Review on the research progress of agricultural adaptation to climate change and perspectives
-
摘要: 气候变化对农业生产产生了广泛而深刻的影响。本文基于气候系统和农业生态系统、经济社会系统的相互作用关系, 梳理气候变化的农业影响和适应的逻辑层次。影响的逻辑层次可以归结为: 气候平均状态变化的影响、极端天气气候事件加剧的影响、气候变化引起的生态后果和经济社会后果等4个方面; 与气候变化影响的逻辑层次相应, 适应气候变化的逻辑层次可以分解为: 气候变暖条件下农业气候资源的高效利用; 根据气候变暖背景下农业气象灾害发生新特征, 系统调整农业防灾减灾工作思路与技术路线; 加强农业生物多样性保护, 优化农业生态系统的结构与功能, 充分发挥农业生态系统服务增强农业气候韧性; 以及农业经济社会系统整体的优化转型。在对气候变化影响评估和已采取的适应措施系统总结回顾基础上, 分析了农业适应气候变化面临的挑战, 即: 气候胁迫不断加大、农业系统对于气候变化的脆弱性不断加大、粮食安全保障体系还很不完善、适应能力薄弱等。最后提出农业适应气候变化需要加强研究的关键科学问题: 扩展气候变化农业影响评估研究领域、科学辨识农业之于气候变化的脆弱性和风险、揭示农业适应气候变化的科学机理、构建农业适应气候变化技术体系、加强农业适应气候变化的决策能力研究、加强农业适应行动实施的保障能力研究等。Abstract: Agricultural production has been widely and seriously affected by climate change. In this paper, the logical layers of climate change impacts and adaptation were synthesized based on the interactions of climate system and agricultural ecosystem as well as the social-economic system. The logical layers of climate change impacts could be clarified as the effects due to the change of climate average trend, the enhanced extreme climatic events, ecological consequences and social-economic consequences, then the logical layers of adaptation could be clarified as the high-efficiency use of agro-climatic resources due to warming, systematically adjusting the strategy and technical approaches for disaster reduction and prevention according to the new features of enhanced agro-meteorological disasters, increasing the agricultural climate resilience with the well employment of ecosystem services through the protection of agro-biodiversity and optimizing the agricultural ecosystem’s structure and functions, and transformational update of the agricultural social-economic system. The challenges of agricultural adaptation to climate change were synthesized based on the systematic review of the research progress on the already occurred climate change impacts and the adopted adaptation measures that the climatic stress onto the agricultural system is incessantly enhanced, the vulnerability to climate change is continuously increased, the guarantee system for food security is not complete yet, and the adaptive capacity is still very weak. Finally, the key scientific questions for agricultural adaptation were proposed to enlarge the aspects of climate change impacts assessment, to scientifically identify the vulnerability to climate change and the future climate risk, to reveal the theoretical mechanism of adaptation, to construct the agricultural adaptation system, to strengthen the research on how to increase the capacity of agricultural adaptation decision as well as the implementation of agricultural adaptation actions.
-
Keywords:
- Agriculture /
- Climate change adaptation /
- Logic layers /
- Ecosystem services /
- Food security
-
甘蔗(Saccharum officinarum L.)作为最具潜力的高产生物能源经济作物[1-2], 是制糖的重要原料, 其生长对光照、雨热需求较高, 导致全球甘蔗种植主要分布在坡度5%~30%、纬度30°N~30°S的地区[3]。中国是仅次于巴西和印度的世界第三大甘蔗生产国, 而广西则是中国甘蔗种植和产糖量第一大省[4-5]。水分供给是高耗水甘蔗正常生长的一个主要控制因子[3-6], 但广西历年降水季节分配不均, 蔗区多石山丘陵, 坡耕地居多, 岩溶发育及土层保水能力弱, 且全区甘蔗种植仍以雨养为主, 致使甘蔗饱受干旱灾害侵袭而产量损失巨大。南宁市是广西甘蔗的三大种植产区之一, 更是广西年降雨量最少的市区之一, 区域气象干旱灾害频发, 并具有多重时间尺度、旱涝并存及交替叠加的现象, 对甘蔗生长及产量累积等造成显著影响[7]。为此, 开展南宁市甘蔗生长过程、生物量及产量累积对各种气象干旱情景的响应机制研究, 在明晰广西甘蔗旱灾响应机理, 实现甘蔗旱灾风险调控及预警、田间精准智慧管理及制定有效的防灾减灾应对措施等方面具有重要科学意义。
近年来, 关于甘蔗干旱的研究主要是分析甘蔗干旱时空演变特征[8-9]、基于旱灾损失资料的风险评估[10-11]、水分亏缺胁迫及抗旱的生理生化性能指标响应、干旱对其形态特征的影响等方面[12-13], 而借助反映生长物理过程的作物模型开展甘蔗对各种干旱(水分亏缺胁迫)情景的响应机制研究则相对较少。作物模型基于系统科学思想, 综合气候、土壤、作物生理及田间管理等因素, 在揭示作物生长过程、生物量与产量累积对干旱的响应机制具有独特优势[14-15]。在众多作物模型中, 联合国粮农组织(FAO)于2009年推出的Aqua Crop作物生长模型[16-18]主要包括: 土壤水分平衡、作物生长模拟和大气组分等3个模块, 以水分为主控驱动因子, 适于甘蔗这种高耗水作物的生长模拟研究。Aqua Crop模型已被广泛应用于小麦(Triticum aestivum L.)、玉米(Zea mays L.)及水稻(Oryza sativa L.)等粮食作物的产量模拟及灌溉制度优化, 证实其具有良好的模拟精度和应用潜力[19-20]。此外, 针对广西气象干旱的季节性、骤发性并存及旱涝交替并发的特征[7,20-22], 文中选择只需要降水资料的标准化加权平均降水指数(standard weighted average precipitation, SWAP)[23-25]进行南宁市气象干旱事件及其发生发展过程的逐日精细化识别, 一方面可避免其他常用干旱指数因各气象要素资料不足或短缺而造成分析结果的不连续性; 另一方面, 可为结合作物模型实现甘蔗对气象干旱响应机制的业务化精确预警及旱灾风险智慧调控奠定科学与技术基础。
综上, 本文基于对南宁市1978—2018年逐日SWAP气象干旱时空特征统计分析, 确定该区域甘蔗各生育期实际可能发生的气象干旱情景, 在本地化Aqua Crop模型参数基础上, 实现甘蔗生长、生物量及产量累积对气象干旱的强度、历时及生育期敏感性等关键要素变化响应的精细化模拟。
1. 研究区域、数据与方法
1.1 研究区域
南宁市属亚热带季风湿润气候区, 有“桂中腹地” 之称, 地貌类型以盆地和山地丘陵为主, 周边区域岩溶发育(图1a), 全年气候温和, 日照充足, 能很好地满足甘蔗生长的热量和光照需求, 是广西三大甘蔗种植市区之一。全市降雨量充沛, 多年平均降水量达1304.2 mm[26-27], 但其时空分布不均, 加之下垫面为复杂地形地貌, 农业灌溉工程不足, 造成区域多年来气象干旱频发, 甘蔗干旱及旱灾损失巨大[10-11]。南宁市历年甘蔗种植面积相对稳定, 2018年为141 833 hm2, 占全区的16.0%。其空间分布呈总体分散、局部聚集的总体格局, 密集种植区主要有武鸣区、横县、宾阳县、邕宁区以及江南区等(图1b)。多年来, 南宁市甘蔗种植仍以雨养为主, 气象干旱造成的土壤水分亏缺一直是影响该区域甘蔗生长及其产量的一个主要因子。
1.2 研究数据
研究中涉及气象、土壤、作物、田间试验及管理等各类数据集。其中, 气象数据采用逐日尺度中国气象强迫数据集(China Meteorological Forces Dataset, CMFD), 是我国学者Jie等[28]开发的0.1°空间分辨率网格化数据, 包括1979—2018年逐日降雨量、最高气温、最低气温、平均气温、相对湿度、风速及太阳辐射量等; 其通过遥感产品、再分析数据集和原位站数据融合而成, 具有连续的时间覆盖和良好质量, 是目前应用最广泛的气候气象数据集之一(http://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/)。本研究中, 通过与地面气象站点数据对比分析, 发现CFMD日降雨、日气温与气象站数据相关性分别达0.80和0.98以上, 总体精度良好。文中采用的土壤数据, 主要是中国土壤数据库(http://vdb3.soil.csdb.cn/), 并以寒区旱区科学数据中心《基于世界土壤数据库的中国土壤数据集》作为参考; 具体通过Soil Water Characteristics计算获得的站点土壤水力参数; 根据Aqua Crop模型提供的作物信息库确定甘蔗生长模拟的作物参数, 并通过敏感性分析和率定参数实现本地化; 验证数据采用广西大学农学院农场的甘蔗全生育期田间试验观测数据; 田间管理数据按实际田间种植情况设置。
1.3 研究方法
1.3.1 标准化加权平均降雨指数(SWAP)
为描述区域旱涝的逐日变化, Lu[29]于2009年基于降水要素, 并概化考虑下垫面水分耗散的综合累积效应, 提出加权平均降水指数(Weighted Average Precipitation, WAP), 计算公式如下:
$$ {\rm{WAP}}=\left(\sum\nolimits _{n=0}^{N}{a}^{n}{P}_{n}\right)\bigg/\sum\nolimits _{n=0}^{N}{a}^{n} $$ (1) 式中: n=0代表当前日;
$ N $ 是当前日的前期影响天数;$ {P}_{n} $ 为前期第n日降水量;$ a $ 为表征前一日的降水对当前日下垫面湿润程度的贡献强度经验值参数, 论证时取0.9为适宜值, 此时$ N $ 取44 d。此后, Lu等[30]进一步针对WAP, 提出Gamma函数正态标准化的SWAP指数, 计算如下:$$ \frac{1}{\sqrt{2{\text{π} }}}{\int }_{-\infty }^{{\rm{SWAP}}}{\mathrm{e}}^{-{Z}^{2}/2}dz=\frac{1}{{\beta }^{\gamma }\Gamma \left(\gamma \right)}{\int }_{0}^{{\rm{WAP}}}{x}^{\gamma -1}{\mathrm{e}}^{-x/\,\beta }dx $$ (2) SWAP属于正态标准化变量, 具有与标准化降水指数(Standardized Precipitation Index, SPI)相同的强度等级划分标准, 即按正态分布曲线的数学拐点特征来划分干旱等级。但近年研究发现以出现概率(重现期)为标准来划分干旱等级更加科学合理, 并且与实际旱情更吻合。因此, 本文采用以出现概率为标准的干旱等级划分(表1)。
表 1 标准化的加权平均降水指数(SWAP)干旱强度等级表Table 1. Drought intensity gradation according to Standard Weighted Average Precipitation (SWAP)SWAP阈值范围 SWAP threshold range (−0.84, −0.52] (−1.28, −0.84] (−1.65, −1.28] (−∞, −1.65] 干旱等级
Drought grade轻旱
Light drought中旱
Moderate drought重旱
Severe drought特旱
Extreme drought出现概率
Probability of occurrence(0.2, 0.3] (0.1, 0.2] (0.05, 0.1] (0, 0.05] 基于上述等级划分阈值, 采用游程理论[25,31]识别并统计分析研究区的气象干旱事件特征(结果详见2.1节)。具体设定3个截断水平X0=−0.84、X1=−0.52和X2=0 (X表示SWAP干旱指数值), 识别步骤如下: 1)当一定时间尺度下(5 d及以上天数) SWAP指数值小于X1 (−0.52)时, 则初步判定该时间段发生干旱; 2)对于历时为1个时间段(5 d)的干旱, 若其干旱指数值大于X0, 则认为该时间段未发生干旱; 3)对于时间间隔仅为1 d的相邻2次干旱过程, 若间隔期的干旱指数小于X2, 则这2次干旱被视为从属干旱, 将其合并为1次干旱事件, 否则视为2次独立干旱过程。
1.3.2 Aqua Crop模型原理
根据FAO灌溉与排水第33号文件所述的作物产量和水分响应的转换关系如下[32]:
$$ \frac{{Y}_{x}-{Y}_{0}}{{Y}_{x}}={k}_{y}\times \frac{{{\rm{ET}}}_{x}-{{\rm{ET}}}_{0}}{{{\rm{ET}}}_{x}} $$ (3) 式中:
