Effect of crop nutrient uptake utilization and yield in the flax intercropping pattern
-
摘要:
为明确不同胡麻间作系统中作物养分吸收利用对产量贡献的差异, 本研究采用田间二因素随机区组试验设计, 设置两种间作类型: 胡麻||玉米间作(F||M)、胡麻||大豆间作(F||S), 3 种带型配置[4∶2 (S1)、6∶3 (S2)和 8∶4 (S3)], 以单作为对照, 共计9组处理, 比较分析了两种间作系统中不同带型配置的间作优势以及成熟期养分吸收量和利用效率对间作优势的贡献。结果表明: 与单作相比, 间作提高了作物生物产量和籽粒产量, 胡麻||玉米间作系统显著高于胡麻||大豆间作, 且在8∶4行比配置下达到最大值; 两种间作系统中土地当量比(LER)均大于1, 具有间作产量优势。胡麻||玉米间作系统中, 植株氮、磷和钾养分吸收总量比相应单作提高12.15%~50.38%、44.79%~67.29%和3.90%~25.75%, 氮素利用效率高出单作73.20%~78.36%; 氮、磷和钾吸收因子对LER的贡献分别为1.33~2.10、1.76~2.08和1.11~1.53, 利用因子的贡献分别为−0.30~−0.12、−0.42~−0.25和−0.10~0.07。胡麻||大豆间作系统中, 植株氮、磷和钾养分吸收总量比相应单作提高6.86%~60.06%、11.97%~59.21%和7.34%~65.30%, 氮素利用效率高出单作48.77%~71.74%; 氮、磷和钾吸收因子对LER的贡献分别为1.17~2.13、1.20~2.10和1.15~2.15, 利用因子的贡献分别为−0.53~−0.30、−0.46~−0.15和−0.52~−0.03。综合分析认为, 本研究中8行胡麻4行玉米间作带型能提高作物养分吸收利用能力, 增加间作系统作物产量, 其间作优势主要来源于养分吸收量的增加, 而非利用效率的改变。
Abstract:Intercropping systems have competitive and synergistic effects on nutrient uptake and utilization due to differences in crop combinations and belt configurations and the differences in nutrient uptake and utilization between different intercropping systems are also large. Reasonable intercropping patterns can improve the microenvironment of the crops by adjusting the field configurations of crop side-row ratios, widths, and spacings to improve the utilization of resources and the yields of the crop groups. To clarify the differences in the contribution of crop nutrient uptake and utilization to yield in oilseed flax||maize, and oilseed flax||soybean systems, we used a two-factor randomized block trial design in the field. Two types of intercropping were set up: oilseed flax||maize intercropping (F||M), oilseed flax||soybean intercropping (F||S), with three belt configurations [4∶2 (S1), 6∶3 (S2), and 8∶4 (S3)], for a total of nine treatments, with monocropping as the control, to comparatively analyze the intercropping advantages of different belt configurations and the contribution of nutrient uptake and utilization efficiency to intercropping advantages at maturity in oilseed flax||maize, and oilseed flax||soybean intercropping systems. The results showed that intercropping increased crop biomass yield and seed yield compared with monocropping. The oilseed flax||maize was significantly higher than oilseed flax||soybean intercropping systems, reaching a maximum in the 8∶4 row ratio configuration. Both intercropping systems had a land equivalent ratio (LER) greater than 1, indicating a yield advantage. In oilseed flax||maize system, it showed increase in the total plant uptake of nitrogen, phosphorus, and potassium, ranging from 12.15% to 50.38%, 44.79% to 67.29%, and 3.90% to 25.75%, respectively, when compared to monocropping; nitrogen utilization efficiency was observed to be 73.20%–78.36% higher in the intercropping system than that in the monocropping system; the efficiency of nitrogen, phosphorus, and potassium uptake contributed to the land equivalent ratio (LER) with values ranging from 1.33 to 2.10, 1.76 to 2.08, and 1.11 to 1.53, respectively; the utilization efficiency showed negative contributions ranging from −0.30 to −0.12, −0.42 to −0.25, and −0.10 to 0.07 for nitrogen, phosphorus, and potassium, respectively. In the oilseed flax||soybean system, total nutrient uptake of nitrogen, phosphorus, and potassium were 6.86%–60.06%, 11.97%–59.21%, and 7.34%–65.30% higher than that in the monocropping system; Nitrogen utilization efficiency was 48.77% to 71.74% higher than that of monocrops; contributions of nitrogen, phosphorus, and potassium uptake efficiencies to LER were 1.17 to 2.13, 1.20 to 2.10, and 1.15 to 2.15, respectively, and the contributions of utilization efficiencies were −0.53 to −0.30, −0.46 to −0.15, and −0.52 to −0.03, respectively. Based on the above, the intercropping system with 8-row oilseed flax and 4-row maize belts enhances crop nutrient uptake and utilization capacity. The increase in crop yield in the intercropping system was primarily due to nutrient uptake increased rather than changes in utilization efficiency.
