两种产量水平下超级杂交稻氮素吸收利用特性

蒋鹏, 周兴兵, 张林, 朱永川, 郭晓艺, 刘茂, 熊洪, 郭长春, 徐富贤

蒋鹏, 周兴兵, 张林, 朱永川, 郭晓艺, 刘茂, 熊洪, 郭长春, 徐富贤. 两种产量水平下超级杂交稻氮素吸收利用特性[J]. 中国生态农业学报 (中英文), 2024, 32(5): 790−803. DOI: 10.12357/cjea.20230691
引用本文: 蒋鹏, 周兴兵, 张林, 朱永川, 郭晓艺, 刘茂, 熊洪, 郭长春, 徐富贤. 两种产量水平下超级杂交稻氮素吸收利用特性[J]. 中国生态农业学报 (中英文), 2024, 32(5): 790−803. DOI: 10.12357/cjea.20230691
JIANG P, ZHOU X B, ZHANG L, ZHU Y C, GUO X Y, LIU M, XIONG H, GUO C C, XU F X. Characteristics of nitrogen absorption and utilization of super hybrid rice grown under two yield levels[J]. Chinese Journal of Eco-Agriculture, 2024, 32(5): 790−803. DOI: 10.12357/cjea.20230691
Citation: JIANG P, ZHOU X B, ZHANG L, ZHU Y C, GUO X Y, LIU M, XIONG H, GUO C C, XU F X. Characteristics of nitrogen absorption and utilization of super hybrid rice grown under two yield levels[J]. Chinese Journal of Eco-Agriculture, 2024, 32(5): 790−803. DOI: 10.12357/cjea.20230691
蒋鹏, 周兴兵, 张林, 朱永川, 郭晓艺, 刘茂, 熊洪, 郭长春, 徐富贤. 两种产量水平下超级杂交稻氮素吸收利用特性[J]. 中国生态农业学报 (中英文), 2024, 32(5): 790−803. CSTR: 32371.14.cjea.20230691
引用本文: 蒋鹏, 周兴兵, 张林, 朱永川, 郭晓艺, 刘茂, 熊洪, 郭长春, 徐富贤. 两种产量水平下超级杂交稻氮素吸收利用特性[J]. 中国生态农业学报 (中英文), 2024, 32(5): 790−803. CSTR: 32371.14.cjea.20230691
JIANG P, ZHOU X B, ZHANG L, ZHU Y C, GUO X Y, LIU M, XIONG H, GUO C C, XU F X. Characteristics of nitrogen absorption and utilization of super hybrid rice grown under two yield levels[J]. Chinese Journal of Eco-Agriculture, 2024, 32(5): 790−803. CSTR: 32371.14.cjea.20230691
Citation: JIANG P, ZHOU X B, ZHANG L, ZHU Y C, GUO X Y, LIU M, XIONG H, GUO C C, XU F X. Characteristics of nitrogen absorption and utilization of super hybrid rice grown under two yield levels[J]. Chinese Journal of Eco-Agriculture, 2024, 32(5): 790−803. CSTR: 32371.14.cjea.20230691

两种产量水平下超级杂交稻氮素吸收利用特性

基金项目: 国家自然科学基金项目(31971844)、四川省生物育种重大科技专项(2022ZDZX0012-02)、德阳市科技计划重点研发项目(2021NZ040)、现代农业产业技术体系建设专项资金(CARS-01-25)和四川省“天府万人计划”资助
详细信息
    通讯作者:

    徐富贤, 主要研究方向为水稻高产高效栽培理论与技术。E-mail: xu6501@163.com

  • 中图分类号: S311; S314

Characteristics of nitrogen absorption and utilization of super hybrid rice grown under two yield levels

Funds: This study was supported by the National Natural Science Foundation of China (31971844), the Key Science and Technology Project of Sichuan Province (2022ZDZX0012-02), the Key Research and Development Program of Science and Technology of Deyang City (2021NZ040), the Special Fund for the Industrial Technology System Construction of Modern Agriculture of China (CARS-01-25), and the “Tianfu Ten Thousand Talents Program” of Sichuan Province.
More Information
  • 摘要:

    探明不同产量水平下超级杂交稻的氮素吸收利用特性, 可为我国西南稻区超级杂交稻高产栽培和育种提供理论和实践依据。以2个超级杂交稻品种(‘德优4727’ ‘泸优727’)和2个高产常规稻品种(‘金农丝苗’ ‘黄华占’)为材料, 于2018—2020年在四川省德阳市(高产点)和泸州市(中产点)两个生态点进行大田和盆栽试验, 研究两种产量水平下超级杂交稻氮素吸收、转运及利用效率的差异。结果表明: 大田条件下不同生态点间超级杂交稻产量、氮素吸收积累利用特性差异显著。高产点超级杂交稻产量、氮肥偏生产力较中产点分别增加8.3%~23.2%、8.3%~23.1%。高产点超级杂交稻播种(SO)—幼穗分化(PI)、PI—齐穗(HD)阶段氮素吸收量和氮素吸收速率(除2018年幼穗分化—齐穗外)均高于中产点, HD—成熟(MA)阶段仍保持较高的氮素吸收量。高产点超级杂交稻成熟期氮素总吸收量较中产点增加15.6%~33.7%。尽管高产点超级杂交稻氮素收获指数较中产点平均增加4.6% (2018年除外), 但成熟期仍有大量氮素滞留在超级杂交稻的秸秆中, 造成高产点氮素籽粒生产效率较中产点平均减少11.3%。方差分析表明, 盆栽条件下土壤、土壤×地点、土壤×品种互作对超级杂交稻产量、氮素吸收量、氮素籽粒生产效率影响不显著。高产点盆栽超级杂交稻产量、氮素吸收量、氮素籽粒生产效率变化趋势与大田试验相似。高产点SO—PI平均温度高于中产点, HD—MA平均温度低于中产点; 高产点SO—PI、PI—HD和HD—MA太阳辐射积累量(除2018年PI-HD外)均高于中产点。相关分析表明, 高产点籽粒产量与PI—HD氮素吸收量、氮素收获指数呈显著正相关; 氮素籽粒生产效率与SO—PI的氮素吸收量和平均温度呈显著负相关。中产点籽粒产量与氮素籽粒生产效率、总吸氮量呈显著正相关; 氮素籽粒生产效率与SO—PI和HD—MA的平均温度呈显著负相关。因此, 不同产量水平超级杂交稻产量和氮素吸收利用特性差异主要与不同生育期内的平均温度和太阳辐射有关。