${Y}_{x}\mathrm{和}{Y}_{0}$ 分别为作物的潜在产量和实际产量, kg∙m−2;$ \mathrm{E}{\mathrm{T}}_{x}\mathrm{和}\mathrm{E}{\mathrm{T}}_{0} $ 分别为作物潜在蒸散量和实际蒸散量, mm;$ {k}_{y} $ 为产量对水分响应的系数。Aqua Crop模型对上述方程进行了改进, 将蒸散量进一步分为土壤蒸发量和作物蒸腾量两部分, 从而避免了非生产性用水(土壤蒸发)与生产性用水(作物蒸腾)效应的混淆; 最终的产量以生物量和收获指数来表示, 用以突出水分胁迫对二者各自的影响。改进后的公式如下:
$$ Y=B\times \mathrm{H}\mathrm{I} $$ (4) $$ B=\mathrm{W}\mathrm{P}\times \sum {T}_{\mathrm{r}} $$ (5) $$ Y={f}_{\mathrm{H}\mathrm{I}}\times \mathrm{H}{\mathrm{I}}_{0}\times B $$ (6) 式中: Y为最终作物产量(t∙hm−2); B为生物量(t∙hm−2); HI为收获指数; WP为生物量水分生产效率(kg∙m−2∙mm−1);
$ {T}_{{\rm{r}}} $ 为作物蒸腾量(mm);$ \mathrm{H}{\mathrm{I}}_{0} $ 是参考收获指数;$ {f}_{\mathrm{H}\mathrm{I}} $ 是调整系数, 用来反映各种胁迫(水分胁迫、温度胁迫等)对作物产量的影响。此外, 文中涉及甘蔗各要素受旱的减小量描述, 分别采用产量减少率、生物量减少率、作物总蒸腾减少率来表达, 公式如下:
$$ {Y}_{{\rm{w}}}=\frac{{Y}_{\mathrm{i}}-{Y}_{\mathrm{c}\mathrm{k}}}{{Y}_{\mathrm{c}\mathrm{k}}}\times 100{\text{%}} $$ (7) $$ {B}_{{\rm{w}}}=\frac{{B}_{\mathrm{i}}-{B}_{\mathrm{c}\mathrm{k}}}{{B}_{{\rm{ck}}}}\times 100{\text{%}} $$ (8) $$ {T}_{{\rm{rw}}}=\frac{{T}_{\mathrm{ri}}-{T}_{\mathrm{rc}\mathrm{k}}}{{T}_{\mathrm{rc}\mathrm{k}}}\times 100{\text{%}} $$ (9) 式中,
$ {Y}_{\mathrm{w}} $ 、$ {B}_{\mathrm{w}} $ 、${T}_{\mathrm{rw}}$ 分别表示甘蔗因干旱水分胁迫的减产率、生物量减少率、总蒸腾减少率,${Y}_{{\rm{i}}}$ 、${B}_{{\rm{i}}}$ 、${T}_{{\rm{ri}}}$ 分别表示干旱情景下的产量、生物量、作物总蒸腾量,${Y}_{{\rm{ck}}}$ 、${B}_{{\rm{ck}}}$ 、${T}_{{\rm{rck}}}$ 表示对照组2017年的对应要素。1.3.3 甘蔗干旱过程模拟数据库构建
Aqua Crop模型输入参数主要包括研究区的气象、土壤、作物生长及管理措施等4类信息。气象数据库包括降水量(P)、参考蒸散发量(ET0)、日最高/最低气温(Tmax/Tmin)和CO2浓度4类, ET0可通过FAO发布的ET0 Calculator求出。土壤数据库包括土层剖面水分和地下水两个模块, 土层剖面水分参数主要有田间持水量、永久凋萎点、饱和导水率及饱和渗透系数等, 地下水参数主要有地下水位和盐度等; 具体采用模型中的Soil Water Characteristics工具计算土层剖面水分参数, 地下水参数影响较小, 按默认值处理。作物数据库包括植物冠层、植物根系、植物蒸腾、产量、水分、盐分、肥力及温度胁迫等模块, 且每个模块均包括多个参数。本研究针对甘蔗作物生长特征, 综合参考Bahmani等[33]、Zu等[34]、阮红燕[35]学者对不同地区甘蔗作物对水分亏缺响应、潜在生产力及气候变化影响研究中所采用的作物参数值, 形成本文中的甘蔗作物参数库, 进而通过广西大学农学院农场开展的甘蔗田间试验观测数据(表2)进行作物参数敏感性分析及率定验证, 实现Aqua Crop模型模拟参数的本地化。管理数据库包括灌溉管理和田间管理两个模块, 灌溉管理有灌溉方式、灌溉时间及灌溉量等, 田间管理有施肥水平、覆盖程度及田间地表措施等。具体按表2中的田间试验的管理措施进行设置。
表 2 率定Aqua Crop模型所用试验数据来源Table 2. Sources of experimental data for calibration of Aqua Crop model序号
Serial number试验地点
Experimental site播种时间(年-月-日)
Sowing time (year-month-day)收获日期(年-月-日)
Harvest date (year-month-day)作用
Effect来源
Source1 南宁, 广西大学农学院农场
Farm, College of Agriculture, Guangxi University, Nanning2015-03-02 2015-12-28 率定
Calibration[35] 2 南宁, 广西大学农学院农场
Farm, College of Agriculture, Guangxi University, Nanning2016-03-08 2017-01-06 验证
Verification[35] 本研究主要输出南宁市甘蔗生长过程中的冠层覆盖度(canopy cover, CC)、作物蒸腾(crop transpiration, Tr)、生物量(biomass production, B)及甘蔗产量(cane yield, Y)等4个要素。
2. 南宁气象干旱特征及甘蔗生育期干旱情景设置
2.1 南宁市气象干旱统计特征
基于南宁市甘蔗生育期时段划分(3月10日—12月25日, 共291 d, 详见表3), 采用游程理论[25,31]识别并统计了该市1980—2018年(197个格点)逐日SWAP序列表达的气象干旱; 然后根据Matlab程序计算出干旱事件的干旱强度、干旱次数和干旱频次。甘蔗全生育期时段内干旱累积历时、平均强度和平均频次空间分布如图2a-c所示, 甘蔗各生育期的历年干旱累积历时和强度变化特征如图2d-e所示。图2a表明, 南宁市干旱历时空间分布不均匀, 但总体主要在90 d∙a−1以上, 尤其在市区北部及横县区域达105~120 d∙a−1, 即南宁市平均每年约有近1/3的时段为干旱天数。图2b显示, 南宁市所发生的气象干旱事件强度总体呈中部高南北局部低的空间分布格局, 大部分区域的干旱强度等级为中旱和重旱。由图2c可知, 南宁市气象干旱事件发生的频次呈中北部及横县区域高(2~3 次∙a−1), 其他局部区域相对较低(1~2 次∙a−1, 如市区南部、宾阳县局部等)的分布格局。综上可知, 南宁市基本每年都有气象干旱事件发生, 且强度以中旱和重旱为主, 年度累计干旱历时天数常在90 d以上。由图2d、e可知, 近40年来, 南宁市气象干旱发生在甘蔗各生育期的历时和强度差异显著, 总体上, 成熟期>茎伸长期>萌芽期>分蘖期。其中, 萌芽期历年发生的气象干旱历时变化范围主要为5~40 d、强度变化范围为0~−70; 茎伸长期分别为5~40 d、0~−80; 成熟期分别为5~50 d、0~−70; 而分蘖期时段短(40 d)且为历年雨季, 基本不发生气象干旱。南宁市甘蔗全生育期历年发生的气象干旱总历时与累积强度范围分别为10~120 d和0~−152, 大部分年份干旱天数超过60 d; 但目前关于气象干旱对南宁市以雨养为主的甘蔗生长造成的定量影响研究成果相对不足, 因此, 要制定有效的甘蔗旱灾综合防范方案, 对应的甘蔗生长过程响应机制的定量解决亟待澄清。
表 3 甘蔗各生育期历时和干旱模拟情景设置Table 3. Duration and scenario setting of different drought grades of different sugarcane growth stages生育期
Growth stage日期时段
Date period历期
Duration (d)干旱历时 Drought duration (d) 轻旱
Light drought中旱
Moderate drought重旱
Severe drought特旱
Extreme drought萌芽期
Sprouting03-10—05-09 61 5~40 15~45 — — 分蘖期
Tilling05-10—06-18 40 — — — — 茎伸长期
Stem elongation06-19—11-05 140 5~40 15~45 30~50 — 成熟期
Maturity11-06—12-25 50 5~40 15~45 30~50 — 2.2 甘蔗生育期气象干旱情景设置
根据南宁甘蔗种植及生长成熟实际情况, 将3月10日—12月25日(共291 d)确定为全生育期时段, 各生育期按表3的时间进行划分。为了更好地揭示不同历时和强度气象干旱情景下, 南宁市甘蔗的长势、生物量及产量累积响应机制, 结合2.1节的分析结果, 将历年甘蔗气象干旱的可能情景设置如表3所示, 干旱历时变化步长设定为5 d, 历年没有发生的气象干旱情景则不进行模拟分析。
3. Aqua Crop模型参数化及南宁市甘蔗的历史干旱响应模拟
3.1 Aqua Crop模型参数敏感性分析
以南宁市甘蔗种植的主要品种‘新台糖16号’进行模型主要敏感参数的分析及本地化率定。采用扩展傅里叶幅度检验法(EFAST)对Aqua Crop模型的13个主要参数(表4)进行全局敏感性分析[32-36], 以便实现模型参数的快速本地化。分析中, 各参数的变化范围设置为参考值的上下限加减30%, 参数采样方法为蒙特卡罗法, 采样次数3965次。模拟分析了南宁广西大学农场试验站(表2) 2015年甘蔗的生物量与产量响应各参数的敏感性。最终得到各参数的一阶敏感性指数(sensitivity index, Si)和全局敏感性指数(total order sensitivity index, STi) (图3), 前者表示参数对模型输出的直接影响, 后者则表示参数对模型输出直接和间接影响的加和。参考Dejonge等[37]对全球农业生态系统的敏感性阈值, 将Si>0.05、STi>0.1的参数视为较敏感参数。上述分析过程主要通过Simlab (V2.2)和Python工具实现。
表 4 Aqua Crop模型进行敏感性分析的参数及其取值范围Table 4. Parameters and ranges of Aqua Crop model involved in sensitivity analysis项目
Item限制冠层扩张的
土壤水分消耗上限
Upper limit of soil
water consumption limiting canopy expansion限制冠层扩张的
土壤水分消耗下限
Lower limit of soil water consumption limiting canopy expansion限制气孔导度的
土壤水分消耗上限
Upper limit of soil water consumption limiting stomatal conductance引起冠层早衰的
土壤水分消耗上限
Upper limit of soil water consumption causing premature
canopy senescence冠层完整即将衰
老时的作物系数
Crop coefficient
when canopy is
intact and about
to senesce最大有效根深
Maximum effective root depth (m)冠层增长系数
Canopy growth coefficient序号
Number1 2 3 4 5 6 7 上限
Upper limit0.156 0.845 0.468 0.572 1.43 0.39 0.056 下限
Lower limit0.084 0.455 0.252 0.308 0.77 0.21 0.030 项目
Item最大冠层覆盖度
Maximum canopy
coverage (%)从播种到最大根深的时长
Time from sowing to maximum root depth (d)作物衰老的时间
Time from sowing to senescence (d)冠层衰减系数
Canopy attenuation
coefficientET0和CO2为标准规范化
的水分生产效率
Standardized water productivity with ET0 and CO2 (g∙m−2)参考收获指数
Reference harvest index (%)序号
Number8 9 10 11 12 13 上限
Upper limit1.248 215.8 345.8 0.070 390 239.2 下限
Lower limit0.672 116.2 186.2 0.035 21 128.8 由图3可知, Aqua Crop模型中的1~4、6、7、9及11号(表4)参数敏感性均较弱, 其数值变化对甘蔗产量和生物量没有显著影响。而5、10及12号参数的Si和STi值均显著高于敏感性指数判别阈值, 其数值变化对甘蔗产量和生物量均具有较显著的影响。8号参数Si值略高于一阶敏感性判别阈值, 但低于全局敏感性判别阈值, 总体敏感性有限。而13号参数的Si和STi值显示, 其变化对甘蔗产量有显著影响, 而对甘蔗生物量没有影响。
3.2 Aqua Crop模型参数本地化
基于参数的敏感性分析结果, 重点对Aqua Crop模型的敏感性参数及作物生长控制参数等进行多次调整, 最终率定得到了Aqua Crop模型模拟南宁甘蔗生长的本地化参数取值(表5)。进而对比Aqua Crop模型模拟与试验站17个田块实测的甘蔗产量可知 (图4), 二者拟合R2和精确度(Pre)分别为0.92和0.89, 模拟产量的均方根误差(RMSE)及其误差百分率分别为4.05 t∙hm−2和3.84%, 总体模拟效果优良。由此表明, 本研究中采用Aqua Crop模型及其本地化参数开展南宁甘蔗生长过程模拟具有较高的模拟精度和应用价值。
表 5 南宁市甘蔗生长模拟的Aqua Crop模型本地化参数取值Table 5. Sugarcane crop localized parameters of sugarcane crop of Aqua Crop model in Nanning参数
Parameter作物参数
Crop parameter单位
Unit取值
Value参数
Parameter作物参数
Crop parameter单位
Unit取值
Value作物
生长
Crop
growth初始冠层覆盖度
Initial canopy cover% 1.0 作物蒸腾
Crop transpiration冠层完整且即将衰老时的作物系数
Crop coefficient when canopy is intact and about
to senesce— 1.10 冠层增长系数
Canopy growth coefficient% 4.5 生物量及
产量形成
Biomass and
yield formation以ET0和CO2为标准规范化水分生产率
Standardized water productivity with ET0
and CO2g·m−2 31 冠层衰减系数
Canopy attenuation coefficient% 4.2 参考收获指数
Reference harvest index% 165 最大冠层覆盖度
Maximum canopy cover% 95 收获指数允许的最大增长率
Maximum growth rate allowed by harvest index% 10 作物开始到露头的时间