-
Keywords:
- Intercropping /
- Strip configuration /
- Nutrient uptake /
- Nutrient utilization /
- Crop yield
-
-
图 2 胡麻||玉米带状间作种植模式图
F4M2、F6M3、F8M4分别代表胡麻||玉米间作的3种带型配置(80 cm、120 cm和160 cm)。胡麻||玉米间作、胡麻||大豆间作系统中带型配置一致。F4M2, F6M3, and F8M4 represent the three strip configuration (80, 120, and 160 cm) of the oilseed flax||maize intercropping. Oilseed flax||maize and oilseed flax||soybean intercropping systems have the same strip configuration types.
Figure 2. Planting pattern diagram of oilseed flax||maize relay strip intercropping
表 1 胡麻间作和单作处理的带型配置
Table 1 Strip configuration of intercropping and monocropping of oilseed flax
种植模式
Cropping pattern处理代码
Code of treatment胡麻行数
Rows of oilseed flax配对作物行数
Rows of matching crop作物幅宽
Crop bandwidth (cm)胡麻||玉米间作
Oilseed flax||maize intercroppingF4M2 4 2 80∶80 F6M3 6 3 120∶120 F8M4 8 4 160∶160 胡麻||大豆间作
Oilseed flax||soybean intercroppingF4S2 4 2 80∶80 F6S3 6 3 120∶120 F8S4 8 4 160∶160 单作
Monocropping胡麻 Oilseed flax SF 12 240 玉米 Maize SM 8 320 大豆 Soybean SS 8 320 表 2 不同种植模式下作物籽粒产量、生物产量及土地当量比
Table 2 Crop seed yield, biomass yield and land equivalent ratio under different cropping patterns
指标
Index种植模式
Cropping pattern处理
Treatment间作
Intercropping
(kg·hm−2)单作加权平均
Weighted mean under
monocropping (kg·hm−2)土地当量比
Land equivalent ratio籽粒产量
Grain yield胡麻||玉米间作
Oilseed flax||maize intercroppingF4M2 5414.46b 6402.39a 2.01 F6M3 6499.85a 2.33 F8M4 6865.63a 2.62 胡麻||大豆间作
Oilseed flax||soybean intercroppingF4S2 1245.59d 1671.08b 1.59 F6S3 1841.56c 2.28 F8S4 2123.02c 2.62 作物 Crop (C) ** — ** 带型 Belt type (B) ** — ** C×B NS — ** 生物产量
Biomass yield胡麻||玉米间作
Oilseed flax||maize intercroppingF4M2 10 389.02a 8488.76a 2.43 F6M3 10 521.17a 2.59 F8M4 11 095.86a 2.60 胡麻||大豆间作
Oilseed flax||soybean intercroppingF4S2 4598.81c 4424.08b 2.09 F6S3 5416.08bc 2.45 F8S4 6942.59b 2.66 作物 Crop (C) ** — NS 带型 Belt type (B) NS — * C×B NS — NS 各处理名称见表1。单作加权平均表示单作胡麻和单作玉米(大豆)的产量以间作比例为权重的加权平均值。同列不同小写字母表示同一指标不同处理间差异显著(P<0.05)。*表示在P<0.05水平影响显著, **表示在P<0.01水平影响显著, NS表示无显著影响。 The means of treatements were shown in the Table 1. The weighted mean under monocropping is the weighted average of the yields of single-crop oilseed flax and single-crop maize (soybean) weighted by the proportion of intercropping. Different lowercase letters in the same column indicate significant differences of the same indicator among different treatments at P<0.05 level. * indicates significant effect at P<0.05 level, ** indicates significant effect at P<0.01 level, and NS indicates no significant effect. 表 3 不同种植模式下作物的养分吸收量
Table 3 Nutrient uptake amount by crops under different cropping patterns
养分
Nutrient种植模式
Cropping pattern处理
Treatment间作
Intercropping
(kg·hm−2)单作加权平均
Weighted mean under
monocropping (kg·hm−2)间作养分吸收量的变化
Change in nutrient uptake
under intercropping氮