    Abstract:

    This study aims to investigate the characteristics of nitrogen (N) uptake and utilization in super hybrid rice grown under two yield levels to provide a theoretical and practical basis for super high-yield rice cultivation and super hybrid rice breeding in southwest China. Field and pot experiments were conducted in Deyang City (a high-yielding site, HYS) and Luzhou City (a medium-yielding site, MYS) between 2018 and 2020. Each year, two super-hybrid rice cultivars (‘Deyou4727’ and ‘Luyou727’) and two high-yielding inbred rice cultivars (‘Jinnongsimiao’ and ‘Huanghuazhan’) were planted at each site. Differences in N uptake, translocation, and utilization characteristics between the two yield levels and the four rice cultivars were studied. The results showed marked differences in grain yield, N uptake, and utilization between the two sites in the field experiment. Super-hybrid rice produced higher grain yield and partial factor productivity of applied N (PFPN) in HYS in comparison to those in MYS by 8.3%−23.2% and 8.3%−23.1%, respectively. Super-hybrid rice exhibited higher N uptake and rate of N uptake from sowing (SO) to panicle initiation (PI) and PI to full heading (HD) in HYS in comparison to MYS (except for the duration from PI to HD in 2018). However, HYS demonstrated higher N accumulation during the grain-filling period of super-hybrid rice. Consequently, super-hybrid rice demonstrated 15.6%−33.7% higher total N uptake in HYS in comparison to MYS. On average, despite HYS showing a 4.6% higher N harvest index in super-hybrid rice compared to MYS (except in 2018), a substantial amount of N was still retained in the straw at the maturity stage. Consequently, HYS demonstrated 11.3% lower N use efficiency for grains production (NUEGP) than MYS. Analysis of variance revealed that the effects of soil, the interactions of year (Y)×soil (S), S×location (L), and S × cultivar (C) were not significant for grain yield, N uptake, or NUEGP of super-hybrid rice grown in the pot experiments. The trends in grain yield, N uptake, and NUEGP of super-hybrid rice grown in the pot experiments were similar to those in the field experiments. HYS experienced a higher mean temperature during the SO-PI phase, whereas the mean temperature was lower in HYS compared to MYS. The cumulative solar radiation during SO-PI, PI-HD, and HD-MA was higher in the HYS than in the MYS (except for PI-HD in 2018). Further analysis indicated that rice grain yield was significantly and positively related to N uptake accumulation during PI-HD, as well as the N harvest index in the HYS. There was a significant negative relationship of NUEGP with N uptake accumulation, and mean temperature during the SO-PI in the HYS. There was a significant positive relationship between rice grain yield and NUEGP and total N uptake in the MYS. Additionally, NUEGP was significantly negatively correlated with mean temperature during the SO-PI and HD-MA in the MYS. Our findings indicated that the differences in grain yield, N absorption, and utilization characteristics of super-hybrid rice at different ecological sites are primarily related to the climatic factors (including mean temperature and solar radiation during the growing season) of the planted site.

  • 图  1   2018—2020年高产点(德阳, DY)和中产点(泸州, LZ)超级杂交稻生长期间平均温度和太阳辐射积累量

    SO—PI: 播种—幼穗分化; PI—HD: 幼穗分化—齐穗; HD—MA: 齐穗—成熟。SO—PI: sowing to panicle initiation; PI—HD: panicle initiation to full heading; HD—MA: full heading to maturity.

    Figure  1.   Mean temperature and cumulative solar radiation during super hybrid rice growing season in high-yield location (Deyang, DY) and medium-yield location (Luzhou, LZ) from 2018 to 2020

    图  2   大田条件下水稻籽粒产量和氮素籽粒生产效率与相关指标的相关分析

    红色代表正相关, 蓝色代表负相关。*和**分别表示在P<0.05和P<0.01水平显著相关。GY: 产量; NUEGP: 氮素籽粒生产效率; PFPN: 氮肥偏生产力; TN: 总吸氮量; NHI: 氮素收获指数; NUS: 秸秆氮素吸收量。NU表示氮素吸收量, MT表示平均温度, SR表示太阳辐射积累量, SO-PI、PI-HD和HD-MA分别代表播种—幼穗分化、幼穗分化—齐穗和齐穗—成熟。Red represents positive correlation, blue represents negative correlation. * and ** mean significant correlation at P<0.05 and P<0.01 levels, respectively. GY: grain yield; NUEGP: nitrogen use efficiency for grains production; PFPN: partial factor productivity of applied nitrogen; TN: total nitrogen uptake amount; NHI: nitrogen harvest index; NUS: nitrogen uptake amount in straw. NU represents N uptake amount, MT represents average daily temperature, SR represents solar radiation accumulation; SO-PI, PI-HD and HD-MA represent from sowing to panicle initiation, from panicle initiation to full heading and from full heading to maturity, respectively.