Time from start to emergenced 7 土壤水分胁迫
Soil water stress限制冠层扩展的土壤水分消耗上限
Upper limit of soil water comsumption to limit
canopy expansion— 0.12 达到冠层最大覆盖度的时间
Time to reach maximum canopy coverd 140 限制冠层扩展的土壤水分消耗下限
Lower limit of soil water comsumption to limit
canopy expansion— 0.65 作物开始到衰老的时间
Time from crop initiation to senescenced 220 引起冠层早衰的土壤水分消耗上限
Upper limit of soil water comsumption causing premature canopy failure— 0.44 作物开始到成熟的时间
Time from crop initiation to maturityd 291 限制气孔导度的土壤水分消耗上限
Upper limit of soil water comsumption limiting stomatal conductance— 0.36 作物产生经济计量的时间
Time to produce econometric measures for the cropd 110 限制通风条件下, 低于饱和厌氧点
Restricted ventilation conditions, below saturation
anaerobic pointVol % 5 作物建立收获指数的时间
Time for crop establishment of harvest indexd 130 气温胁迫
Air temperature
stress基础温度
Base temperature℃ 5 播种到最大根深时长
Time from seeding to maximum root depthd 130 上限温度
Upper limit temperature℃ 32 根系
Root system根取膨胀形状因子
Root taking expansion shape
factor/ 1.5 根系
Root system最小/大有效根深
Minimum/maximum effective root depthm 0.1/1.8 3.3 南宁市历史典型年气象干旱的甘蔗响应模拟
为厘清南宁市历史SWAP气象干旱情景下甘蔗长势、生物量及产量累积响应特征, 在1978—2018年时段内依次选择典型无旱年2017年(作为参考对照年份, CK)、典型轻旱年2016年、典型中旱年2009年、典型重旱年1992年, 分别对甘蔗的蒸腾量(Tr)、冠层覆盖度(CC)、生物量(B)及产量(Y)等要素进行模拟, 结果如图5所示。
从图5可知, 南宁市甘蔗Tr在分蘖期和伸长期对不同气象干旱情景具有敏感的波动响应变化特征, 如该生育期时段内各典型年SWAP与Tr序列的相关系数分别为0.38 (2017年)、0.66 (2016年)、0.69 (2009年)及0.70 (1992年), 均通过显著检验; Tr在伸长期中后时段受气象干旱影响呈显著下降变化, 尤其在中旱(2009年)和重旱(1992年)年份显著小于2017年无旱年份数值。而在萌芽期和成熟期, 甘蔗Tr总体均很小(接近0值), 与气象干旱SWAP序列无明显响应关系。
由图5可知, 甘蔗CC在全生育期的变化主要受生理生长过程控制, 即自萌芽期中后时段开始快速增大到分蘖期末的最大值90%~100%, 并在伸长期能维持在最大值状态(如2017年全时段及其他典型年的无旱时段); 气象干旱对甘蔗CC能产生一定影响, 但需要水分亏缺累积到一定量值才能导致甘蔗CC的显著减小(如1992年重旱), 轻旱和中旱的影响相对较小(如2016年和2009年); 而成熟期甘蔗CC快速减小至0主要是生理现象, 基本不受气象干旱的影响。
图5显示, 各典型年甘蔗B均从分蘖期初时段的0值快速增加到伸长期末时段的最大值(如2017年为66.535 t∙hm−2), 成熟期的增量最大约为10%; 表明气象干旱能一定程度上影响甘蔗B累积的最终数量(如2016年、2009年、1992年分别为58 t∙hm−2、53 t∙hm−2、45 t∙hm−2, 相对2017年分别减小13%、20%、33%), 而不能影响其全生育期单调增加的总体规律。
图5表明, 甘蔗茎产量主要在伸长期中期(约8月中旬)开始迅速累积至成熟期末达最大值, 在无旱的2017年产量达116 t∙hm−2, 而轻、中、重旱年分别为97 t∙hm−2 (2016年)、87 t∙hm−2 (2009年)及70 t∙hm−2 (1992年), 对应减产率分别为16%、25%及40%。由此可知, 不同强度等级的气象干旱均对甘蔗产量具有显著的影响。
4. 基于气象干旱情景的甘蔗响应机制模拟
3.3节的模拟结果表明气象干旱对南宁市甘蔗的生长、生物量及产量累积等均具有显著影响, 本节基于2节中气象干旱及其在甘蔗生育期的实际可能发生情景, 进一步解析各强度及历时的气象干旱发生在不同生育期对甘蔗蒸腾量(Tr)、生物量(B)及产量(Y)累积的影响机制。
4.1 不同生育期同气象干旱情景的甘蔗响应机制模拟
本节主要分析了不同生育期发生同气象干旱(强度和历时)对南宁甘蔗各生长要素的影响机制。由图6a-c可知, 甘蔗各生育期发生轻旱时, 在萌芽期, 甘蔗的Tr基本不受各历时轻旱的影响; 甘蔗的B和Y则在轻旱历时为5~15 d时基本不受影响, 而在轻旱历时为20~40 d情景下呈逐步减小变化, Y最终减少到110 t∙hm−2 (相对2017年, 减产率5%); 在伸长期, 甘蔗Tr、B和Y均受10 d及以上历时的轻旱影响而显著减小, 各要素最终减小到815 mm、54 t∙hm−2和88 t∙hm−2 (减产率24%); 而在成熟期, 甘蔗各要素基本没有显著变化。
图6d-f表明, 甘蔗各生育期发生中旱时, 在萌芽期和伸长期, 甘蔗Tr、B和Y均随中旱历时的增加而呈显著减小的变化特征, 其中, 萌芽期三要素最小值分别为902 mm、52 t∙hm−2和87 t∙hm−2 (减产率25%), 伸长期三要素最小值分别为734 mm、47 t∙hm−2和73 t∙hm−2 (减产率37%)。而在成熟期, 各要素基本不受中旱的影响。图6g-h显示, 甘蔗各生育期发生重旱时, 在伸长期, 甘蔗Tr、B和Y均随重旱历时增加而显著减小至715 mm、45 t∙hm−2和70 t∙hm−2 (减产率40%), 而在成熟期则无显著变化。
4.2 同生育期不同气象干旱情景的甘蔗响应机制模拟
本节进一步定量化了同生育期内发生不同强度及历时气象干旱对甘蔗各生长要素的影响。由图7a-b可知, 萌芽期发生轻旱时, 在干旱历时为5~15 d时, 甘蔗Yw、Bw、Trw的减少量约为0且维持不变, 随干旱历时逐渐增加至15~40 d时, 三要素减少量快速减少, 各自减产率最终分别达到5.9%、5.1%、6.5%; 而萌芽期发生中旱时, 随干旱历时的增加(15~35 d), 甘蔗的Yw和Bw分别从4.0%、3.0%分别快速减少至26.8%和21.9%, Trw则总体减少量不显著。图7c-e表明, 伸长期发生轻、中、重旱时, 随气象干旱历时的增加, 甘蔗Yw、Bw、Trw的减少量均呈显著增加的变化特征。其中, 各强度气象干旱造成Yw、Bw、Trw的减少量变化范围分别为0~24%、0~18.5%及0~15.9% (轻旱历时5~35 d), 25%~37%、20%~29.3%及8%~24.4% (中旱历时15~45 d), 33.5%~40%、26.2%~31.7%及18.9%~25.7% (重旱历时35~50 d)。
5. 结论
本文通过分析南宁市1980—2018年逐日SWAP气象干旱特征及在甘蔗生育期的发生情景, 本地化Aqua Crop作物模型参数, 实现了该区域甘蔗生长、生物量及产量累积过程对各强度及历时气象干旱的响应机制模拟。论文研究得出以下主要结论:
1)南宁市气象干旱历时、强度及频次空间分布不均匀, 年干旱历时主要在90 d以上, 强度以中旱及重旱为主, 发生频次以2~3次∙a−1居多, 且主要发生在甘蔗的萌芽期、伸长期和成熟期, 存在长(月以上)、短(月内)历时干旱交替及并存叠加现象。
2)通过EFAST敏感性分析及参数本地化率定, Aqua Crop模型模拟甘蔗产量拟合精度R2达到0.92、产量均方根误差百分率为3.84%。Aqua Crop模型应用于南宁甘蔗对气象干旱的响应机制模拟能得到良好的模拟精度。
3)历时典型干旱年的甘蔗响应模拟揭示了甘蔗蒸腾量、冠层盖度、生物量及产量等对气象干旱的响应存在滞后和累积效应, 伴随干旱强度增大, 南宁甘蔗最终累积的生物量及产量减少率分别为12.7% (2016年轻旱)、20.1% (2009年中旱)、32.7% (1992年重旱)和16.6% (轻旱)、24.8% (中旱)及40.1% (重旱)。
4)各气象干旱强度及历时遍历甘蔗各生育期的情景模拟, 明晰了南宁甘蔗生长过程、生物量及产量累积对气象干旱的响应机制。萌芽期发生轻、中旱历时达到15 d及以上时对甘蔗各生长要素开始产生显著响应, 最终减产率分别达6%和27%; 伸长期发生轻、中和重旱历时为5 d及以上时甘蔗各要素即开始显著响应, 最终减产率分别达24%、37%和40%, 南宁甘蔗分蘖期基本不发生气象干旱, 而成熟期各要素受气象干旱的影响总体微弱。
-
表 1 农业适应气候变化逻辑层次
Table 1 Logical layers of agricultural adaptation to climate change
影响层次
Impact layers影响机制
Impacts mechanism适应逻辑层次
Logical layers of adaptation气候平均状态变化
Changes in average state of climateCO2浓度升高加速光合作用过程, 改变营养物质积累的进程; 气候的整体变暖, 影响农作物种植的空间分布乃至于农业生物体群落的结构变化和演替; 而暖干化则使作物种植向旱生化方向发展
The increased CO2 concentration accelerates the photosynthesis process, and then changes nutrient accumulation of crops. The overall warming of climate affects the spatial distribution of cropping pattern, even the structural changes and succession of agricultural organism communities. However, warming and drying lead to crops to xerophilization对于气候平均状态的改变, 适应的核心是农业气候资源的高效利用。气候的整体变暖, 合理利用则是资源; CO2浓度升高加速光合作用、气候的暖干化趋势, 则需要培育高光效作物品种、培育耐旱作物品种
For the change of climate mean state, the core of adaptation is the efficient use of agro-climatic resources. The overall warming of climate is resources if rationally used. To respond to the accelerated photosynthesis due to increased CO2 concentration as well as the warming and drying trend of climate, it is necessary to breed high photosynthetic efficiency crop varieties and drought-tolerant crop varieties极端天气气候事件加剧
Enhanced extreme weather/climate events高高温、低温、洪涝、干旱等极端天气气候事件对农业系统所产生的短历时气候冲击造成农业气象灾害加剧
The short-duration climate shock of extreme weather/climate events such as high temperature, low temperature, flood and drought on agricultural system has resulted in the intensification of agro-meteorological disasters根据气候变暖背景下农业气候相关灾害发生新特征, 系统调整农业防灾减灾工作思路与技术路线
The strategy and technical route should be systematically adjusted according to the new features of agricultural climate-related disasters under the background of climate warming气候变化引起的生态后果
Ecological consequence due to climate change impacts气候变化改变生态系统的结构和功能, 导致土地退化与水土流失加剧、生物多样性减少、农业水生态水环境恶化; 海平面上升引起海岸侵蚀和咸潮入侵加剧, 海岸带湿地退化; 海水变暖导致的渔业资源分布的改变; 海水酸化引起珊瑚礁白化, 以及赤潮等海洋生物灾害加剧, 导致海洋生态系统退化
Climate change alters the structure and function of the ecosystem, leading to land degradation and soil erosion, biodiversity reduction, agricultural water ecology and water environment deterioration. The sea level rise leads to intensification of coastal erosion and salt tide intrusion, and degradation of coastal wetlands. Ocean warming induces distribution changes of fishery resources. Ocean acidification causes coral reef bleaching, and the aggravated marine biological disasters such as red tides, which will finally result in the degradation of whole marine ecosystems加强农业生物多样性保护, 优化农业生态系统的结构与功能, 充分发挥农业生态系统的服务功能, 尤其是气候的调节功能, 为农业气候韧性增强提供自然属性的物质基础, 创造良好的减轻气候风险的生态环境
Strengthen the protection of agricultural biodiversity; optimize the structure and functions of agricultural ecosystems; give full play to the agricultural ecosystem services, especially the regulation service on climate; provide natural material basis for the enhancement of the climate resilience; and create a good ecological environment for mitigating climate risks气候变化带来的经济社会后果