Nitrogen胡麻||玉米间作
Oilseed flax||maize intercroppingF4M2 258.70b 230.68a 12.15** F6M3 265.58b 15.12** F8M4 346.92a 50.38** 胡麻||大豆间作
Oilseed flax||soybean intercroppingF4S2 58.75c 55.07b 6.86 F6S3 87.77c 59.46** F8S4 88.10c 60.06** 作物 Crop (C) ** — NS 带型 Belt type (B) * — ** C×B NS — NS 磷
Phosphorus胡麻||玉米间作
Oilseed flax||maize intercroppingF4M2 26.51ab 18.31a 44.79** F6M3 26.84ab 46.53** F8M4 30.63a 67.29** 胡麻||大豆间作
Oilseed flax||soybean intercroppingF4S2 21.08b 19.05a 11.97 F6S3 22.99b 20.69* F8S4 30.44a 59.21** 作物 Crop (C) NS — NS 带型 Belt type (B) NS — NS C×B NS — NS 钾
Potassium胡麻||玉米间作
Oilseed flax||maize intercroppingF4M2 194.68b 187.36a 3.90 F6M3 218.60a 16.67** F8M4 235.60a 25.75** 胡麻||大豆间作
Oilseed flax||soybean intercroppingF4S2 118.93c 110.81b 7.34 F6S3 127.92c 15.48* F8S4 183.03b 65.30** 作物 Crop (C) ** — ** 带型 Belt type (B) ** — ** C×B * — ** 各处理名称见表1。表中单作加权平均表示单作胡麻和单作玉米(大豆)的养分吸收量以间作比例为权重的加权平均值。同列不同小写字母表示同一指标在不同处理间差异显著(P<0.05)。*表示同一种植模式下间作相对于单作的养分吸收量差异显著(P<0.05), **表示同一种植模式下间作相对于单作的养分吸收量差异显著(P<0.01), NS表示无显著差异。The means of treatements were shown in the Table 1. The weighted mean under monocropping is the weighted average of nutrient uptake in single-crop oilseed flax and single-crop corn (soybean) weighted by intercropping ratio. Different lowercase letters in the same column indicate significant differences of the same indicator among different treatments at P<0.05 level. * indicates significant differences of the nutrient uptake between intercropping and monocropping under the same cropping pattern at P<0.05 level, ** indicates significant differences of the nutrient uptake between intercropping and monocropping under the same cropping pattern at P<0.01 level, and NS indicates no significant effect. 表 4 不同种植模式下作物养分利用效率
Table 4 Nutrient use efficiency of crops under different cropping patterns
养分
Nutrient种植模式
Cropping pattern处理
Treatment间作
Intercropping
(kg·kg−1)单作加权平均
Weighted mean under
monocropping (kg·kg−1)间作养分利用效率的变化
Change in nutrient use efficiency
under intercropping氮
Nitrogen胡麻||玉米间作
Oilseed flax||maize intercroppingF4M2 53.3ab 30.37a 75.33** F6M3 54.12a 78.36** F8M4 52.59ab 73.20** 胡麻||大豆间作
Oilseed flax||soybean intercroppingF4S2 46.33b 31.17a 48.77** F6S3 48.47ab 55.40** F8S4 53.53ab 71.74** 作物 Crop (C) NS — * 带型 Belt type (B) NS — NS C×B NS — NS 磷
Phosphorus胡麻||玉米间作
Oilseed flax||maize intercroppingF4M2 355.81a 291.93a 21.88** F6M3 420.05a 43.89** F8M4 437.98a 50.03** 胡麻||大豆间作
Oilseed flax||soybean intercroppingF4S2 138.67b 89.78b 54.83** F6S3 156.38b 85.73** F8S4 166.83b 73.93** 作物 Crop (C) ** — ** 带型 Belt type (B) NS — NS C×B NS — NS 钾
Potassium胡麻||玉米间作
Oilseed flax||maize intercroppingF4M2 47.47a 27.18a 74.65** F6M3 50.14a 84.41** F8M4 50.66a 86.32** 胡麻||大豆间作
