.05和P<0.01水平显著相关。GY: 产量; NUEGP: 氮素籽粒生产效率; PFPN: 氮肥偏生产力; TN: 总吸氮量; NHI: 氮素收获指数; NUS: 秸秆氮素吸收量。NU表示氮素吸收量, MT表示平均温度, SR表示太阳辐射积累量, SO-PI、PI-HD和HD-MA分别代表播种—幼穗分化、幼穗分化—齐穗和齐穗—成熟。Red represents positive correlation, blue represents negative correlation. * and ** mean significant correlation at P<0.05 and P<0.01 levels, respectively. GY: grain yield; NUEGP: nitrogen use efficiency for grains production; PFPN: partial factor productivity of applied nitrogen; TN: total nitrogen uptake amount; NHI: nitrogen harvest index; NUS: nitrogen uptake amount in straw. NU represents N uptake amount, MT represents average daily temperature, SR represents solar radiation accumulation; SO-PI, PI-HD and HD-MA represent from sowing to panicle initiation, from panicle initiation to full heading and from full heading to maturity, respectively.
Figure 2. Correlation analysis of rice grain yield and N use efficiency for grains production with relative indexes of the field experiment
表 1 2018—2020年两种产量水平(德阳: 高产点; 泸州: 中产点)下超级杂交稻品种(‘德优4727’和‘泸优727’)和高产常规稻品种(‘黄华占’和‘金农丝苗’)的生育期和产量
Table 1 Grain yield and growth duration of super hybrid cultivars (‘DY4727’ ‘LY727’) and high-yielding conventional cultivars (‘HHZ’ ‘JNSM’) of rice at two yield levels (high-yield level in Deyang, medium-yield level in Luzhou) from 2018 to 2020
年份
Year品种
Cultivar生育期 Growth duration (d) 产量 Grain yield (t∙hm−2) 日产量 Daily yield (kg∙hm−2∙d−1) 德阳
Deyang泸州
Luzhou德阳
Deyang泸州
Luzhou德阳
Deyang泸州
Luzhou2018 德优4727 DY4727 156 149 10.30±0.51a 8.36±0.36b 66.00±3.27a 56.11±2.39b 泸优727 LY727 157 153 10.34±0.19a 9.45±0.89a 65.88±1.23a 61.78±5.81a 黄华占 HHZ 147 146 9.25±0.64b 7.71±0.43bc 62.93±4.38a 52.82±2.95bc 金农丝苗 JNSM 147 146 9.02±0.38b 7.21±0.24c 61.34±2.58a 49.38±1.65c 2019 德优4727 DY4727 158 150 10.97±0.09a 10.02±0.55a 69.42±0.55a 66.82±3.69a 泸优727 LY727 162 154 11.42±0.31a 9.97±0.38a 70.50±1.93a 64.76±2.45a 黄华占 HHZ 154 144 10.08±0.40b 8.96±0.23b 65.47±2.59b 62.23±1.63a 金农丝苗 JNSM 154 144 9.98±0.18b 8.05±0.13c 64.78±1.18b 55.91±0.94b 2020 德优4727 DY4727 161 152 10.06±0.32a 9.27±0.14a 62.47±1.96a 61.01±0.94a 泸优727 LY727 163 153 10.23±0.15a 9.45±0.24a 62.76±0.90a 61.75±1.56a 黄华占 HHZ 153 145 8.21±0.93b 7.94±0.27b 53.67±6.10b 54.77±1.83b 金农丝苗 JNSM 153 145 8.10±0.10b 7.66±0.42b 52.93±0.69b 52.80±2.86b 方差分析 ANOVA 年份 Year (Y) ** ** 地点 Location (L) ** ** 品种 Cultivar (C) ** ** Y×L ** ** Y×C ns ns L×C ns ns Y×L×C ns ns 同一年份同列数据后不同字母表示品种间在P<0.05水平差异显著。**表示差异达P<0.01显著水平, ns表示差异不显著。Values followed by different letters in the same year within a column are significantly different at P<0.05 level. **: significant at P<0.01 level; ns: non-significant. 表 2 2018—2020年两种产量水平(德阳: 高产点; 泸州: 中产点)下超级杂交稻品种(‘德优4727’和‘泸优727’)和高产常规稻品种(‘黄华占’和‘金农丝苗’)的氮素吸收量和吸收速率
Table 2 N uptake amount and rate of super hybrid cultivars (‘DY4727’ ‘LY727’) and high-yielding conventional cultivars (‘HHZ’ ‘JNSM’) of rice at two yield levels (high-yield level in Deyang and medium-yield level in Luzhou) from 2018 to 2020
年份
Year地点
Location品种