Economic-social consequence due to climate change impacts气候变化改变农业优势产区和品质, 改变农产品生产和贸易格局; 极端气候事件导致局部粮食减产、加大供给与需求的不平衡、冲击粮食储备和运输设施安全等, 粮食安全风险加大
The advantageous production areas and quality of agri-products, as well as the pattern of agricultural production and trade were adjusted due to climate change. Extreme weather events lead to local grain production reduction, increase the imbalance between supply and demand, and impact the security of grain storage and transportation facilities, increasing the risk of food security农业经济系统及其相关社会系统全方位的优化转型, 包括根据农业气候资源和气候相关灾害时空分布的改变调整农业基础设施建设布局, 建立完善的粮食安全社会保障体系, 完善体制机制与政策法规, 加强农业适应行动的管理与实施, 加强能力建设, 加强科技创新, 加强国际合作等
Comprehensive optimization and transformation of the agricultural economic system and its related social systems, including adjusting the layout of agricultural infrastructure in light of the temporal and spatial distribution changes of agricultural climate resources and climate-related disasters; establishing a sound social safeguard system for food security; improving institutional mechanisms, policies and regulations; strengthening the management and implementation of agricultural adaptation actions; and strengthening capacity building; promoting scientific and technological innovation and international cooperation表 2 已经发生的气候变化对农业的影响与未来气候风险
Table 2 Impacts of changed climate on agriculture and the climate risk in the future
影响层次
Effect level已经发生的气候变化导致的农业脆弱性
Agricultural vulnerability induced by changed climate未来气候风险
Future climate risk气候变暖
Climate warming●大气CO2浓度上升, 作物的光合作用增强, 影响农产品产量和品质。气候变暖与CO2浓度升高对品质影响因作物种类及品种而异, 如水果中的糖、柠檬酸、比黏度等有所提高, 高CO2浓度会提高纤维长度, 棉花等以纤维为产品的作物品质有所提高; 对于粮食作物, CO2肥效作用总体上促进作物增产, 但由于植株中含碳量增加, 含氮量相对降低, 蛋白质含量降低, Fe和Zn等元素含量下降, 总体上粮食作物品质下降With the increase of atmospheric CO2 concentration, photosynthesis of crops is enhanced, which affects the yield and quality of agricultural products. The effects of climate warming and rising CO2 concentration on quality vary with crop types and varieties. For example, content of sugar and citric acid, and specific viscosity in fruits are increased. Fiber length also increases with higher CO2 concentration, and this leads to higher quality of fiber-producing crops, e.g., cotton. For food crops, CO2 fertilizer effect generally increases crop yield, but decreases overall quality of food crops due to the increase of carbon content and the relative decrease of content of nitrogen, protein, Fe and Zn in crops ●气候的持续变暖引起农业生物体物候的进一步改变, 作物种植进一步北移上扩, 复种指数进一步增加The continuous warming of climate causes the further change of phenology of agricultural organisms, northward expansion of crop planting, and increase of multiple cropping index ●气候变暖改变作物、牧草和果树物候期, 草原返青期、开花期总体呈显著提前趋势, 黄枯期不显著推迟, 生长季长度有延长的趋势, 长生育期作物品种种植有利于增产, 尤其在东北地区Climate warming alters the phenological period of crops, herbage and fruit trees. The greening and flowering periods of grassland are significantly advanced with no significantly delayed yellow wilt period, and length of the growing season is extended. The planting of crop varieties with long growth period is conducive to yield increase, especially in Northeast China ●林果业优势产区进一步改变The advantageous producing areas of forestry and fruit industry will be further altered ●变暖使作物适宜种植区向高纬度、高海拔地区扩展, 作物熟制界限及热带作物种植界限北移, 复种指数增加。如水稻种植向北方扩展, 黑龙江水稻大面积扩种; 冬小麦种植北界北移西扩; 棉花主产区西移至新疆等As a result of climate warming, the suitable planting area of crops expands to the high latitude and high altitude areas, the crop ripening limit and tropical crop planting limit move northward, and the multiple cropping index increases. For example, rice planting has expanded to the north, and rice planting in Heilongjiang has expanded in a larger area. The northern boundary of winter wheat expand to north and west. The main cotton producing areas moved westward to Xinjiang ●暖干化总趋势进一步加剧, 加重土地荒漠化、导致可耕地面积减少; 地表面水汽蒸发和植物蒸腾会增大, 农业水资源会更加紧张The general trend of warming and drying is further intensified, which aggravates land desertification and leads to the reduction of arable land area. Soil evaporation and plant transpiration will increase, and agricultural water resources will be more strained ●暖干化趋势加剧, 尤其是在华北、西南地区, 北方土壤盐渍化和沙化面积扩展; 气候变暖对粮食作物生长有抑制作用, 因为干旱半干旱地区温度升高使冬小麦生长发育加快, 生长期缩短, 作物可利用的有效水资源相对减少, 致使作物的总干重和穗重减少, 从而影响产量The trend of warming and drying is intensified, especially in North China and Southwest China. The area of soil salinization and desertification in north China is expanding. Climate warming has an inhibitory effect on the growth of food crops because of the reduction of total dry matter weight and ear weight of crops, which was due to the acceleration of the growth and development of winter wheat, shortening of growth period and reduction of available water resources for crops caused by the rising temperature in arid and semi-arid areas ●冬季变暖会促进区域设施农业的发展Winter warming will promote the development of regional facility agriculture ●林果业优势产区改变, 如陕北黄土高原苹果种植、攀枝花热带水果种植等, 成为新的大型优质水果生产基地, 促进当地经济发展The advantageous areas of forestry and fruit industry have changed, such as apple planting in the Loess Plateau of Northern Shaanxi and tropical fruit planting in Panzhihua, which have become new large-scale production bases for high-quality fruit and promoted local economic development ●由于气候变暖引起的冰雪融化、蒸腾增加, 土壤水分减少, 绿洲农业区域缩小Due to the melting of snow and ice caused by climate warming, the plant transpiration increases, the soil moisture decreases, and the agricultural area of the oasis shrinks ●气候变暖改变海洋渔业资源分布, 冷水鱼分布范围缩小, 高纬度地区海洋捕捞渔业增加、热带地区减少Climate warming changes the distribution of marine fishery resources. Distribution area of cold water fish decreases, while the marine capture fishery increases in high latitudes and decreases in tropical areas ●海水酸化影响海洋生态, 对珊瑚、贝壳类海洋生物影响尤甚; 海水酸化影响海鲜食物的品味Ocean acidification affects marine ecology, especially for coral and shellfish, as well as the taste of seafood 农业气象
灾害加剧