Oilseed flax||soybean intercroppingF4S2 22.06c 15.00b 47.02** F6S3 28.94b 92.85** F8S4 26.39b 75.86** 作物 Crop (C) ** — ** 带型 Belt type (B) ** — ** C×B NS — ** 各处理名称见表1。表中单作加权平均表示单作胡麻和单作玉米(大豆)的养分利用效率以间作比例为权重的加权平均值。同列不同小写字母表示同一指标不同处理间差异显著(P<0.05)。*表示同一种植模式下间作相对于单作的养分利用效率差异显著(P<0.05), **表示同一种植模式下间作相对于单作的养分利用效率差异显著(P<0.01), NS表示无显著差异。The means of treatements were shown in the Table 1. The weighted mean under monocropping is the weighted average of the nutrient use efficiencies of single-crop oilseed flax and single-crop maize (soybean) weighted by the proportion of intercropping. Different lowercase letters in the same column indicate significant differences of the same indicator among different treatments at P<0.05 level. * indicates significant differences of nutrient use efficiency between intercropping and monocropping under the same cropping patter at P<0.05 level, ** indicates significant differences of nutrient use efficiency between intercropping and monocropping under the same cropping patter at P<0.01 level, NS indicates no significant effect. 表 5 养分吸收和利用效率对土地当量比的贡献
Table 5 Contribution of nutrient uptake amount and use efficiency to the land equivalent ratio
养分
Nutrient种植模式
Cropping pattern处理
Treatment土地当量比
Land equivalent ratio吸收因子
Uptake factor利用因子
Utilization factor交互因子
Interaction factor氮
Nitrogen胡麻||玉米间作
Oilseed flax||maize intercroppingF4M2 2.01 1.33 −0.27 −0.05 F6M3 2.33 1.49 −0.12 −0.04 F8M4 2.62 2.10 −0.30 −0.18 胡麻||大豆间作
Oilseed flax||soybean intercroppingF4S2 1.59 1.17 −0.53 −0.05 F6S3 2.28 2.08 −0.47 −0.33 F8S4 2.62 2.13 −0.30 −0.21 磷
Phosphorus胡麻||玉米间作
Oilseed flax||maize intercroppingF4M2 2.01 1.76 −0.42 −0.33 F6M3 2.33 1.79 −0.28 −0.18 F8M4 2.62 2.08 −0.25 −0.21 胡麻||大豆间作
Oilseed flax||soybean intercroppingF4S2 1.59 1.20 −0.46 −0.15 F6S3 2.28 1.46 −0.15 −0.03 F8S4 2.62 2.10 −0.28 −0.20 钾
Potassium胡麻||玉米间作
Oilseed flax||maize intercroppingF4M2 2.01 1.11 −0.10 0.00 F6M3 2.33 1.34 −0.01 0.00 F8M4 2.62 1.53 0.07 0.02 胡麻||大豆间作
Oilseed flax||soybean intercroppingF4S2 1.59 1.15 −0.52 −0.04 F6S3 2.28 1.32 −0.03 −0.01 F8S4 2.62 2.15 −0.22 −0.31 各处理名称见表1。吸收因子是间作相对于单作养分吸收量变化对产量优势的贡献, 利用因子是间作相对于单作养分利用效率的变化对产量优势的贡献, 交互因子是养分吸收和利用效率交互作用对间作优势的贡献。The means of treatements were shown in the Table 1. Uptake factor was the contribution of the changes of nutrient uptake under intercropping to yield advantage compared to that under monocropping, utilization factor was the contribution of the changes of nutrient utilization under intercropping to yield advantage compared to that under monocropping, and interaction factor was the contribution of the interaction between nutrient uptake and utilization to the yield advantage under intercropping. -
[1] DUCHENE O, VIAN J F, CELETTE F. Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms. A review[J]. Agriculture, Ecosystems & Environment, 2017, 240: 148–161