    Figure  2.   Correlation analysis of rice grain yield and N use efficiency for grains production with relative indexes of the field experiment

    表  1   2018—2020年两种产量水平(德阳: 高产点; 泸州: 中产点)下超级杂交稻品种(‘德优4727’和‘泸优727’)和高产常规稻品种(‘黄华占’和‘金农丝苗’)的生育期和产量

    Table  1   Grain yield and growth duration of super hybrid cultivars (‘DY4727’ ‘LY727’) and high-yielding conventional cultivars (‘HHZ’ ‘JNSM’) of rice at two yield levels (high-yield level in Deyang, medium-yield level in Luzhou) from 2018 to 2020

    年份
    Year
    品种
    Cultivar
    生育期 Growth duration (d) 产量 Grain yield (t∙hm−2) 日产量 Daily yield (kg∙hm−2∙d−1)
    德阳
    Deyang
    泸州
    Luzhou
    德阳
    Deyang
    泸州
    Luzhou
    德阳
    Deyang
    泸州
    Luzhou
    2018德优4727 DY472715614910.30±0.51a8.36±0.36b66.00±3.27a56.11±2.39b
    泸优727 LY72715715310.34±0.19a9.45±0.89a65.88±1.23a61.78±5.81a
    黄华占 HHZ1471469.25±0.64b7.71±0.43bc62.93±4.38a52.82±2.95bc
    金农丝苗 JNSM1471469.02±0.38b7.21±0.24c61.34±2.58a49.38±1.65c
    2019德优4727 DY472715815010.97±0.09a10.02±0.55a69.42±0.55a66.82±3.69a
    泸优727 LY72716215411.42±0.31a9.97±0.38a70.50±1.93a64.76±2.45a
    黄华占 HHZ15414410.08±0.40b8.96±0.23b65.47±2.59b62.23±1.63a
    金农丝苗 JNSM1541449.98±0.18b8.05±0.13c64.78±1.18b55.91±0.94b
    2020德优4727 DY472716115210.06±0.32a9.27±0.14a62.47±1.96a61.01±0.94a
    泸优727 LY72716315310.23±0.15a9.45±0.24a62.76±0.90a61.75±1.56a
    黄华占 HHZ1531458.21±0.93b7.94±0.27b53.67±6.10b54.77±1.83b
    金农丝苗 JNSM1531458.10±0.10b7.66±0.42b52.93±0.69b52.80±2.86b
    方差分析 ANOVA年份 Year (Y)****
    地点 Location (L)****
    品种 Cultivar (C)****
    Y×L****
    Y×Cnsns
    L×Cnsns
    Y×L×Cnsns
      同一年份同列数据后不同字母表示品种间在P<0.05水平差异显著。**表示差异达P<0.01显著水平, ns表示差异不显著。Values followed by different letters in the same year within a column are significantly different at P<0.05 level. **: significant at P<0.01 level; ns: non-significant.
    下载: 导出CSV

    表  2   2018—2020年两种产量水平(德阳: 高产点; 泸州: 中产点)下超级杂交稻品种(‘德优4727’和‘泸优727’)和高产常规稻品种(‘黄华占’和‘金农丝苗’)的氮素吸收量和吸收速率

    Table  2   N uptake amount and rate of super hybrid cultivars (‘DY4727’ ‘LY727’) and high-yielding conventional cultivars (‘HHZ’ ‘JNSM’) of rice at two yield levels (high-yield level in Deyang and medium-yield level in Luzhou) from 2018 to 2020

    年份
    Year
    地点
    Location
    品种
    Cultivar
    氮素吸收量 N uptake amount (g∙m−2) 氮素吸收速率 N uptake rate (kg∙hm−2∙d−1)
    SO—PI PI—HD HD—MA SO—PI PI—HD HD—MA
    2018德阳 Deyang德优4727 DY472712.24±0.46ab2.90±0.49b7.29±0.51a1.38±0.05ab0.94±0.16b2.03±0.14a
    泸优727 LY72712.78±0.18a5.41±1.11a5.32±1.13b1.41±0.02a1.69±0.35a1.52±0.32ab
    黄华占 HHZ11.13±0.50c5.06±1.29a4.72±0.98b1.29±0.06b1.81±0.46a1.43±0.30b
    金农丝苗 JNSM11.48±0.22bc4.56±0.24ab4.34±0.45b1.34±0.03ab1.63±0.09ab1.31±0.14b
    泸州 Luzhou德优4727 DY47276.40±0.59a6.64±1.27ab4.82±1.52a0.74±0.07a2.14±0.41ab1.56±0.49a
    泸优727 LY7277.03±0.42a5.12±0.08b6.20±0.92a0.78±0.05a1.60±0.02b2.00±0.03a
    黄华占 HHZ6.76±0.80a6.78±0.68ab2.02±0.28b0.79±0.09a2.26±0.23ab0.67±0.09b
    金农丝苗 JNSM6.55±0.30a7.57±1.17a2.63±0.38b0.76±0.03a2.52±0.39a0.88±0.13b
    2019德阳 Deyang德优4727 DY472710.54±0.85a7.41±0.85a3.00±0.61a1.17±0.09a2.39±0.28a0.81±0.17a
    泸优727 LY72710.88±2.17a7.29±2.59a3.81±0.65a1.16±0.23a2.28±0.80ab1.06±0.18a
    黄华占 HHZ9.64±1.33a4.72±1.65a3.89±1.29a1.08±0.15a1.48±0.52b1.11±0.37a
    金农丝苗 JNSM8.94±1.49a5.05±1.52a2.69±0.52a1.00±0.17a1.58±0.47ab0.77±0.15a
    泸州 Luzhou德优4727 DY47279.11±1.01a5.15±0.57a3.87±0.54ab1.04±0.12ab1.66±0.18a1.25±0.17ab
    泸优727 LY7278.24±1.22ab3.77±1.04a4.43±0.48a0.91±0.13bc1.18±0.33a1.43±0.16a
    黄华占 HHZ9.03±0.47a4.61±0.40a3.07±0.85b1.08±0.06a1.54±0.13a1.02±0.28b
    金农丝苗 JNSM6.93±0.47b4.35±0.78a4.59±0.36a0.83±0.06c1.45±0.26a1.53±0.12a
    2020德阳 Deyang德优4727 DY472714.58±0.11a4.37±0.53a3.66±0.73ab1.59±0.01ab1.41±0.17a0.96±0.19a
    泸优727 LY72715.24±0.63a3.43±0.99ab3.95±0.60a1.67±0.07a1.07±0.31ab0.99±0.15a
    黄华占 HHZ12.68±0.42b3.77±0.46ab2.35±0.63b1.46±0.05bc1.26±0.15ab0.65±0.18a
    金农丝苗 JNSM11.74±1.32b2.94±1.37b2.57±0.77ab1.35±0.15c0.98±0.46b0.71±0.21a
    泸州 Luzhou德优4727 DY47279.64±0.53a1.88±0.44a5.64±0.73a1.07±0.06a0.61±0.14a1.82±0.23a
    泸优727 LY72710.04±1.76a2.66±1.29a5.17±0.74ab1.13±0.20a0.81±0.39a1.67±0.24ab
    黄华占 HHZ9.12±0.43a2.31±0.80a4.44±0.45ab1.07±0.05a0.77±0.27a1.48±0.15ab
    金农丝苗 JNSM8.89±0.90a1.97±0.64a3.94±0.49b1.05±0.11a0.66±0.21a1.31±0.16b
    方差分析
    ANOVA
    年份 Year (Y)************
    地点 Location (L)**nsns**ns**
    品种 Cultivar (C)**ns****ns**
    Y×L************
    Y×Cns***ns****
    L×C***ns***
    Y×L×Cns**ns****
      SO—PI: 播种—幼穗分化; PI—HD: 幼穗分化—齐穗; HD—MA: 齐穗—成熟。同一年份同列数据后不同字母表示品种间在P<0.05水平差异显著。**表示差异达P<0.01显著水平, *表示差异达P<0.05显著水平, ns表示差异不显著。SO—PI: sowing to panicle initiation; PI—HD: panicle initiation to full heading; HD—MA: full heading to maturity. Values followed by different letters in the same year within a column are significantly different at P<0.05 level. **: significant at P<0.01 level; *: significant at P<0.05 level; ns: non-significant.
    下载: 导出CSV