Intensified agro-meteorological disasters●农业气象灾害整体表现为多发、并发趋势, 其中旱涝灾害交替出现、高温与干旱叠加, 发生频率增加, 危害程度加重, 影响范围扩大, 因灾损失增加The overall performance of agro-meteorological disasters is characterized by frequent and concurrent trends, e.g., alternating droughts and floods and high temperature and drought superposition. The frequency of disasters increases with increased harm degree, influenced area expands more widely, and losses due to disasters also increases ●气候本身波动性加大, 极端天气气候事件频发、强度增大, 高温、低温、干旱、洪涝及各种复合灾害的危害范围扩大The climate volatility will increase, extreme weather and climate events become more frequent and intense, and the harm scope of high temperature, low temperature, drought, flood and various combined disasters will expand ●高温热害加剧, 作物高温逼熟、早稻热害、果蔬灼伤等灾害频发, 谷物秕谷率增加; 农业低温灾害频繁发生, 有些低温灾害甚至加重, 长江中下游地区冬春低温寡照危害加剧The high temperature and heat damage are aggravated. For example, disasters like heat-forced maturity, heat damage of early rice, burn of fruits and vegetables, are more and more frequently occurs, and the rate of blighted grain increases. Agricultural low-temperature disasters also frequently occur, and some low-temperature disasters are even aggravated. In the middle and lower reaches of the Yangtze River, the damage of low temperature in winter and spring is aggravated ●水资源分布更加不均匀, 抵消由于生长季延长带来的增产潜力, 局地的水资源短缺形势会更加严峻The distribution of water resources will be more uneven, which will offset the potential for increased production due to the lengthening of the growing season, and the situation of local water shortages will be more severe ●北方干旱与西南干旱常态化与扩大化、长江流域伏旱频繁发生, 种植结构整体向旱生化演替; 洪涝灾害成灾面积逐年增加, 水土流失更为严重, 尤其是在西北地区; 台风强度和危害加大, 路径北移(例如2020年东北遭受台风三连击)Drought in north China and Southwest China became normal and extended. In addition, drought occurred frequently in the Yangtze River basin. The planting structure express the trend of xerophilization. The area affected by flood disaster is increasing year by year, and soil erosion is more serious, especially in Northwest China. Intensity and damage of typhoon increased, and the path moved northward. For example, Northeast China suffered three consecutive typhoons in 2020 ●虽然气候的整体趋势是变暖的, 但在局地地区很可能发生极端的、历史上罕见的低温, 其造成的危害和损失可能更大Although the overall trend of the climate is warming, extreme and historically rare low temperatures are likely to occur in local areas, which may cause greater harm and damage ●草原气候灾害加剧, 寒潮、雪灾、暖干化和沙化加剧Climatic disasters in the grassland have intensified, such as cold wave, snow disaster, warming and drying climate and desertification ●对于农业动物体来讲, 由于气候本身波动的增加, 冷应激与热应激的风险都会加大, 养殖业面临更大的挑战, 对畜舍、鱼塘等设施提出了更高的要求For agricultural animals, due to the increase of climate fluctuations, the risk of cold stress and heat stress will increase. The aquaculture industry is facing greater challenges, putting forward higher requirements for facilities such as livestock houses and fish ponds ●气温的波动增加林果花期冻害的风险; 季节性干旱影响林果的萌芽开花, 出现落果现象, 影响林果产量和品质; 降水增多不利于果树开花授粉, 导致落花﹑落果﹑裂果增多, 水果减产The fluctuation of temperature increases the risk of frost damage during flowering period of fruits. Seasonal drought affects the germination and flowering of forest fruit, which causes the phenomenon of fruit drop then affects the yield and quality of fruits. The increase of precipitation is not conducive to the flowering and pollination of fruit trees, resulting in the increase of falling flowers, falling fruits and cracked fruits. Therefore, fruit production decreases ●设施农业与工厂化养殖可以有效降低农业生物体对于气候灾害的暴露程度, 但一旦遭遇不可抗拒的极端气候灾害, 损失更加惨重Facility agriculture and factory farming can effectively reduce the exposure of agricultural organisms to climate disasters. However, once they encounter irresistible extreme climate disasters, the losses are even much greater ●高温及其引发的赤潮等海洋生物灾害给海水养殖造成巨大经济损失; 台风强度加剧严重损坏海水养殖设施, 如鱼塘漫顶、塘基崩塌、网箱损毁等; 暴雨造成海水池塘淹没、养殖网箱冲毁Marine biological disasters, e.g., high temperature and its induced red tide, cause huge economic losses from mariculture. The intensification of typhoon seriously damaged the mariculture facilities, such as the overtopping of fish ponds, collapse of pond foundations and damage of cages. Heavy rain causes the inundation of seawater ponds and destruction of aquaculture cages 生态后果
Ecological consequences●气候变暖加快土壤有机质的微生物分解, 导致土壤有机质含量下降, 土壤微生物菌群改变, 引起土壤污染、土壤盐碱化以及土壤板结, 耕地质量下降Climate warming accelerates the microbial decomposition of soil organic matter, resulting in the decrease of soil organic matter content and the change of soil microbial flora. These might cause soil pollution, salinization and compaction, which finally lower down the soil quality ●气候变化改变有害生物适生地分布, 由于天敌分布的改变往往滞后于病虫害的扩张, 在新发区域病虫害治理难度更大Climate change alters the distribution of pests suitable habitats, while the change in the distribution of natural enemies often lags behind the expansion of pests and diseases, then it is more difficult to control pests and diseases in newly occurring areas ●气候变暖、极端天气气候事件增加, 改变了病虫害的生境, 导致病虫害的种群结构、适生区域、发生时段、发生与流行程度等变化, 病虫害加剧Climate warming and increase of extreme weather and climate events have changed the habitats of diseases and pests, resulting in changes in the population structure, suitable areas, occurrence time, occurrence and prevalence of diseases and pests, these might lead to more pest and disease incidents ●气候变暖导致病虫害加重与农药施用量增加, 对天敌也造成杀伤, 并使有害生物的耐药性加强, 从而形成恶性循环, 多种因素的叠加导致农业生物多样性保护面临更大的挑战Climate warming causes the intensification of pests and diseases occurrence and then more pesticides application, which may kill natural enemies and strengthen the pesticide-tolerance of harmful organism, thus forming a vicious circle, and the superposition of multiple factors leads to greater challenges for the protection of agricultural biodiversity ●暖冬使病虫越冬北界北移、海拔上限高度升高; 暖春使病虫害危害期提前、扩展速度加快、发生程度加重; 作物害虫繁殖代数增加, 病虫害爆发时间周期缩短, 病虫发育历期缩短、危害期延长, 害虫种群增长力、繁殖世代数增加; 危害面积扩大, 向高纬度、高海拔地区延伸, 损失巨大Warm winter caused the north boundary of overwintering diseases and insects to move northward and the upper altitude-ward. Warm spring makes the damage period of diseases and pests advance, the expansion speed is accelerated, and the occurrence degree is aggravated. The multiplication algebra of crop pests increases, the outbreak time period and the development period of pests are shortened, and the harm period is prolonged. The growth power of pest population and the number of breeding generations increase. The damage area is expanded, which extends to high latitude and high altitude areas, resulting in huge loss ●气候变暖会使动物疫病与寄生虫病向高纬度与高海拔蔓延, 发生范围扩大, 外来生物入侵以及杂草的危害风险更大Climate warming will make animal diseases and parasitic diseases spread to high latitudes and high altitudes causing the expansion of occurrence scope. The risk of alien biological invasion and weeds will be greater ●气候变化会导致物种丰富度下降、生物多样性减少, 进而导致作物种质资源减少, 作物生产的适应性降低; 气候变化可能会诱发遗传变异, 威胁种质资源的安全与稳定Climate change leads to the decrease of species richness and biodiversity, resulting in the decrease of crop germplasm resources and crop production adaptability. Climate change may induce genetic variation and threaten the security and stability of germplasm resources ●目前气候变化对土壤微生物结构和群落的影响机理很不清晰, 很可能酝酿着粮食产量和品质的巨大隐患, 乃至于局地的农业生态系统在气候变化超出其能承受的阈值时导致整体粮食生产系统的崩溃, 对当地的农业生产造成灾难性的后果At present, the impact mechanism of climate change on soil microbial structure and community is very unclear, which is likely to breed huge hidden dangers in food yield and quality, and even lead to the collapse of the whole food production system when the local agro-ecosystem exceeds the threshold of its tolerance for climate change, resulting in disastrous consequences for local agricultural production ●生态系统的退化影响其服务功能, 传粉昆虫种类和数量减少, 导致授粉服务功能减弱; 生态系统防治病虫害功能减弱, 农业病虫害加剧, 甚至导致部分农业生态系统的崩溃; 加大农业源温室气体排放, 