[2] MAO L L, ZHANG L Z, LI W Q, et al. Yield advantage and water saving in maize/pea intercrop[J]. Field Crops Research, 2012, 138: 11−20 doi: 10.1016/j.fcr.2012.09.019
[3] 杨文亭, 王晓维, 王建武. 豆科-禾本科间作系统中作物和土壤氮素相关研究进展[J]. 生态学杂志, 2013, 32(9): 2480−2484 YANG W T, WANG X W, WANG J W. Crop-and soil nitrogen in legume-Gramineae intercropping system: research progress[J]. Chinese Journal of Ecology, 2013, 32(9): 2480−2484
[4] 刘朝茂, 李成云. 玉米与大豆、马铃薯间作对玉米叶片衰老、产量及病害控制的影响[J]. 江苏农业科学, 2017, 45(6): 75−78 LIU C M, LI C Y. Effects of intercropping maize with soybean and potato on leaf senescence, yield and disease control of maize[J]. Jiangsu Agricultural Sciences, 2017, 45(6): 75−78
[5] 王甜, 庞婷, 杜青, 等. 田间配置对间作大豆光合特性、干物质积累及产量的影响[J]. 华北农学报, 2020, 35(2): 107−116 WANG T, PANG T, DU Q, et al. Effects of different field collocation patterns on photosynthetic characteristics and dry matter accumulation and yield in intercropping soybean[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(2): 107−116
[6] 魏珊珊, 王祥宇, 董树亭. 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响[J]. 应用生态学报, 2014, 25(2): 441−450 WEI S S, WANG X Y, DONG S T. Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maize[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 441−450
[7] ZHANG Y T, LIU J, ZHANG J Z, et al. Row ratios of intercropping maize and soybean can affect agronomic efficiency of the system and subsequent wheat[J]. PLoS One, 2015, 10(6): e0129245 doi: 10.1371/journal.pone.0129245
[8] 刘颖, 王建国, 郭峰, 等. 玉米花生间作对作物干物质积累和氮素吸收利用的影响[J]. 中国油料作物学报, 2020, 42(6): 994−1001 LIU Y, WANG J G, GUO F, et al. Effects of maize intercropping peanut on crop dry matter accumulation, nitrogen absorption and utilization[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(6): 994−1001
[9] 肖焱波, 段宗颜, 金航, 等. 小麦/蚕豆间作体系中的氮节约效应及产量优势[J]. 植物营养与肥料学报, 2007, 13(2): 267−271 doi: 10.3321/j.issn:1008-505X.2007.02.014 XIAO Y B, DUAN Z Y, JIN H, et al. Spared N response and yields advantage of intercropped wheat and fababean[J]. Plant Nutrition and Fertilizer Science, 2007, 13(2): 267−271 doi: 10.3321/j.issn:1008-505X.2007.02.014
[10] 肖靖秀, 汤利, 郑毅. 氮肥用量对油菜//蚕豆间作系统作物产量及养分吸收的影响[J]. 植物营养与肥料学报, 2011, 17(6): 1468−1473 doi: 10.11674/zwyf.2011.1040 XIAO J X, TANG L, ZHENG Y. Effects of N fertilization on yield and nutrient absorption in rape and faba bean intercropping system[J]. Plant Nutrition and Fertilizer Science, 2011, 17(6): 1468−1473 doi: 10.11674/zwyf.2011.1040
[11] 杨萍, 李杰, 剡斌, 等. 胡麻/大豆间作体系下施氮对胡麻干物质积累和产量的影响[J]. 中国油料作物学报, 2015, 37(4): 489−497 doi: 10.7505/j.issn.1007-9084.2015.04.009 YANG P, LI J, YAN B, et al. Effects of applied nitrogen on dry matter accumulation and oil flax yield in flax/soybean intercropping system[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(4): 489−497 doi: 10.7505/j.issn.1007-9084.2015.04.009