Cultivar氮素吸收量 N uptake amount (g∙m−2) 氮素吸收速率 N uptake rate (kg∙hm−2∙d−1) SO—PI PI—HD HD—MA SO—PI PI—HD HD—MA 2018 德阳 Deyang 德优4727 DY4727 12.24±0.46ab 2.90±0.49b 7.29±0.51a 1.38±0.05ab 0.94±0.16b 2.03±0.14a 泸优727 LY727 12.78±0.18a 5.41±1.11a 5.32±1.13b 1.41±0.02a 1.69±0.35a 1.52±0.32ab 黄华占 HHZ 11.13±0.50c 5.06±1.29a 4.72±0.98b 1.29±0.06b 1.81±0.46a 1.43±0.30b 金农丝苗 JNSM 11.48±0.22bc 4.56±0.24ab 4.34±0.45b 1.34±0.03ab 1.63±0.09ab 1.31±0.14b 泸州 Luzhou 德优4727 DY4727 6.40±0.59a 6.64±1.27ab 4.82±1.52a 0.74±0.07a 2.14±0.41ab 1.56±0.49a 泸优727 LY727 7.03±0.42a 5.12±0.08b 6.20±0.92a 0.78±0.05a 1.60±0.02b 2.00±0.03a 黄华占 HHZ 6.76±0.80a 6.78±0.68ab 2.02±0.28b 0.79±0.09a 2.26±0.23ab 0.67±0.09b 金农丝苗 JNSM 6.55±0.30a 7.57±1.17a 2.63±0.38b 0.76±0.03a 2.52±0.39a 0.88±0.13b 2019 德阳 Deyang 德优4727 DY4727 10.54±0.85a 7.41±0.85a 3.00±0.61a 1.17±0.09a 2.39±0.28a 0.81±0.17a 泸优727 LY727 10.88±2.17a 7.29±2.59a 3.81±0.65a 1.16±0.23a 2.28±0.80ab 1.06±0.18a 黄华占 HHZ 9.64±1.33a 4.72±1.65a 3.89±1.29a 1.08±0.15a 1.48±0.52b 1.11±0.37a 金农丝苗 JNSM 8.94±1.49a 5.05±1.52a 2.69±0.52a 1.00±0.17a 1.58±0.47ab 0.77±0.15a 泸州 Luzhou 德优4727 DY4727 9.11±1.01a 5.15±0.57a 3.87±0.54ab 1.04±0.12ab 1.66±0.18a 1.25±0.17ab 泸优727 LY727 8.24±1.22ab 3.77±1.04a 4.43±0.48a 0.91±0.13bc 1.18±0.33a 1.43±0.16a 黄华占 HHZ 9.03±0.47a 4.61±0.40a 3.07±0.85b 1.08±0.06a 1.54±0.13a 1.02±0.28b 金农丝苗 JNSM 6.93±0.47b 4.35±0.78a 4.59±0.36a 0.83±0.06c 1.45±0.26a 1.53±0.12a 2020 德阳 Deyang 德优4727 DY4727 14.58±0.11a 4.37±0.53a 3.66±0.73ab 1.59±0.01ab 1.41±0.17a 0.96±0.19a 泸优727 LY727 15.24±0.63a 3.43±0.99ab 3.95±0.60a 1.67±0.07a 1.07±0.31ab 0.99±0.15a 黄华占 HHZ 12.68±0.42b 3.77±0.46ab 2.35±0.63b 1.46±0.05bc 1.26±0.15ab 0.65±0.18a 金农丝苗 JNSM 11.74±1.32b 2.94±1.37b 2.57±0.77ab 1.35±0.15c 0.98±0.46b 0.71±0.21a 泸州 Luzhou 德优4727 DY4727 9.64±0.53a 1.88±0.44a 5.64±0.73a 1.07±0.06a 0.61±0.14a 1.82±0.23a 泸优727 LY727 10.04±1.76a 2.66±1.29a 5.17±0.74ab 1.13±0.20a 0.81±0.39a 1.67±0.24ab 黄华占 HHZ 9.12±0.43a 2.31±0.80a 4.44±0.45ab 1.07±0.05a 0.77±0.27a 1.48±0.15ab 金农丝苗 JNSM 8.89±0.90a 1.97±0.64a 3.94±0.49b 1.05±0.11a 0.66±0.21a 1.31±0.16b 方差分析
ANOVA年份 Year (Y) ** ** ** ** ** ** 地点 Location (L) ** ns ns ** ns ** 品种 Cultivar (C) ** ns ** ** ns ** Y×L ** ** ** ** ** ** Y×C ns * ** ns ** ** L×C * * * ns * ** Y×L×C ns * * ns ** ** SO—PI: 播种—幼穗分化; PI—HD: 幼穗分化—齐穗; HD—MA: 齐穗—成熟。同一年份同列数据后不同字母表示品种间在P<0.05水平差异显著。**表示差异达P<0.01显著水平, *表示差异达P<0.05显著水平, ns表示差异不显著。SO—PI: sowing to panicle initiation; PI—HD: panicle initiation to full heading; HD—MA: full heading to maturity. Values followed by different letters in the same year within a column are significantly different at P<0.05 level. **: significant at P<0.01 level; *: significant at P<0.05 level; ns: non-significant. 表 3 2018—2020年两种产量水平(德阳: 高产点; 泸州: 中产点)下超级杂交稻品种(‘德优4727’和‘泸优727’)和高产常规稻品种(‘黄华占’和‘金农丝苗’)的茎叶氮素转运特性
Table 3 N translocation characteristics of stems of super hybrid cultivars (‘DY4727’ ‘LY727’) and high-yielding conventional cultivars (‘HHZ’ ‘JNSM’) of rice at two yield levels (high-yield level in Deyang and medium-yield level in Luzhou) from 2018 to 2020