    表  3   2018—2020年两种产量水平(德阳: 高产点; 泸州: 中产点)下超级杂交稻品种(‘德优4727’和‘泸优727’)和高产常规稻品种(‘黄华占’和‘金农丝苗’)的茎叶氮素转运特性

    Table  3   N translocation characteristics of stems of super hybrid cultivars (‘DY4727’ ‘LY727’) and high-yielding conventional cultivars (‘HHZ’ ‘JNSM’) of rice at two yield levels (high-yield level in Deyang and medium-yield level in Luzhou) from 2018 to 2020

    年份
    Year
    品种
    Cultivar
    氮素转运量
    N translocation (g∙m−2)
    氮素表观转运率
    Apparent N translocation rate (%)
    氮素转运贡献率
    N translocate contribution rate (%)
    德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou
    2018德优4727 DY47276.04±0.50a4.94±1.63a45.84±3.88a45.42±7.29b39.47±2.84a40.56±6.72ab
    泸优727 LY7277.34±0.87a4.61±0.56a47.49±3.03a46.08±3.81b47.64±6.26a35.56±4.39b
    黄华占 HHZ6.55±1.03a6.06±0.70a47.37±4.54a60.00±3.76a47.80±7.13a52.36±5.17a
    金农丝苗 JNSM6.71±0.29a5.11±0.49a52.04±2.52a49.67±1.19ab47.23±2.32a43.98±3.16ab
    2019德优4727 DY47278.60±1.96a6.23±0.61a60.08±6.62a51.42±2.95a52.61±5.03a50.75±4.20a
    泸优727 LY7278.57±0.63a4.95±0.43b56.95±4.54a50.58±3.85a52.30±3.10a42.61±4.25b
    黄华占 HHZ4.00±1.02b5.94±0.45a33.66±3.99b52.79±4.10a32.23±3.25b52.24±4.96a
    金农丝苗 JNSM5.20±0.74b3.87±0.39c44.97±4.76ab43.01±3.06b42.23±3.43ab35.91±2.80b
    2020德优4727 DY47276.52±0.34b2.84±0.43b45.61±1.96b31.11±2.71b44.18±3.54b25.99±1.02a
    泸优727 LY7278.04±0.60a4.43±1.02a56.77±1.27a41.81±3.66a48.74±2.98ab37.35±3.31a
    黄华占 HHZ6.86±1.03ab3.90±0.28ab50.07±4.44ab40.90±0.94a57.00±5.86a38.13±3.39a
    金农丝苗 JNSM6.44±0.47b3.52±0.53ab51.73±2.56ab40.15±3.84a57.45±4.99a36.81±4.95a
    方差分析
    ANOVA
    年份 Year (Y)***ns
    地点 Location (L)******
    品种 Cultivar (C)**nsns
    Y×L******
    Y×C******
    L×C******
    Y×L×C*ns**
      同一年份同列数据后不同字母表示品种间在P<0.05水平差异显著。**表示差异达P<0.01显著水平, *表示差异达P<0.05显著水平, ns表示差异不显著。Values followed by different letters in the same year within a column are significantly different at P<0.05 level. **: significant at P<0.01 level; *: significant at P<0.05 level; ns: non-significant.
    下载: 导出CSV

    表  4   2018—2020年两种产量水平(德阳: 高产点; 泸州: 中产点)下超级杂交稻品种(‘德优4727’和‘泸优727’)和高产常规稻品种(‘黄华占’和‘金农丝苗’)的氮素利用特性

    Table  4   N use efficiency of super hybrid cultivars (‘DY4727’ ‘LY727’) and high-yielding conventional cultivars (‘HHZ’ ‘JNSM’) of rice at two yield levels (high-yield level in Deyang and medium-yield level in Luzhou) from 2018 to 2020