[12] 覃潇敏, 潘浩男, 肖靖秀, 等. 施磷水平对玉米大豆间作系统氮素吸收与分配的影响[J]. 植物营养与肥料学报, 2021, 27(7): 1173−1184 doi: 10.11674/zwyf.20569 QIN X M, PAN H N, XIAO J X, et al. Effects of phosphorus application rate on N uptake and distribution in maize and soybean intercropping system[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1173−1184 doi: 10.11674/zwyf.20569
[13] 赵平, 郑毅, 汤利, 等. 小麦蚕豆间作施氮对小麦氮素吸收、累积的影响[J]. 中国生态农业学报, 2010, 18(4): 742−747 doi: 10.3724/SP.J.1011.2010.00742 ZHAO P, ZHENG Y, TANG L, et al. Effect of N supply and wheat/faba bean intercropping on N uptake and accumulation of wheat[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 742−747 doi: 10.3724/SP.J.1011.2010.00742
[14] 肖靖秀, 周桂夙, 汤利, 等. 小麦/蚕豆间作条件下小麦的氮、钾营养对小麦白粉病的影响[J]. 植物营养与肥料学报, 2006, 12(4): 517−522 doi: 10.3321/j.issn:1008-505X.2006.04.010 XIAO J X, ZHOU G S, TANG L, et al. Effects of nitrogen and potassium nutrition on the occurence of Blumeria graminis (DC). Speer of wheat in wheat and faba bean intercropping[J]. Plant Nutrition and Fertilizer Science, 2006, 12(4): 517−522 doi: 10.3321/j.issn:1008-505X.2006.04.010
[15] 阮文浩, 高玉红, 吴兵, 等. 氮肥和隔根对胡麻/大豆间作体系种间关系及间作优势的调控效应[J]. 中国农学通报, 2021, 37(13): 14−21 doi: 10.11924/j.issn.1000-6850.casb2020-0510 RUAN W H, GAO Y H, WU B, et al. Regulatory effects of nitrogen fertilizer and separate roots on the interspecific relationship and intercropping dominance in oilseed flax/soybean intercropping system[J]. Chinese Agricultural Science Bulletin, 2021, 37(13): 14−21 doi: 10.11924/j.issn.1000-6850.casb2020-0510
[16] 林洪鑫, 潘晓华, 袁展汽, 等. 施氮和木薯-花生间作对木薯养分积累和系统养分利用的影响[J]. 中国农业科学, 2018, 51(17): 3275−3290 doi: 10.3864/j.issn.0578-1752.2018.17.004 LIN H X, PAN X H, YUAN Z Q, et al. Effects of nitrogen application and cassava-peanut intercropping on cassava nutrient accumulation and system nutrient utilization[J]. Scientia Agricultura Sinica, 2018, 51(17): 3275−3290 doi: 10.3864/j.issn.0578-1752.2018.17.004
[17] CHOWDHURY M K, ROSARIO E L. Comparison of nitrogen, phosphorus and potassium utilization efficiency in maize/mungbean intercropping[J]. The Journal of Agricultural Science, 1994, 122(2): 193−199 doi: 10.1017/S0021859600087360
[18] 党小燕, 刘建国, 帕尼古丽, 等. 不同棉花间作模式中作物养分吸收和利用对间作优势的贡献[J]. 中国生态农业学报, 2012, 20(5): 513−519 doi: 10.3724/SP.J.1011.2012.00513 DANG X Y, LIU J G, PANI G L, et al. Uptake and conversion efficiencies of NPK and corresponding contribution to yield advantage in cotton-based intercropping systems[J]. Chinese Journal of Eco-Agriculture, 2012, 20(5): 513−519 doi: 10.3724/SP.J.1011.2012.00513
[19] 张雪, 王一帆, 高玉红, 等. 胡麻与禾豆间作对其光合特性和产量的影响[J]. 西北农业学报, 2023, 32(7): 983−993 doi: 10.7606/j.issn.1004-1389.2023.07.001 ZHANG X, WANG Y F, GAO Y H, et al. Effects of oilseed flax intercroppping with maize and soybeanon photosynthetic characteristics and grain yield of oilseed flax[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32(7): 983−993 doi: 10.7606/j.issn.1004-1389.2023.07.001