年份
Year品种
Cultivar氮素转运量
N translocation (g∙m−2)氮素表观转运率
Apparent N translocation rate (%)氮素转运贡献率
N translocate contribution rate (%)德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou 2018 德优4727 DY4727 6.04±0.50a 4.94±1.63a 45.84±3.88a 45.42±7.29b 39.47±2.84a 40.56±6.72ab 泸优727 LY727 7.34±0.87a 4.61±0.56a 47.49±3.03a 46.08±3.81b 47.64±6.26a 35.56±4.39b 黄华占 HHZ 6.55±1.03a 6.06±0.70a 47.37±4.54a 60.00±3.76a 47.80±7.13a 52.36±5.17a 金农丝苗 JNSM 6.71±0.29a 5.11±0.49a 52.04±2.52a 49.67±1.19ab 47.23±2.32a 43.98±3.16ab 2019 德优4727 DY4727 8.60±1.96a 6.23±0.61a 60.08±6.62a 51.42±2.95a 52.61±5.03a 50.75±4.20a 泸优727 LY727 8.57±0.63a 4.95±0.43b 56.95±4.54a 50.58±3.85a 52.30±3.10a 42.61±4.25b 黄华占 HHZ 4.00±1.02b 5.94±0.45a 33.66±3.99b 52.79±4.10a 32.23±3.25b 52.24±4.96a 金农丝苗 JNSM 5.20±0.74b 3.87±0.39c 44.97±4.76ab 43.01±3.06b 42.23±3.43ab 35.91±2.80b 2020 德优4727 DY4727 6.52±0.34b 2.84±0.43b 45.61±1.96b 31.11±2.71b 44.18±3.54b 25.99±1.02a 泸优727 LY727 8.04±0.60a 4.43±1.02a 56.77±1.27a 41.81±3.66a 48.74±2.98ab 37.35±3.31a 黄华占 HHZ 6.86±1.03ab 3.90±0.28ab 50.07±4.44ab 40.90±0.94a 57.00±5.86a 38.13±3.39a 金农丝苗 JNSM 6.44±0.47b 3.52±0.53ab 51.73±2.56ab 40.15±3.84a 57.45±4.99a 36.81±4.95a 方差分析
ANOVA年份 Year (Y) * ** ns 地点 Location (L) ** ** ** 品种 Cultivar (C) ** ns ns Y×L ** ** ** Y×C ** ** ** L×C ** ** ** Y×L×C * ns ** 同一年份同列数据后不同字母表示品种间在P<0.05水平差异显著。**表示差异达P<0.01显著水平, *表示差异达P<0.05显著水平, ns表示差异不显著。Values followed by different letters in the same year within a column are significantly different at P<0.05 level. **: significant at P<0.01 level; *: significant at P<0.05 level; ns: non-significant. 表 4 2018—2020年两种产量水平(德阳: 高产点; 泸州: 中产点)下超级杂交稻品种(‘德优4727’和‘泸优727’)和高产常规稻品种(‘黄华占’和‘金农丝苗’)的氮素利用特性
Table 4 N use efficiency of super hybrid cultivars (‘DY4727’ ‘LY727’) and high-yielding conventional cultivars (‘HHZ’ ‘JNSM’) of rice at two yield levels (high-yield level in Deyang and medium-yield level in Luzhou) from 2018 to 2020
年份
Year品种
Cultivar秸秆氮素吸收量
N uptake amount in straw (g∙m−2)氮素总吸收量
Total N uptake amount (g∙m−2)氮素收获指数
N harvest index (%)氮素籽粒生产效率
NUEGP (kg∙kg−1)氮肥偏生产力
PFPN (kg∙kg−1)德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou 2018 德优4727 DY4727 7.14±0.53b 5.76±0.30a 22.44±0.52b 17.86±0.49a 68.20±0.88ab 67.73±1.54c 45.94±3.31a 46.79±0.90bc 57.20±2.83a 46.45±1.98b 泸优727 LY727 8.08±0.14a 5.37±0.17ab 23.51±0.29a 18.35±0.56a 65.62±0.99b 70.70±1.32b 43.98±0.43a 51.60±6.00a 57.46±1.07a 52.51±4.94a 黄华占 HHZ 7.22±0.35b 4.01±0.15c 20.91±0.62c 15.56±0.11c 65.46±0.89b 74.21±1.06a 44.24±2.53a 49.55±2.52ab 51.40±3.58b 42.84±2.39bc 金农丝苗 JNSM 6.18±0.36c 5.16±0.31b 20.39±0.44c 16.76±0.57b 69.69±1.15a 69.21±0.80bc 44.25±1.82a 43.07±2.60c 50.10±2.11b 40.05±1.34c 2019 德优4727 DY4727 5.61±1.13b 5.86±0.18a 20.95±0.73a 18.13±0.53a 77.58±3.76a 67.65±0.77b 52.38±1.46b 55.26±1.61ab 60.94±0.48a 55.68±3.07a 泸优727 LY727 6.50±0.89ab 4.83±0.40b 21.99±0.86a 16.45±0.5b 74.59±2.30ab 70.66±1.56a 52.00±2.48b 60.68±3.39a 63.45±1.74a 55.41±2.09a 