    年份
    Year
    品种
    Cultivar
    秸秆氮素吸收量
    N uptake amount in straw (g∙m−2)
    氮素总吸收量
    Total N uptake amount (g∙m−2)
    氮素收获指数
    N harvest index (%)
    氮素籽粒生产效率
    NUEGP (kg∙kg−1)
    氮肥偏生产力
    PFPN (kg∙kg−1)
    德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou
    2018德优4727 DY47277.14±0.53b5.76±0.30a22.44±0.52b17.86±0.49a68.20±0.88ab67.73±1.54c45.94±3.31a46.79±0.90bc57.20±2.83a46.45±1.98b
    泸优727 LY7278.08±0.14a5.37±0.17ab23.51±0.29a18.35±0.56a65.62±0.99b70.70±1.32b43.98±0.43a51.60±6.00a57.46±1.07a52.51±4.94a
    黄华占 HHZ7.22±0.35b4.01±0.15c20.91±0.62c15.56±0.11c65.46±0.89b74.21±1.06a44.24±2.53a49.55±2.52ab51.40±3.58b42.84±2.39bc
    金农丝苗 JNSM6.18±0.36c5.16±0.31b20.39±0.44c16.76±0.57b69.69±1.15a69.21±0.80bc44.25±1.82a43.07±2.60c50.10±2.11b40.05±1.34c
    2019德优4727 DY47275.61±1.13b5.86±0.18a20.95±0.73a18.13±0.53a77.58±3.76a67.65±0.77b52.38±1.46b55.26±1.61ab60.94±0.48a55.68±3.07a
    泸优727 LY7276.50±0.89ab4.83±0.40b21.99±0.86a16.45±0.5b74.59±2.30ab70.66±1.56a52.00±2.48b60.68±3.39a63.45±1.74a55.41±2.09a
    黄华占 HHZ7.85±0.86a5.32±0.47ab18.25±0.97b16.71±0.73b68.07±3.46b68.22±1.85ab55.29±2.14ab53.74±3.62b56.01±2.22b49.78±1.30b
    金农丝苗 JNSM6.37±0.86ab5.12±0.18b16.68±0.64b15.88±0.17b73.68±3.93ab67.78±1.20ab59.86±2.52a50.69±0.32b55.42±1.01b44.72±0.75c
    2020德优4727 DY47277.78±0.27a6.25±0.34a22.61±1.21a17.17±0.25b65.57±0.65b63.59±1.49b44.52±1.73a54.01±0.57a55.87±1.75a51.52±0.79a
    泸优727 LY7276.12±0.33bc6.08±0.23a22.62±0.77a17.88±0.25a72.96±0.55a65.97±1.79a45.27±1.73a52.84±0.61ab56.83±0.82a52.49±1.33a
    黄华占 HHZ6.80±0.51b5.63±0.20b18.80±0.61b15.87±0.17c63.85±2.17b64.52±1.15ab43.69±4.85a50.03±1.14b45.62±5.19b44.12±1.48b
    金农丝苗 JNSM6.00±0.18c5.22±0.12c17.25±0.79c14.81±0.18d65.17±1.44b64.72±0.58ab47.01±2.15a51.72±3.28ab44.99±0.58b42.53±2.31b
    方差分析 ANOVA年份 Year (Y)ns********
    地点 Location (L)**********
    品种 Cultivar (C)******ns**
    Y×L**********
    Y×C******nsns
    L×C********ns
    Y×L×C********ns
      同一年份同列数据后不同字母表示品种间在P<0.05水平差异显著。**表示差异达P<0.01显著水平, ns表示差异不显著。Values followed by different letters in the same year within a column are significantly different at P<0.05 level. **: significant at P<0.01 level; ns: non-significant. NUEGP: N use efficiency for grains production; PFPN: partial factor productivity of applied nitrogen.
    下载: 导出CSV

    表  5   2019—2020年两种产量水平(德阳: 高产点; 泸州: 中产点)环境下不同生态点土壤(德阳和泸州)盆栽超级杂交稻品种(‘德优4727’和‘泸优727’)和高产常规稻品种(‘黄华占’和‘金农丝苗’)的秸秆氮素吸收量、氮素总吸收量、氮素收获指数、氮素籽粒生产效率和产量表现

    Table  5   Nitrogen (N) uptake amount in straw, total N uptake amount, N harvest index, N use efficiency for grains production and grain yield of super hybrid cultivars (‘DY4727’ ‘LY727’) and high-yielding inbred cultivars (‘HHZ’ ‘JNSM’) of rice under two yield levels (high-yield level in Deyang and medium-yield level in Luzhuou) conditions of the pot experiment with soil from two ecological locations (Deyang and Luzhou) from 2019 to 2020