[20] 刘涵, 昝志曼, 汪江涛, 等. 大穗型玉米对玉米||花生种间竞争与间作优势的影响[J]. 中国生态农业学报(中英文), 2023, 31(9): 1368−1378 LIU H, ZAN Z M, WANG J T, et al. Effects of large-spike type maize on interspecific competition and intercropping advantage in maize-peanut intercropping system[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1368−1378
[21] 王建成, 车宗贤, 杨思存. 适宜白银高扬程灌区的几种高产高效间作套种模式[J]. 甘肃农业科技, 2014(5): 64−66 WANG J C, CHE Z X, YANG S C. Several high-yield and high-efficiency intercropping models suitable for Baiyin high-lift irrigation area[J]. Gansu Agricultural Science and Technology, 2014(5): 64−66
[22] 赵德强, 李彤, 侯玉婷, 等. 玉米大豆间作模式下干物质积累和产量的边际效应及其系统效益[J]. 中国农业科学, 2020, 53(10): 1971−1985 doi: 10.3864/j.issn.0578-1752.2020.10.005 ZHAO D Q, LI T, HOU Y T, et al. Benefits and marginal effect of dry matter accumulation and yield in maize and soybean intercropping patterns[J]. Scientia Agricultura Sinica, 2020, 53(10): 1971−1985 doi: 10.3864/j.issn.0578-1752.2020.10.005
[23] MORRIS R A, GARRITY D P. Resource capture and utilization in intercropping; non-nitrogen nutrients[J]. Field Crops Research, 1993, 34(3/4): 319−334
[24] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000 BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000
[25] 余常兵, 孙建好, 李隆. 种间相互作用对作物生长及养分吸收的影响[J]. 植物营养与肥料学报, 2009, 15(1): 1−8 doi: 10.3321/j.issn:1008-505X.2009.01.001 YU C B, SUN J H, LI L. Effects of interspecific interactions on crop growth and nutrient uptake[J]. Plant Nutrition and Fertilizer Science, 2009, 15(1): 1−8 doi: 10.3321/j.issn:1008-505X.2009.01.001
[26] 崔红艳, 胡发龙, 方子森, 等. 不同施氮水平对胡麻根系形态和氮素利用的影响[J]. 中国油料作物学报, 2015, 37(5): 694−701 doi: 10.7505/j.issn.1007-9084.2015.05.016 CUI H Y, HU F L, FANG Z S, et al. Effect of different nitrogen level on root morphology and nitrogen utilization of oil flax[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(5): 694−701 doi: 10.7505/j.issn.1007-9084.2015.05.016
[27] 黄宗昌, 师尚礼, 汪睿, 等. 不同饲草作物间作模式对地上生物量及竞争力的影响[J]. 草业科学, 2020, 37(11): 2284−2292 doi: 10.11829/j.issn.1001-0629.2020-0084 HUANG Z C, SHI S L, WANG R, et al. Effects of different forage crop intercropping patterns on above-ground biomass and competitiveness[J]. Pratacultural Science, 2020, 37(11): 2284−2292 doi: 10.11829/j.issn.1001-0629.2020-0084
[28] 刘正芳, 柴强. 带型及施氮对玉米间作豌豆光能利用率的影响[J]. 农业现代化研究, 2012, 33(3): 367−371 doi: 10.3969/j.issn.1000-0275.2012.03.025 LIU Z F, CHAI Q. Response of solar radiation use efficiency on nitrogen application rates and percentage of intercropped maize and pea[J]. Research of Agricultural Modernization, 2012, 33(3): 367−371 doi: 10.3969/j.issn.1000-0275.2012.03.025