黄华占 HHZ 7.85±0.86a 5.32±0.47ab 18.25±0.97b 16.71±0.73b 68.07±3.46b 68.22±1.85ab 55.29±2.14ab 53.74±3.62b 56.01±2.22b 49.78±1.30b 金农丝苗 JNSM 6.37±0.86ab 5.12±0.18b 16.68±0.64b 15.88±0.17b 73.68±3.93ab 67.78±1.20ab 59.86±2.52a 50.69±0.32b 55.42±1.01b 44.72±0.75c 2020 德优4727 DY4727 7.78±0.27a 6.25±0.34a 22.61±1.21a 17.17±0.25b 65.57±0.65b 63.59±1.49b 44.52±1.73a 54.01±0.57a 55.87±1.75a 51.52±0.79a 泸优727 LY727 6.12±0.33bc 6.08±0.23a 22.62±0.77a 17.88±0.25a 72.96±0.55a 65.97±1.79a 45.27±1.73a 52.84±0.61ab 56.83±0.82a 52.49±1.33a 黄华占 HHZ 6.80±0.51b 5.63±0.20b 18.80±0.61b 15.87±0.17c 63.85±2.17b 64.52±1.15ab 43.69±4.85a 50.03±1.14b 45.62±5.19b 44.12±1.48b 金农丝苗 JNSM 6.00±0.18c 5.22±0.12c 17.25±0.79c 14.81±0.18d 65.17±1.44b 64.72±0.58ab 47.01±2.15a 51.72±3.28ab 44.99±0.58b 42.53±2.31b 方差分析 ANOVA 年份 Year (Y) ns ** ** ** ** 地点 Location (L) ** ** ** ** ** 品种 Cultivar (C) ** ** ** ns ** Y×L ** ** ** ** ** Y×C ** ** ** ns ns L×C ** ** ** ** ns Y×L×C ** ** ** ** ns 同一年份同列数据后不同字母表示品种间在P<0.05水平差异显著。**表示差异达P<0.01显著水平, ns表示差异不显著。Values followed by different letters in the same year within a column are significantly different at P<0.05 level. **: significant at P<0.01 level; ns: non-significant. NUEGP: N use efficiency for grains production; PFPN: partial factor productivity of applied nitrogen. 表 5 2019—2020年两种产量水平(德阳: 高产点; 泸州: 中产点)环境下不同生态点土壤(德阳和泸州)盆栽超级杂交稻品种(‘德优4727’和‘泸优727’)和高产常规稻品种(‘黄华占’和‘金农丝苗’)的秸秆氮素吸收量、氮素总吸收量、氮素收获指数、氮素籽粒生产效率和产量表现
Table 5 Nitrogen (N) uptake amount in straw, total N uptake amount, N harvest index, N use efficiency for grains production and grain yield of super hybrid cultivars (‘DY4727’ ‘LY727’) and high-yielding inbred cultivars (‘HHZ’ ‘JNSM’) of rice under two yield levels (high-yield level in Deyang and medium-yield level in Luzhuou) conditions of the pot experiment with soil from two ecological locations (Deyang and Luzhou) from 2019 to 2020
年份
Year土壤
Soil品种
Cultivar秸秆氮素吸收量
N uptake amount in straw (g∙hill−1)氮素总吸收量
Total N uptake amount (g∙hill−1)氮素收获指数
N harvest index (%)氮素籽粒生产效率
NUEGP (g∙g−1)产量
Grain yield (g∙hill−1)德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou 2019 德阳 Deyang 德优4727 DY4727 0.181±0.011a 0.077±0.010a 0.612±0.021b 0.295±0.018b 70.46±1.38a 74.11±1.87a 63.21±2.83a 83.02±2.88a 38.67±0.70ab 24.44±0.63ab 泸优727 LY727 0.188±0.13a 0.076±0.006a 0.673±0.043a 0.294±0.007b 71.99±1.48a 74.06±1.88a 62.42±1.63a 77.26±4.69b 42.00±2.06a 22.71±1.32b 黄华占 HHZ 0.179±0.019a 0.083±0.007a 0.592±0.004bc 0.309±0.019ab 69.72±3.39a 72.88±3.66a 60.34±3.52a 72.72±3.02c 35.70±2.24b 22.47±2.22b 金农丝苗 JNSM 0.161±0.015a 0.086±0.003a 0.568±0.012c 0.338±0.017a 71.54±3.07a 74.56±1.26a 62.98±3.59a 75.40±0.52bc 35.77±2.54b 25.44±1.34a 泸州 Luzhou 德优4727 DY4727 0.151±0.078a 0.077±0.007a 0.537±0.123a 0.316±0.020ab 73.03±7.44a 75.76±1.06a 71.17±11.48a 72.18±4.28a 37.30±2.75ab 22.79±0.99ab 泸优727 LY727 0.152±0.051a 0.084±0.019a 0.545±0.056a 0.375±0.024a 72.54±6.34a 77.79±3.55a 73.91±6.19a 67.88±4.18a 40.00±0.77a 25.36±0.15a 黄华占 HHZ 0.170±0.006a 