    年份
    Year
    土壤
    Soil
    品种
    Cultivar
    秸秆氮素吸收量
    N uptake amount in straw (g∙hill−1)
    氮素总吸收量
    Total N uptake amount (g∙hill−1)
    氮素收获指数
    N harvest index (%)
    氮素籽粒生产效率
    NUEGP (g∙g−1)
    产量
    Grain yield (g∙hill−1)
    德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou 德阳 Deyang 泸州 Luzhou
    2019德阳 Deyang德优4727 DY47270.181±0.011a0.077±0.010a0.612±0.021b0.295±0.018b70.46±1.38a74.11±1.87a63.21±2.83a83.02±2.88a38.67±0.70ab24.44±0.63ab
    泸优727 LY7270.188±0.13a0.076±0.006a0.673±0.043a0.294±0.007b71.99±1.48a74.06±1.88a62.42±1.63a77.26±4.69b42.00±2.06a22.71±1.32b
    黄华占 HHZ0.179±0.019a0.083±0.007a0.592±0.004bc0.309±0.019ab69.72±3.39a72.88±3.66a60.34±3.52a72.72±3.02c35.70±2.24b22.47±2.22b
    金农丝苗 JNSM0.161±0.015a0.086±0.003a0.568±0.012c0.338±0.017a71.54±3.07a74.56±1.26a62.98±3.59a75.40±0.52bc35.77±2.54b25.44±1.34a
    泸州 Luzhou德优4727 DY47270.151±0.078a0.077±0.007a0.537±0.123a0.316±0.020ab73.03±7.44a75.76±1.06a71.17±11.48a72.18±4.28a37.30±2.75ab22.79±0.99ab
    泸优727 LY7270.152±0.051a0.084±0.019a0.545±0.056a0.375±0.024a72.54±6.34a77.79±3.55a73.91±6.19a67.88±4.18a40.00±0.77a25.36±0.15a
    黄华占 HHZ0.170±0.006a0.088±0.004a0.550±0.013a0.316±0.018ab69.06±0.37a72.07±1.07ab65.43±2.70a71.04±1.94a35.93±1.10b22.44±0.71ab
    金农丝苗 JNSM0.159±0.007a0.094±0.021a0.520±0.023a0.304±0.050b69.38±0.89a69.21±3.11b65.63±5.24a71.88±4.43a34.07±2.53b21.86±3.71b
    2020德阳 Deyang德优4727 DY47270.330±0.073a0.077±0.005ab0.812±0.089a0.326±0.036a59.74±4.63c76.38±2.07a42.25±2.91c68.90±2.39b34.17±2.39b22.47±2.16a
    泸优727 LY7270.241±0.018b0.079±0.004ab0.753±0.042a0.295±0.008a68.04±1.37a73.40±1.01ab51.49±2.58a77.16±1.63a38.73±0.51a22.77±0.83a
    黄华占 HHZ0.283±0.026ab0.070±0.011b0.785±0.016a0.272±0.032a63.98±2.62ab74.28±1.09a46.02±2.04b60.61±4.98c36.07±0.83ab16.37±0.49b
    金农丝苗 JNSM0.297±0.024ab0.091±0.015a0.805±0.019a0.308±0.057a63.13±2.18bc70.51±1.87b45.06±0.93bc57.41±2.43c36.23±1.06ab17.60±2.45b
    泸州 Luzhou德优4727 DY47270.437±0.045a0.107±0.023a0.936±0.046a0.316±0.052a53.42±2.72b66.14±1.70b38.16±1.82b68.80±3.17b35.73±3.28a21.67±2.69a
    泸优727 LY7270.315±0.101b0.083±0.007a0.778±0.114b0.261±0.007a60.12±4.13ab68.26±3.35ab46.62±4.12a79.85±2.02a36.00±3.03a20.80±1.05a
    黄华占 HHZ0.285±0.013b0.079±0.012a0.757±0.041b0.282±0.034a62.40±0.621a72.05±0.96a44.01±0.63a69.26±2.42b33.30±1.94a19.47±2.03a
    金农丝苗 JNSM0.271±0.021b0.097±0.007a0.742±0.034b0.288±0.012a63.54±1.11a66.28±1.84b43.93±2.59a66.55±4.40b32.60±1.88a19.17±1.21a
    方差分析 ANOVA年份 Year (Y)**********
    地点 Location (L)**********
    土壤 Soil (S)nsns**nsns
    品种 Cultivar (C)*******
    Y×L*******ns
    Y×S**ns**nsns
    Y×C********ns
    L×Snsnsnsnsns
    L×C**ns**ns
    S×Cnsnsnsnsns
    Y×L×S***ns**ns
    Y×L×C*nsns****
    Y×S×C*ns**nsns
    L×S×Cnsnsns*ns
    Y×L×S×Cns**nsns*
      同一年份同列数据后不同字母表示品种间在P<0.05水平差异显著。**表示差异达P<0.01显著水平, *表示差异达P<0.05显著水平, ns表示差异不显著。Values followed by different letters in the same year within a column are significantly different at P<0.05 level. **: significant at P<0.01 level; *: significant at P<0.05 level; ns: non-significant; NUEGP: N use efficiency for grains production.
    下载: 导出CSV
  • [1]

    HUANG M, TANG Q Y, AO H J, et al. Yield potential and stability in super hybrid rice and its production strategies[J]. Journal of Integrative Agriculture, 2017, 16(5): 1009−1017 doi: 10.1016/S2095-3119(16)61535-6

    [2]

    ZHANG Y B, TANG Q Y, ZOU Y B, et al. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions[J]. Field Crops Research, 2009, 114(1): 91−98 doi: 10.1016/j.fcr.2009.07.008

    [3] 吴俊, 邓启云, 袁定阳, 等. 超级杂交稻研究进展[J]. 科学通报, 2016, 61(35): 3787−3796 doi: 10.1360/N972016-01013

    WU J, DENG Q Y, YUAN D Y, et al. Progress of super hybrid rice research in China[J]. Chinese Science Bulletin, 2016, 61(35): 3787−3796 doi: 10.1360/N972016-01013

    [4] 黎星, 程慧煌, 曾勇军, 等. 不同时期超级杂交稻光合特性及氮素利用效率研究[J]. 核农学报, 2019, 33(5): 978−987

    LI X, CHENG H H, ZENG Y J, et al. Study on photosynthetic characteristics and nitrogen utilization efficiency of super hybrid rice in different periods[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(5): 978−987

    [5] 彭少兵, 黄见良, 钟旭华, 等. 提高中国稻田氮肥利用率的研究策略[J]. 中国农业科学, 2002, 35(9): 1095−1103

    PENG S B, HUANG J L, ZHONG X H, et al. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Scientia Agricultura Sinica, 2002, 35(9): 1095−1103

    [6] 王姣琳, 徐新朋, 杨兰芳, 等. 长江流域中稻产量、肥料增产效应及利用率特征[J]. 植物营养与肥料学报, 2021, 27(6): 919−928

    WANG J L, XU X P, YANG L F, et al. Characteristics of middle-season rice yield, fertilizer increase yield effect and use efficiency in the Yangtze Valley[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(6): 919−928