[29] 肖富良, 肖国滨, 郑伟, 等. 不同行比配置对鲜食玉米—绿豆套种甘薯体系产量效益的影响[J]. 湖南农业科学, 2021(4): 39−43 XIAO F L, XIAO G B, ZHENG W, et al. Effects of different row ratios on yield and benefit of table corn-mung bean rotation +sweet potato relay intercropping system[J]. Hunan Agricultural Sciences, 2021(4): 39−43
[30] 蔡倩, 孙占祥, 王文斌, 等. 辽西半干旱区玉米大豆间作对作物产量及水分利用的影响[J]. 中国农业气象, 2022, 43(7): 551−562 doi: 10.3969/j.issn.1000-6362.2022.07.004 CAI Q, SUN Z X, WANG W B, et al. Yield and water use of maize/soybean intercropping systems in semi-arid western Liaoning[J]. Chinese Journal of Agrometeorology, 2022, 43(7): 551−562 doi: 10.3969/j.issn.1000-6362.2022.07.004
[31] 李隆. 间作作物种间促进和竞争作用研究[D]. 北京: 中国农业大学, 1999 LI L. Studies on the role of interspecific promotion and competition in intercropped crops[D]. Beijing: China Agricultural University, 1999
[32] 唐明明, 董楠, 包兴国, 等. 西北地区不同间套作模式养分吸收利用及其对产量优势的影响[J]. 中国农业大学学报, 2015, 20(5): 48−56 TANG M M, DONG N, BAO X G, et al. Effects of nutrient uptake and utilization on yield of intercropping systems in Northwest China[J]. Journal of China Agricultural University, 2015, 20(5): 48−56
[33] LI L, SUN J H, ZHANG F S, et al. Root distribution and interactions between intercropped species[J]. Oecologia, 2006, 147(2): 280−290 doi: 10.1007/s00442-005-0256-4
[34] LI L, SUN J H, ZHANG F S, et al. Wheat/maize or wheat/soybean strip intercropping[J]. Field Crops Research, 2001, 71(3): 173−181 doi: 10.1016/S0378-4290(01)00157-5
[35] 冯晨, 黄波, 冯良山, 等. 不同配置对辽西玉米‖花生间作系统氮素吸收利用的影响[J]. 中国农业科学, 2022, 55(1): 61−73 FENG C, HUANG B, FENG L S, et al. Effects of different configurations on nitrogen uptake and utilization characteristics of maize-peanut intercropping system in West Liaoning[J]. Scientia Agricultura Sinica, 2022, 55(1): 61−73
[36] 赵建华, 孙建好, 陈亮之, 等. 玉米行距对大豆/玉米间作作物生长及种间竞争力的影响[J]. 大豆科学, 2019, 38(2): 229−235 ZHAO J H, SUN J H, CHEN L Z, et al. Growth and interspecific competition of crops as affected by maize row spacing in soybean/maize intercropping system[J]. Soybean Science, 2019, 38(2): 229−235
[37] XIAO Y B, LI L, ZHANG F S. Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques[J]. Plant and Soil, 2004, 262(1): 45−54
[38] 王竹, 杨文钰. 玉米株型和幅宽对套作大豆碳氮代谢及产量的影响[J]. 中国油料作物学报, 2014, 36(2): 206−212 doi: 10.7505/j.issn.1007-9084.2014.02.010 WANG Z, YANG W Y. Effects of plant-types of maize and planting width on carbon-nitrogen metabolism and yield of relay-cropping soybean[J]. Chinese Journal of Oil Crop Sciences, 2014, 36(2): 206−212 doi: 10.7505/j.issn.1007-9084.2014.02.010
[39] 李隆, 李晓林, 张福锁, 等. 小麦大豆间作条件下作物养分吸收利用对间作优势的贡献[J]. 植物营养与肥料学报, 2000, 6: 140−146 doi: 10.11674/zwyf.2000.0203 LI L, LI X L, ZHANG F S, et al. Contribution of crop nutrient uptake and utilization to intercropping advantage under wheat-soybean intercropping conditions[J]. Journal of Plant Nutrition and Fertilizer, 2000, 6: 140−146 doi: 10.11674/zwyf.2000.0203