0.088±0.004a 0.550±0.013a 0.316±0.018ab 69.06±0.37a 72.07±1.07ab 65.43±2.70a 71.04±1.94a 35.93±1.10b 22.44±0.71ab 金农丝苗 JNSM 0.159±0.007a 0.094±0.021a 0.520±0.023a 0.304±0.050b 69.38±0.89a 69.21±3.11b 65.63±5.24a 71.88±4.43a 34.07±2.53b 21.86±3.71b 2020 德阳 Deyang 德优4727 DY4727 0.330±0.073a 0.077±0.005ab 0.812±0.089a 0.326±0.036a 59.74±4.63c 76.38±2.07a 42.25±2.91c 68.90±2.39b 34.17±2.39b 22.47±2.16a 泸优727 LY727 0.241±0.018b 0.079±0.004ab 0.753±0.042a 0.295±0.008a 68.04±1.37a 73.40±1.01ab 51.49±2.58a 77.16±1.63a 38.73±0.51a 22.77±0.83a 黄华占 HHZ 0.283±0.026ab 0.070±0.011b 0.785±0.016a 0.272±0.032a 63.98±2.62ab 74.28±1.09a 46.02±2.04b 60.61±4.98c 36.07±0.83ab 16.37±0.49b 金农丝苗 JNSM 0.297±0.024ab 0.091±0.015a 0.805±0.019a 0.308±0.057a 63.13±2.18bc 70.51±1.87b 45.06±0.93bc 57.41±2.43c 36.23±1.06ab 17.60±2.45b 泸州 Luzhou 德优4727 DY4727 0.437±0.045a 0.107±0.023a 0.936±0.046a 0.316±0.052a 53.42±2.72b 66.14±1.70b 38.16±1.82b 68.80±3.17b 35.73±3.28a 21.67±2.69a 泸优727 LY727 0.315±0.101b 0.083±0.007a 0.778±0.114b 0.261±0.007a 60.12±4.13ab 68.26±3.35ab 46.62±4.12a 79.85±2.02a 36.00±3.03a 20.80±1.05a 黄华占 HHZ 0.285±0.013b 0.079±0.012a 0.757±0.041b 0.282±0.034a 62.40±0.621a 72.05±0.96a 44.01±0.63a 69.26±2.42b 33.30±1.94a 19.47±2.03a 金农丝苗 JNSM 0.271±0.021b 0.097±0.007a 0.742±0.034b 0.288±0.012a 63.54±1.11a 66.28±1.84b 43.93±2.59a 66.55±4.40b 32.60±1.88a 19.17±1.21a 方差分析 ANOVA 年份 Year (Y) ** ** ** ** ** 地点 Location (L) ** ** ** ** ** 土壤 Soil (S) ns ns ** ns ns 品种 Cultivar (C) * * * ** ** Y×L ** ** * ** ns Y×S ** ns ** ns ns Y×C ** ** ** ** ns L×S ns ns ns ns ns L×C ** ns * * ns S×C ns ns ns ns ns Y×L×S * ** ns ** ns Y×L×C * ns ns ** ** Y×S×C * ns ** ns ns L×S×C ns ns ns * ns Y×L×S×C ns ** ns ns * 同一年份同列数据后不同字母表示品种间在P<0.05水平差异显著。**表示差异达P<0.01显著水平, *表示差异达P<0.05显著水平, ns表示差异不显著。Values followed by different letters in the same year within a column are significantly different at P<0.05 level. **: significant at P<0.01 level; *: significant at P<0.05 level; ns: non-significant; NUEGP: N use efficiency for grains production. -
[1] HUANG M, TANG Q Y, AO H J, et al. Yield potential and stability in super hybrid rice and its production strategies[J]. Journal of Integrative Agriculture, 2017, 16(5): 1009−1017 doi: 10.1016/S2095-3119(16)61535-6
[2] ZHANG Y B, TANG Q Y, ZOU Y B, et al. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions[J]. Field Crops Research, 2009, 114(1): 91−98 doi: 10.1016/j.fcr.2009.07.008
[3] 吴俊, 邓启云, 袁定阳, 等. 超级杂交稻研究进展[J]. 科学通报, 2016, 61(35): 3787−3796 doi: 10.1360/N972016-01013 WU J, DENG Q Y, YUAN D Y, et al. Progress of super hybrid rice research in China[J]. Chinese Science Bulletin, 2016, 61(35): 3787−3796 doi: 10.1360/N972016-01013
[4] 黎星, 程慧煌, 曾勇军, 等. 不同时期超级杂交稻光合特性及氮素利用效率研究[J]. 核农学报, 2019, 33(5): 978−987 LI X, CHENG H H, ZENG Y J, et al. Study on photosynthetic characteristics and nitrogen utilization efficiency of super hybrid rice in different periods[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(5): 978−987