    [7] 廖萍, 孟轶, 翁文安, 等. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546−1556

    LIAO P, MENG Y, WENG W A, et al. Effects of hybrid rice on grain yield and nitrogen use efficiency: a meta-analysis[J]. Scientia Agricultura Sinica, 2022, 55(8): 1546−1556

    [8] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报, 2014, 20(4): 783−795

    JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(4): 783−795

    [9]

    XIA L L, LI X B, MA Q Q, et al. Simultaneous quantification of N2, NH3 and N2O emissions from a flooded paddy field under different N fertilization regimes[J]. Global Change Biology, 2020, 26(4): 2292−2303 doi: 10.1111/gcb.14958

    [10]

    MA R Y, ZOU J W, HAN Z Q, et al. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: a refinement based on regional and crop-specific emission factors[J]. Global Change Biology, 2021, 27(4): 855−867 doi: 10.1111/gcb.15437

    [11]

    FAN M S, SHEN J B, YUAN L X, et al. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China[J]. Journal of Experimental Botany, 2012, 63(1): 13−24 doi: 10.1093/jxb/err248

    [12]

    GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008−1010 doi: 10.1126/science.1182570

    [13]

    LIANG K M, ZHONG X H, HUANG N R, et al. Nitrogen losses and greenhouse gas emissions under different N and water management in a subtropical double-season rice cropping system[J]. Science of the Total Environment, 2017, 609: 46−57 doi: 10.1016/j.scitotenv.2017.07.118

    [14]

    PENG S B, BURESH R J, HUANG J L, et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China[J]. Field Crops Research, 2006, 96(1): 37−47 doi: 10.1016/j.fcr.2005.05.004

    [15] 于飞, 施卫明. 近10年中国大陆主要粮食作物氮肥利用率分析[J]. 土壤学报, 2015, 52(6): 1311−1324

    YU F, SHI W M. Nitrogen use efficiencies of major grain crops in China in recent 10 years[J]. Acta Pedologica Sinica, 2015, 52(6): 1311−1324

    [16]

    LADHA J K, PATHAK H, KRUPNIK T J, et al. Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects[J]. Advances in Agronomy, 2005, 87: 85−156

    [17]

    PENG S B, KHUSH G S, VIRK P, et al. Progress in ideotype breeding to increase rice yield potential[J]. Field Crops Research, 2008, 108(1): 32−38 doi: 10.1016/j.fcr.2008.04.001

    [18]

    LIAO P, SUN Y N, JIANG Y, et al. Hybrid rice produces a higher yield and emits less methane[J]. Plant, Soil and Environment, 2019, 65(11): 549−555 doi: 10.17221/330/2019-PSE

    [19] 艾治勇, 马国辉, 青先国. 超级杂交稻生理生态特性及高产稳产栽培调控的研究进展[J]. 中国水稻科学, 2011, 25(5): 553−560

    AI Z Y, MA G H, QING X G. Physiological and ecological characteristics and cultivation regulation for high and stable yield of super hybrid rice[J]. Chinese Journal of Rice Science, 2011, 25(5): 553−560

    [20] 吴文革, 张洪程, 陈烨, 等. 超级中籼杂交水稻氮素积累利用特性与物质生产[J]. 作物学报, 2008, 34(6): 1060−1068 doi: 10.3724/SP.J.1006.2008.01060

    WU W G, ZHANG H C, CHEN Y, et al. Dry-matter accumulation and nitrogen absorption and utilization in middle-season indica super hybrid rice[J]. Acta Agronomica Sinica, 2008, 34(6): 1060−1068 doi: 10.3724/SP.J.1006.2008.01060

    [21] 邓飞, 何连华, 陈多, 等. 不同日产量类型机插杂交籼稻的氮素吸收利用特性[J]. 中国农业科学, 2021, 54(7): 1469−1481

    DENG F, HE L H, CHEN D, et al. Characteristics of nitrogen absorption and utilization of machine-transplanted indica hybrid rice with different daily yield types[J]. Scientia Agricultura Sinica, 2021, 54(7): 1469−1481

    [22] 孙永健, 孙园园, 蒋明金, 等. 施肥水平对不同氮效率水稻氮素利用特征及产量的影响[J]. 中国农业科学, 2016, 49(24): 4745−4756

    SUN Y J, SUN Y Y, JIANG M J, et al. Effects of fertilizer levels on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies[J]. Scientia Agricultura Sinica, 2016, 49(24): 4745−4756

    [23] 敖和军, 王淑红, 邹应斌, 等. 不同施肥水平下超级杂交稻对氮、磷、钾的吸收累积[J]. 中国农业科学, 2008, 41(10): 3123−3132

    AO H J, WANG S H, ZOU Y B, et al. Characteristics of nutrient uptake and utilization of super hybrid rice under different fertilizer application rates[J]. Scientia Agricultura Sinica, 2008, 41(10): 3123−3132

    [24]

    JIANG L G, DAI T B, JIANG D, et al. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars[J]. Field Crops Research, 2004, 88(2/3): 239−250

    [25] 蒋鹏, 徐富贤, 张林, 等. 高温高湿区增密减氮对杂交稻‘内6优107’产量形成和氮肥利用率的影响[J]. 中国生态农业学报(中英文), 2021, 29(10): 1679−1691

    JIANG P, XU F X, ZHANG L, et al. Effect of increased plant density with reduced nitrogen on yield formation and nitrogen use efficiency of hybrid rice under high temperature and high humidity conditions[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1679−1691

    [26] 蒋鹏, 熊洪, 张林, 等. 不同生态条件下施氮量和移栽密度对杂交稻氮、磷、钾吸收积累的影响[J]. 植物营养与肥料学报, 2017, 23(2): 342−350

    JIANG P, XIONG H, ZHANG L, et al. Effects of N rate and planting density on nutrient uptake and utilization of hybrid rice under different ecological conditions[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 342−350