农业气象灾害加剧导致生态系统固碳释氧和气候调节功能减弱; 局地气候调节功能受损, 导致水源涵养、净化功能降低; 增加土壤流失的风险, 引起农业土壤养分流失和盐碱化, 导致土壤保持等功能减弱The degradation of ecosystem affects its service function, such as the species and quantity of pollinating decreasing and pollination service function weakening. The function of prevention and control of pests and diseases of ecosystem is weakened with intensified pests and diseases incidents even causing the collapse of some agricultural ecosystems. The increase of greenhouse gas emissions from agricultural sources and the intensification of agro-meteorological disasters lead to the weakening of ecosystem functions of carbon sequestration and oxygen release and climate regulation. The damage of local climate regulation service function leads to the reduction of water conservation and purification function. The increases of soil erosion lead to agricultural soil nutrient losses and salinization, resulting in weakened soil conservation and other functions ●海平面上升会使沿海地区面临更严重的海岸侵蚀、咸潮入侵、海岸带湿地退化等问题; 海水暖化酸化、珊瑚礁白化、赤潮等海洋生物灾害导致海洋渔业面临更大的风险Sea level rise will make coastal areas face more serious coastal erosion, salt tide intrusion, coastal wetland degradation and other problems. Marine biological disasters such as ocean warming and acidification, coral reef bleaching, and red tide lead to greater risks for marine fisheries ●草地暖干化导致生物量减少、草地物种多样性减少。动物疫病蔓延范围扩大, 局部地区爆发。以上改变对牲畜繁殖、生长发育、健康等造成很大的影响The warming and drying climate of grassland results in the decrease of biomass and species diversity of grassland. Animal diseases spread more widely and broke out in some areas. Theses changes show a great impact on livestock reproduction, growth and development, health and so on ●水温上升影响养殖水体水质, 容易产生缺氧泛塘; 养殖鱼虾免疫力下降, 产量下降The rise of water temperature affects the quality of aquaculture water, which is easy to produce anoxic flooding. The immunity of farmed fish and shrimp decreased, and the yield decreased ●草原病虫鼠害加剧, 害草比例增大, 草原火灾频发, 杂草入侵, 草地生态供给功能下降, 草原畜牧业整体萎缩The damage of grassland diseases, pests and mice increases, the proportion of harmful grass increases, grassland fires occur frequently, weeds invades, grassland ecological supply service function declines, and grassland animal husbandry shrank ●水温升高、 海洋酸化等问题严重威胁到珊瑚礁的生存, 影响海洋生物资源的数量和品质, 改变渔业资源, 进而影响海洋捕捞业的产值。长江、黄河、珠海口富营养化、赤潮和水母的爆发等, 导致产量和品质下降Problems such as rising water temperature and ocean acidification seriously threaten the survival of coral reefs, affect the quantity and quality of marine biological resources, alter fishery resources, and then affect the output value of marine fishing industry. Eutrophication of the Yangtze River, Yellow River and Zhuhai Estuary, outbreak of red tide and jellyfish, etc., led to the decline of yield and quality 经济社会后果
Social-economic consequences●极端气候事件导致粮食产量波动性加大; 主要经济鱼种和渔获量降低Extreme weather/climate events lead to increased volatility of grain production. Major economic fish species and catches decreased ●随着气候变化加剧, CO2浓度持续升高, 气候变暖不断加剧, 食物品质问题日益突显With the intensification of climate change, CO2 concentration continues to rise, climate warming continues to intensify, and food quality problems become increasingly prominent ●CO2浓度升高导致农产品蛋白质含量下降, 改变农作物营养成分, 影响品质, 出现“隐形饥饿”问题The increase of CO2 concentration leads to the decrease of protein content of agricultural products, changes the nutritional composition of crops, affects the quality of crops, and causes “hidden hunger” ●极端气候事件的持续加剧, 粮食系统的基础设施安全风险不断加大As extreme climate events continue to be intensified, the security risks of the infrastructure of food systems are increasing ●气候变化加快食物变质, 如气候变暖导致食物(尤其是玉米)黄曲霉素含量增加; 长期阴雨导致作物穗上发芽, 海水酸化影响海鲜食物的味道, 气候变暖影响水果的糖酸比, 口感变差Climate change accelerates food deterioration, such as increasing aflatoxin content in food (especially corn) due to climate warming. Long-term raining causes crops to sprout on the ears, ocean acidification affects the taste of seafood food, climate warming affects the sugar-acid ratio of fruits, and the taste becomes worse ●国际粮食贸易与价格波动愈加不稳定International food trade and price fluctuation are becoming more volatile ●极端天气气候事件导致农田和养殖设施的破坏; 气候变化导致农业景观的破坏和农业景观丰富度降低等, 影响农村旅游业的发展; 传统非物质文化遗产的丧失等Extreme weather and climate events result in the destruction of farmland and farming facilities. Climate change leads to the destruction of agricultural landscape and the reduction of agricultural landscape richness, which affects the development of rural tourism, and results in the losses of traditional intangible cultural heritage · ●气候变化改变放牧模式Climate change alters the grazing patterns ●气候变化通过对病原菌传播的影响, 也将对食品的生产、运输、销售和储藏全过程构成污染威胁, 影响食品的生产和安全, 增加人类传染病流行的风险Climate change poses pollution threats to all aspects of food processing, transportation, storage and marketing via its impact on the transmission of pathogenic bacteria, and affects food supply and security, which increases the risk of human infectious disease epidemics ●高温、强降水、海平面上升、强风暴等极端天气气候事件危及公路、铁路、机场跑道、港口等交通设施的安全, 影响粮食运输过程, 导致运输成本增加Extreme weather and climate events, such as high temperatures, heavy rainfall, sea level rise, and strong storms, threaten the safety of transportation facilities, such as highways, railways, airport runways, and ports, and affects the grain transportation, which increases transportation costs ●气候变化影响人们的饮食习惯, 高热量食物摄入减少, 低热量食物和冷饮需求增大Climate change is affecting people’s dining habits, reducing the intake of high-calorie foods and increasing the demand for low-calorie foods and cold drinks ●气候变化引起农产品优势区的转移, 导致国内和全球农产品贸易格局的改变Climate change causes the shift of the advantageous areas of agricultural products, leading to the changes of domestic and global agricultural trade pattern 表 3 中国农业已经采取的适应气候变化措施
Table 3 Adopted agricultural adaptation measures to climate change in China
适应层次
Adaptation level适应现状
Adaptation status气候变暖
Climate warming●“自主适应”案例实践。华北“两晚”技术的推广、冬麦北移、东北水稻和玉米扩种及品种调整、热带作物种植北扩、提升复种指数“Autonomous adaptation” cases. The promotion of “two-later” technology in North China Plain, the northward migration of winter wheat, the expansion and variety adjustment of rice and corn in Northeast China, the northward expansion of tropical crop planting, and the improvement of multiple cropping index ●改进作物栽培和养殖管理。为适应气候变化带来的物候改变, 北方水稻春播期和南方早稻播栽期普遍提前, 冬小麦播种期普遍推迟; 为减轻气候波动和低温灾害的影响, 大面积推广地膜覆盖; 为应对干旱威胁普遍推广节水技术和保护性耕作; 为减轻水温升高引发的泛塘死鱼, 淡水养殖场普遍使用增氧机; 为遏制气候暖干化导致的草原退化, 大力推行退牧还草和围栏轮牧, 提倡季节性放牧及与农区合作易地育肥, 夏秋打草储存冬春舍饲, 近年来草地植被明显恢复Improve crop cultivation and breeding management. In order to adapt to the phenological alteration due to climate change, the spring sowing date of rice in north China and the transplanting date of early rice in south China are generally advanced, and the winter wheat planting date is generally delayed. In order to reduce the impact of climate fluctuation and low temperature disaster, plastic film covering is applied in a large area. Universal use of water-saving techniques and conservation farming are in response to the threat of drought. In order to reduce the dead fish caused by rising water temperature, fresh water farms have widely promoted aerators. In order to curb grassland degradation caused by warm and dry climate, the restoring grazing to grassland, fence-rotation grazing, seasonal grazing, cooperation with agricultural areas for land transfer and fattening, and forage harvesting in summer and autumn for storage in winter and spring are promoted. In recent years, grassland vegetation has recovered significantly ●种植结构调整。