[5] 彭少兵, 黄见良, 钟旭华, 等. 提高中国稻田氮肥利用率的研究策略[J]. 中国农业科学, 2002, 35(9): 1095−1103 PENG S B, HUANG J L, ZHONG X H, et al. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Scientia Agricultura Sinica, 2002, 35(9): 1095−1103
[6] 王姣琳, 徐新朋, 杨兰芳, 等. 长江流域中稻产量、肥料增产效应及利用率特征[J]. 植物营养与肥料学报, 2021, 27(6): 919−928 WANG J L, XU X P, YANG L F, et al. Characteristics of middle-season rice yield, fertilizer increase yield effect and use efficiency in the Yangtze Valley[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(6): 919−928
[7] 廖萍, 孟轶, 翁文安, 等. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546−1556 LIAO P, MENG Y, WENG W A, et al. Effects of hybrid rice on grain yield and nitrogen use efficiency: a meta-analysis[J]. Scientia Agricultura Sinica, 2022, 55(8): 1546−1556
[8] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报, 2014, 20(4): 783−795 JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(4): 783−795
[9] XIA L L, LI X B, MA Q Q, et al. Simultaneous quantification of N2, NH3 and N2O emissions from a flooded paddy field under different N fertilization regimes[J]. Global Change Biology, 2020, 26(4): 2292−2303 doi: 10.1111/gcb.14958
[10] MA R Y, ZOU J W, HAN Z Q, et al. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: a refinement based on regional and crop-specific emission factors[J]. Global Change Biology, 2021, 27(4): 855−867 doi: 10.1111/gcb.15437
[11] FAN M S, SHEN J B, YUAN L X, et al. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China[J]. Journal of Experimental Botany, 2012, 63(1): 13−24 doi: 10.1093/jxb/err248
[12] GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008−1010 doi: 10.1126/science.1182570
[13] LIANG K M, ZHONG X H, HUANG N R, et al. Nitrogen losses and greenhouse gas emissions under different N and water management in a subtropical double-season rice cropping system[J]. Science of the Total Environment, 2017, 609: 46−57 doi: 10.1016/j.scitotenv.2017.07.118
[14] PENG S B, BURESH R J, HUANG J L, et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China[J]. Field Crops Research, 2006, 96(1): 37−47 doi: 10.1016/j.fcr.2005.05.004
[15] 于飞, 施卫明. 近10年中国大陆主要粮食作物氮肥利用率分析[J]. 土壤学报, 2015, 52(6): 1311−1324 YU F, SHI W M. Nitrogen use efficiencies of major grain crops in China in recent 10 years[J]. Acta Pedologica Sinica, 2015, 52(6): 1311−1324
[16] LADHA J K, PATHAK H, KRUPNIK T J, et al. Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects[J]. Advances in Agronomy, 2005, 87: 85−156
[17] PENG S B, KHUSH G S, VIRK P, et al. Progress in ideotype breeding to increase rice yield potential[J]. Field Crops Research, 2008, 108(1): 32−38 doi: 10.1016/j.fcr.2008.04.001
[18] LIAO P, SUN Y N, JIANG Y, et al. Hybrid rice produces a higher yield and emits less methane[J]. Plant, Soil and Environment, 2019, 65(11): 549−555 doi: 10.17221/330/2019-PSE
[19] 艾治勇, 马国辉, 青先国. 超级杂交稻生理生态特性及高产稳产栽培调控的研究进展[J]. 中国水稻科学, 2011, 25(5): 553−560 AI Z Y, MA G H, QING X G. Physiological and ecological characteristics and cultivation regulation for high and stable yield of super hybrid rice[J]. Chinese Journal of Rice Science, 2011, 25(5): 553−560