    [27] 徐富贤, 蒋鹏, 孙永健, 等. 杂交中稻品种产量及其氮素利用效率的比较研究[J]. 四川农业大学学报, 2022, 40(3): 331−337

    XU F X, JIANG P, SUN Y J, et al. Comparative study on yield and nitrogen use efficiency of medium hybrid rice varieties[J]. Journal of Sichuan Agricultural University, 2022, 40(3): 331−337

    [28] 赵彦茜, 肖登攀, 唐建昭, 等. 气候变化对我国主要粮食作物产量的影响及适应措施[J]. 水土保持研究, 2019, 26(6): 317−326

    ZHAO Y X, XIAO D P, TANG J Z, et al. Effects of climate change on the yield of major grain crops and its adaptation measures in China[J]. Research of Soil and Water Conservation, 2019, 26(6): 317−326

    [29] 黄秋红, 刘智蕾, 李鹏飞, 等. 相同气候背景下南北方稻田土壤上水稻生长及氮响应差异研究[J]. 中国农业科学, 2021, 54(19): 4143−4154

    HUANG Q H, LIU Z L, LI P F, et al. Difference in nitrogen responses and nitrogen efficiency of different paddy soils in southern and northern China under the same climatic condition[J]. Scientia Agricultura Sinica, 2021, 54(19): 4143−4154

    [30]

    JIANG P, ZHOU X B, ZHANG L, et al. Improving rice yield by promoting pre-anthesis growth in subtropical environments[J]. Agronomy, 2023, 13: 820 doi: 10.3390/agronomy13030820

    [31] 范立慧, 徐珊珊, 侯朋福, 等. 不同地力下基蘖肥运筹比例对水稻产量及氮肥吸收利用的影响[J]. 中国农业科学, 2016, 49(10): 1872−1884

    FAN L H, XU S S, HOU P F, et al. Effect of different ratios of basal to tiller nitrogen on rice yield and nitrogen utilization under different soil fertility[J]. Scientia Agricultura Sinica, 2016, 49(10): 1872−1884

    [32] 蒋鹏, 徐富贤, 熊洪, 等. 两种产量水平下减量施氮对杂交中稻产量和氮肥利用率的影响[J]. 核农学报, 2020, 34(1): 147−156

    JIANG P, XU F X, XIONG H, et al. Effect of reduced nitrogen application on grain yield and nitrogen use efficiency of hybrid mid-season rice under two yield levels[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(1): 147−156

    [33] 殷春渊, 张庆, 魏海燕, 等. 不同产量类型水稻基因型氮素吸收、利用效率的差异[J]. 中国农业科学, 2010, 43(1): 39−50

    YIN C Y, ZHANG Q, WEI H Y, et al. Differences in nitrogen absorption and use efficiency in rice genotypes with different yield performance[J]. Scientia Agricultura Sinica, 2010, 43(1): 39−50

    [34] 李静. 不同生态条件和栽培密度对水稻氮磷钾吸收利用特性的影响[J]. 杂交水稻, 2015, 30(3): 58−65

    LI J. Effects of ecological condition and transplanting density on uptake characteristics of nitrogen, phosphorus and potassium in rice[J]. Hybrid Rice, 2015, 30(3): 58−65

    [35]

    HUANG M, CHEN J N, CAO F B, et al. Increased hill density can compensate for yield loss from reduced nitrogen input in machine-transplanted double-cropped rice[J]. Field Crops Research, 2018, 221: 333−338 doi: 10.1016/j.fcr.2017.06.028

    [36]

    YING J F, PENG S B, YANG G Q, et al. Comparison of high-yield rice in tropical and subtropical environments[J]. Field Crops Research, 1998, 57(1): 85−93 doi: 10.1016/S0378-4290(97)00121-4

    [37] 邓飞, 王丽, 任万军, 等. 不同生态条件下栽植方式对中籼迟熟杂交稻组合Ⅱ优498氮素积累与分配的影响[J]. 中国农业科学, 2012, 45(20): 4310−4325

    DENG F, WANG L, REN W J, et al. Effects of planting methods on nitrogen accumulation and distribution of mid-late indica hybrid rice combination ⅡYou 498 under different ecological conditions[J]. Scientia Agricultura Sinica, 2012, 45(20): 4310−4325

    [38] 黄丽芬, 张蓉, 余俊, 等. 弱光下氮素配施对杂交水稻氮磷钾吸收分配的效应研究[J]. 核农学报, 2014, 28(12): 2261−2268

    HUANG L F, ZHANG R, YU J, et al. Effects of nitrogen application on NPK uptake and distribution in hybrid rice under weak light[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(12): 2261−2268

    [39] 梁健, 李军, 李晓峰, 等. 淮北地区水稻品种氮肥群体最高生产力及氮素吸收利用特性[J]. 作物学报, 2016, 42(8): 1188−1200 doi: 10.3724/SP.J.1006.2016.01188

    LIANG J, LI J, LI X F, et al. Yield, nitrogen absorption and utilization of rice varieties with the highest population productivity of nitrogen fertilization in Huaibei Area[J]. Acta Agronomica Sinica, 2016, 42(8): 1188−1200 doi: 10.3724/SP.J.1006.2016.01188

    [40] 龚金龙, 邢志鹏, 胡雅杰, 等. 籼、粳超级稻氮素吸收利用与转运差异研究[J]. 植物营养与肥料学报, 2014, 20(4): 796−810

    GONG J L, XING Z P, HU Y J, et al. Differences of nitrogen uptake, utilization and translocation between indica and japonica super rice[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 796−810

图(2)  /  表(5)
计量
  • 文章访问数:  710
  • HTML全文浏览量:  33
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-21
  • 录用日期:  2024-01-31
  • 网络出版日期:  2024-02-29
  • 刊出日期:  2024-05-19

目录

    /

    返回文章
    返回