调整作物品种布局与种植制度, 规避灾害风险和充分利用气候资源。包括: 调整种植制度, 提高复种指数, 多熟种植向高纬度高海拔地区扩展。调整作物布局, 随着气候变暖, 北方冬小麦和华南热带作物种植北界向北扩展。调整品种布局, 为充分利用气候变暖所增加的热量资源, 春播作物普遍改用生育期更长品种, 加强抗逆品种选育和推广, 在暖干化地区推广耐旱作物品种, 灾后种植特早熟品种; 由于病虫害加剧, 抗虫棉、脱毒种薯种苗的推广种植等Adjustment of planting structure. Adjust crop variety layout and planting system to avoid disaster risk and make full use of climate resources, including adjusting planting system, e.g., increasing multiple cropping index, expanding multi-cropping to high latitude and high altitude area; adjusting crop layout, e.g., expansion of the northern boundary of winter wheat and tropical crops in south China northward with the warming of climate; adjusting variety layout. To make full use of the heat resources increased by climate warming, spring crops are generally shifted to varieties with longer growth period, and the selection and promotion of stress-resistant varieties are strengthened. Drought-tolerant varieties are promoted in warm and dry areas, and exceptionally early varieties are planted after disasters. Due to the aggravation of pests and diseases, insect-resistant cotton and virus-free potato seedlings are popularized and widely planted. 农业气象
灾害加剧
Enhanced agro-meteorological disasters●加强农业气象灾害防御工作。针对中国北方大部和西南部分地区气候暖干化与干旱加重, “十一五”以来对大中型灌区进行了续建配套与节水改造; 针对南方和北方部分地区洪涝加剧, 进行了大中型和重点小型病险水库的除险加固; 逐步建立健全了突发事件应急体制与机制, 农业减灾重点从抗灾救灾转移到风险防范, 编制了一系列应急预案, 加强了救灾物资储备, 调整了作物布局。针对气候变化带来的农业生产不稳定性增加, 积极开展农业灾害保险试点工作; 加强了粮食与饲草的储备; 干旱缺水地区大力推广节水灌溉与农艺技术Strengthen prevention of agro-meteorological disasters. In view of the warming and drying climate and the worsening drought in most parts of north and southwest China, the large and medium-sized irrigation areas have been rebuilt and water-saving reconstruction has been carried out since the 11th Five-Year Plan. In view of the intensification of flooding in some parts of south and north China, large and medium-sized reservoirs and key small reservoirs in danger have been strengthened. China has gradually established and improved the emergency response system and mechanism, shifted the focus of agricultural disaster reduction from disaster relief to risk prevention, formulated a series of emergency plans, strengthened the reserve of disaster relief materials, and adjusted the cropping distribution. In response to the increasing instability of agricultural production caused by climate change, the pilot work on agricultural disaster insurance are actively carried out. Reserves of grain and forage are strengthened. Water-saving irrigation and agronomic techniques are vigorously promoted in arid and water-scarce areas 生态后果
Ecological consequences●改善农业生态, 治理水土流失。营造水土保持林, 实施“三北”防护林生态工程, 修建各种小型水利水保工程, 工程措施与生物措施相结合, 提高植被覆盖率, 治理水土流失, 减少土壤侵蚀Improve agricultural ecology and control soil erosion. There are some measures, e.g., construction of soil and water conservation forests, implementation of the “Three North” shelterbelt ecological project, construction of a variety of small water conservancy and water conservation projects, combination of engineering measures and biological measures, to increase vegetation coverage, control and reduce soil erosion ●加强农业生物灾害防控。防治有害生物入侵, 推广了高效低毒农药和生物防治技术, 推广抗虫棉品种、寄生蜂防治玉米螟和松毛虫等生物防治技术Strengthen prevention and control of agricultural biological disasters. To prevent and control the invasion of harmful organisms, China has popularized high-efficiency and low-toxicity pesticides and biological control technologies, and popularized insect-resistant cotton varieties, parasitic wasps to control corn borer and pine caterpillar ●提出“一控两减三基本”的目标。“一控”是要控制农业用水的总量, 划定总量的红线和利用系数率的红线; “两减”是把化肥、农药的施用总量减下来; “三基本”则是针对畜禽污染处理问题、地膜回收问题、秸秆焚烧的问题采取措施, 通过资源化利用的办法从根本解决这些问题, 制定一系列配套的政策与实施措施Put forward the goal of “one control, two minus, three basics”. “One control” is to control the total amount of agricultural water, draw the red lines of the total amount and the utilization coefficient rate. “Two minus” is to reduce the total amount of fertilizer and pesticide application. “Three basics” is to take measures for the treatment of livestock and poultry pollution, the recycling of plastic film, and the burning of straw, and to solve these problems fundamentally by means of resource utilization, and formulate a series of supporting policies and implementation measures 经济社会后果
Social-economic consequences●开展“气候智慧型农业”作物生产的实践。在安徽怀远县、河南叶县建立示范区, 围绕水稻、小麦、玉米三大生产系统, 开展作物生产减排增碳的关键技术集成与示范、配套政策的创新与应用、公众知识的拓展与提升等活动, 提高化肥、农药、灌溉水等投入品的利用效率和农机作业效率, 减少作物系统碳排放, 增加农田土壤碳储量。通过技术示范与应用、政策创新以及新知识普及, 建立气候智慧型作物生产体系, 增强项目区作物生产对气候变化的适应能力, 推动中国农业生产的节能减排, 为世界作物生产应对气候变化提供成功经验和典范Crop production practice of “climate-smart agriculture”. Demonstration zones in Huaiyuan County, Anhui Province, and Ye County, Henan Province have been established, which focused on the three major production systems of rice, wheat and corn, and carry out activities such as integration and demonstration of key technologies for crop production, GHGs emission reduction and carbon-sink increase, innovation and application of supporting policies, expansion and improvement of public knowledge, improvement of the utilization efficiency of inputs (e.g., fertilizers, pesticides and irrigation water), agricultural machinery operation efficiency, reduction of crop system carbon emissions and increment of soil carbon storage in farmland. Through technology demonstration and application, policy innovation and popularization of new knowledge, a climate-smart crop production system are establishing to enhance the adaptive capacity of crop production in the project area to climate change, promote energy conservation and GHGs emission reduction in China’s agricultural production, and provide successful experience and model for the world’s crop production to cope with climate change ●完善粮食储备体系, 增强宏观调控能力。按照国际粮食安全警戒线, 中国粮食储备数量应为8500万~9000万t, 而中国粮食储备数量的安全警戒线应高于联合国粮农组织确定的17%~18%的标准线, 以相当于全年粮食总消费量的25%~30%为宜。中国粮食年总消费量大体为5亿t, 按此标准计算, 国家粮食储备量应保持在1.25亿~1.50亿 t, 而中国目前的粮食储备在1.50亿~2.00亿t。