[20] 吴文革, 张洪程, 陈烨, 等. 超级中籼杂交水稻氮素积累利用特性与物质生产[J]. 作物学报, 2008, 34(6): 1060−1068 doi: 10.3724/SP.J.1006.2008.01060 WU W G, ZHANG H C, CHEN Y, et al. Dry-matter accumulation and nitrogen absorption and utilization in middle-season indica super hybrid rice[J]. Acta Agronomica Sinica, 2008, 34(6): 1060−1068 doi: 10.3724/SP.J.1006.2008.01060
[21] 邓飞, 何连华, 陈多, 等. 不同日产量类型机插杂交籼稻的氮素吸收利用特性[J]. 中国农业科学, 2021, 54(7): 1469−1481 DENG F, HE L H, CHEN D, et al. Characteristics of nitrogen absorption and utilization of machine-transplanted indica hybrid rice with different daily yield types[J]. Scientia Agricultura Sinica, 2021, 54(7): 1469−1481
[22] 孙永健, 孙园园, 蒋明金, 等. 施肥水平对不同氮效率水稻氮素利用特征及产量的影响[J]. 中国农业科学, 2016, 49(24): 4745−4756 SUN Y J, SUN Y Y, JIANG M J, et al. Effects of fertilizer levels on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies[J]. Scientia Agricultura Sinica, 2016, 49(24): 4745−4756
[23] 敖和军, 王淑红, 邹应斌, 等. 不同施肥水平下超级杂交稻对氮、磷、钾的吸收累积[J]. 中国农业科学, 2008, 41(10): 3123−3132 AO H J, WANG S H, ZOU Y B, et al. Characteristics of nutrient uptake and utilization of super hybrid rice under different fertilizer application rates[J]. Scientia Agricultura Sinica, 2008, 41(10): 3123−3132
[24] JIANG L G, DAI T B, JIANG D, et al. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars[J]. Field Crops Research, 2004, 88(2/3): 239−250
[25] 蒋鹏, 徐富贤, 张林, 等. 高温高湿区增密减氮对杂交稻‘内6优107’产量形成和氮肥利用率的影响[J]. 中国生态农业学报(中英文), 2021, 29(10): 1679−1691 JIANG P, XU F X, ZHANG L, et al. Effect of increased plant density with reduced nitrogen on yield formation and nitrogen use efficiency of hybrid rice under high temperature and high humidity conditions[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1679−1691
[26] 蒋鹏, 熊洪, 张林, 等. 不同生态条件下施氮量和移栽密度对杂交稻氮、磷、钾吸收积累的影响[J]. 植物营养与肥料学报, 2017, 23(2): 342−350 JIANG P, XIONG H, ZHANG L, et al. Effects of N rate and planting density on nutrient uptake and utilization of hybrid rice under different ecological conditions[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 342−350
[27] 徐富贤, 蒋鹏, 孙永健, 等. 杂交中稻品种产量及其氮素利用效率的比较研究[J]. 四川农业大学学报, 2022, 40(3): 331−337 XU F X, JIANG P, SUN Y J, et al. Comparative study on yield and nitrogen use efficiency of medium hybrid rice varieties[J]. Journal of Sichuan Agricultural University, 2022, 40(3): 331−337
[28] 赵彦茜, 肖登攀, 唐建昭, 等. 气候变化对我国主要粮食作物产量的影响及适应措施[J]. 水土保持研究, 2019, 26(6): 317−326 ZHAO Y X, XIAO D P, TANG J Z, et al. Effects of climate change on the yield of major grain crops and its adaptation measures in China[J]. Research of Soil and Water Conservation, 2019, 26(6): 317−326
[29] 黄秋红, 刘智蕾, 李鹏飞, 等. 相同气候背景下南北方稻田土壤上水稻生长及氮响应差异研究[J]. 中国农业科学, 2021, 54(19): 4143−4154 HUANG Q H, LIU Z L, LI P F, et al. Difference in nitrogen responses and nitrogen efficiency of different paddy soils in southern and northern China under the same climatic condition[J]. Scientia Agricultura Sinica, 2021, 54(19): 4143−4154
[30] JIANG P, ZHOU X B, ZHANG L, et al. Improving rice yield by promoting pre-anthesis growth in subtropical environments[J]. Agronomy, 2023, 13: 820 doi: 10.3390/agronomy13030820
[31] 范立慧, 徐珊珊, 侯朋福, 等. 不同地力下基蘖肥运筹比例对水稻产量及氮肥吸收利用的影响[J]. 中国农业科学, 2016, 49(10): 1872−1884 FAN L H, XU S S, HOU P F, et al. Effect of different ratios of basal to tiller nitrogen on rice yield and nitrogen utilization under different soil fertility[J]. Scientia Agricultura Sinica, 2016, 49(10): 1872−1884
[32] 蒋鹏, 徐富贤, 熊洪, 等. 两种产量水平下减量施氮对杂交中稻产量和氮肥利用率的影响[J]. 核农学报, 2020, 34(1): 147−156 JIANG P, XU F X, XIONG H, et al. Effect of reduced nitrogen application on grain yield and nitrogen use efficiency of hybrid mid-season rice under two yield levels[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(1): 147−156
[33] 殷春渊, 张庆, 魏海燕, 等. 不同产量类型水稻基因型氮素吸收、利用效率的差异[J]. 中国农业科学, 2010, 43(1): 39−50 YIN C Y, ZHANG Q, WEI H Y, et al. Differences in nitrogen absorption and use efficiency in rice genotypes with different yield performance[J]. Scientia Agricultura Sinica, 2010, 43(1): 39−50
[34] 李静. 不同生态条件和栽培密度对水稻氮磷钾吸收利用特性的影响[J]. 杂交水稻, 2015, 30(3): 58−65 LI J. Effects of ecological condition and transplanting density on uptake characteristics of nitrogen, phosphorus and potassium in rice[J]. Hybrid Rice, 2015, 30(3): 58−65
[35] HUANG M, CHEN J N, CAO F B, et al. Increased hill density can compensate for yield loss from reduced nitrogen input in machine-transplanted double-cropped rice[J]. Field Crops Research, 2018, 221: 333−338 doi: 10.1016/j.fcr.2017.06.028
[36] YING J F, PENG S B, YANG G Q, et al. Comparison of high-yield rice in tropical and subtropical environments[J]. Field Crops Research, 1998, 57(1): 85−93 doi: 10.1016/S0378-4290(97)00121-4
[37] 邓飞, 王丽, 任万军, 等. 不同生态条件下栽植方式对中籼迟熟杂交稻组合Ⅱ优498氮素积累与分配的影响[J]. 中国农业科学, 2012, 45(20): 4310−4325 DENG F, WANG L, REN W J, et al. Effects of planting methods on nitrogen accumulation and distribution of mid-late indica hybrid rice combination ⅡYou 498 under different ecological conditions[J]. Scientia Agricultura Sinica, 2012, 45(20): 4310−4325
[38] 黄丽芬, 张蓉, 余俊, 等. 弱光下氮素配施对杂交水稻氮磷钾吸收分配的效应研究[J]. 核农学报, 2014, 28(12): 2261−2268 HUANG L F, ZHANG R, YU J, et al. Effects of nitrogen application on NPK uptake and distribution in hybrid rice under weak light[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(12): 2261−2268
[39] 梁健, 李军, 李晓峰, 等. 淮北地区水稻品种氮肥群体最高生产力及氮素吸收利用特性[J]. 作物学报, 2016, 42(8): 1188−1200 doi: 10.3724/SP.J.1006.2016.01188 LIANG J, LI J, LI X F, et al. Yield, nitrogen absorption and utilization of rice varieties with the highest population productivity of nitrogen fertilization in Huaibei Area[J]. Acta Agronomica Sinica, 2016, 42(8): 1188−1200 doi: 10.3724/SP.J.1006.2016.01188
[40] 龚金龙, 邢志鹏, 胡雅杰, 等. 籼、粳超级稻氮素吸收利用与转运差异研究[J]. 植物营养与肥料学报, 2014, 20(4): 796−810 GONG J L, XING Z P, HU Y J, et al. Differences of nitrogen uptake, utilization and translocation between indica and japonica super rice[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 796−810