中国经受住了2008年汶川大地震和南方雪灾等多次特大自然灾害的考验, 就是因为充足的粮食储备在粮食流通和宏观调控中发挥了巨大作用Improve the grain reserve system and strengthen macro-control capacity. According to the international food security warning line, the China’s grain reserves should be between 85 million and 90 million tons, and the safety warning line of China’s grain reserves should be higher than the FAO standard line of 17%~18%, which is equivalent to 25%~30% of the total annual domestic grain consumption. China’s total annual grain consumption is roughly 500 million tons, and according to this standard, the national grain reserves should be maintained at 125~150 million tons. However, China’s current grain reserves are between 150−200 million tons. China has withstood the test of several major natural disasters, such as the Wenchuan Earthquake in 2008 and the snowstorm in southern China, because sufficient grain reserves have played a huge role in grain circulation and macro-control ●加强市场宏观调控, 确保粮食流通的良性循环。健全粮食市场体系, 加强粮食物流体系建设, 加快法规、制度体系建设, 合理调整储备粮品种结构, 拓宽轮换粮源市场, 增强和改善粮食宏观调控手段, 提高粮食宏观调控能力, 发挥储备体系宏观调控载体作用, 保证市场供给, 确保粮食市场和价格基本稳定, 抑制通货膨胀, 确保粮食流通的良性循环Strengthen macro-control of the market to ensure a virtuous cycle of grain circulation. Improve the grain market system, strengthen the grain logistics system, speed up the development of laws and regulations and systems, rationally adjust the structure of grain reserve varieties, expand the rotation of grain source markets, strengthen and improve the means of grain macro-control, increase the capacity for grain macro-control, give play to the role of the reserve system as a carrier for macro-control, and ensure market supply, ensure the basic stability of grain markets and prices, curb inflation, and ensure a virtuous cycle of grain circulation ●阻断粮食能源化利用, 保证粮食供求平衡。由于能源紧缺, 中国必须大力发展生物能源, 但应把重点放在发展以木薯、甘薯、甜高粱等为原料的燃料乙醇技术, 以及以小桐子、黄连木、油桐、棉籽等油料作物为原料的生物柴油生产技术, 并积极发展以纤维素等物质为原料的生物液体燃料技术, 阻断粮食能源化之路。这是保证粮食供求平衡, 保障粮食安全的一个有效对策手段Block the energy-oriented use of food, and ensure the balance of food supply and demand. Due to energy shortage, China must vigorously develop bio-energy focusing on the development of fuel ethanol technology with cassava, sweet potato and sweet sorghum as raw materials, as well as biodiesel production technology with oil crops such as jatropha, Chinese pistacia, oilseed and cottonseed as raw materials, and actively develop bio-liquid fuel technology with cellulose as raw materials. This is an effective countermeasure to ensure the balance of food supply and demand and ensure food security ●保证原粮及粮油食品卫生安全。健全法律法规, 完善粮油食品市场管理和监督体系, 不仅要在粮油食品生产、加工过程中全面、严格、高质量地实施质量管理体系, 而且在储藏、运输及经营过程也要注意存在的或潜在的危害因素Ensure the hygiene and safety of raw grain, cereal & oil food. Improve laws and regulations, and the market management and supervision system of cereal & oil food. Not only establish quality management system in the production and processing process of cereal & oil food, but also pay attention to the existing or potential harmful factors in the storage, transportation and business process ●提高粮油食品安全科技水平, 优先研究可靠、快速、精确的粮油食品安全检测技术, 并积极推行食品安全的控制技术。大力加强粮油食品生产企业ISO9001、ISO9002、ISO14000、HACCP体系和GMP、无公害食品、绿色食品、有机食品的认证。积极开展新技术、新工艺、新材料加工食品的安全性评价技术的研究, 确保粮油食品安全。大力开展原粮及粮油食品的卫生检验, 不断制订完善的卫生标准Improve the scientific and technological support to the cereal & oil food safety, prioritize the research on reliable, fast, and accurate cereal & oil food safety testing technology, and actively promote food safety control technology. Vigorously strengthen the cereal & oil food production enterprises ISO9001, ISO9002, ISO14000, HACCP systems and GMP, pollution-free food, green food, organic food certification. Actively carry out the research on the safety evaluation methodology of new technology and new material processed food to ensure the safety of cereal & oil food. Vigorously carry out the hygiene inspection of raw grain and cereal & oil food, and constantly formulate perfect hygiene standards ●推进供给侧结构性改革。提高农产品在国际市场的竞争力, 发挥适度规模经营的引领作用, 扩大种地面积, 降低粮食生产成本, 提高农民收入和种粮积极性Advance supply-side structural reform. Raise the competitiveness of agricultural products in the international market, play the leading role of appropriately scaled farming, expand the area of farmland, reduce the cost of grain production, and increase farmers’ income and motivation to grow grain ●提高应对粮食安全威胁的能力。一是政府加大对三农的支持力度, 加强财政、金融的支持; 二是在保证小麦、稻谷及玉米生产充分的情况下, 适当调整粮食生产结构, 增加大豆等产品的生产; 三是加强农业、粮食生产领域的科技投入, 不断提高粮食生产力Improve ability to cope with the threats onto the food security. Firstly, the government increases support for agriculture, rural areas and farmers, and strengthen fiscal and financial support. Secondly, properly adjust the grain production structure and increase the production of soybean and other products under the condition of ensuring adequate production of wheat, rice and corn. Thirdly, enhance the scientific and technological inputs in agriculture and grain production, and continuously improve grain productivity -
[1] 《气候变化国家评估报告》编写委员会. 气候变化国家评估报告[M]. 北京: 科学出版社, 2007 Committee of National Assessment Report on Climate Change. National Assessment Report on Climate Change[M]. Beijing: Science Press, 2007
[2] 《第二次气候变化国家评估报告》编写委员会. 第二次气候变化国家评估报告[M]. 北京: 科学出版社, 2011 Committee of The Second National Assessment Report on Climate Change. The Second National Assessment Report on Climate Change[M]. Beijing: Science Press, 2011
[3] 《第三次气候变化国家评估报告》编写委员会. 第三次气候变化国家评估报告[M]. 北京: 科学出版社, 2015 Committee of The Third National Assessment Report on Climate Change. The Third National Assessment Report on Climate Change[M]. Beijing: Science Press, 2015
[4] 《第四次气候变化国家评估报告》编写委员会. 第四次气候变化国家评估报告[M]. 北京: 科学出版社, 2022 Committee of The Fourth National Assessment Report on Climate Change. The Fourth National Assessment Report on Climate Change[M]. Beijing: Science Press, 2022
[5] Food and Agriculture Organization of the United Nations. The State of the World’s Biodiversity for Food and Agriculture[R/OL]//BÉLANGER J, PILLING D. FAO Commission on Genetic Resources for Food and Agriculture Assessments. Rome: Food and Agriculture Organization of the United Nations, 2019: 572. http://www.fao.org/3/CA3129EN/CA3129EN.pdf
[6] 许吟隆, 李阔, 习斌. 我国作物生产适应气候变化技术体系[M]. 北京: 中国农业出版社, 2020 XU Y L, LI K, XI B. Climate Change Adaptation Technology System of Crop Production in China[M]. Beijing: China Agriculture Press, 2020
[7] SHUKLA J, SKEA E, CALVO B, et al. Climate Change 2019: Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Part 5: Food Security[R]. Roma: IPCC, 2019
[8] IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group Ⅱ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2022: 367
[9] 科学技术部社会发展科技司, 中国21世纪议程管理中心. 适应气候变化国家战略研究[M]. 北京: 科学出版社, 2011 Department of Science and Technology for Social Development of Ministry of Science and Technology of the People’s Republic of China, The Administrative Center for China’s Agenda 21. Studies on National Strategy of Climate Change Adaptation[M]. Beijing: Science Press, 2011
[10] 《第一次海洋与气候变化科学评估报告》编写委员会. 第一次海洋与气候变化科学评估报告(三): 积极应对气候变化[M]. 北京: 中国海洋出版社, 2020 Committee of The First Scientific Assessment Report on Oceans and Climate Change. The First Scientific Assessment Report on Oceans and Climate Change (3) Adaptation to Climate Change[M]. Beijing: China Ocean Press, 2020
[11] 许吟隆, 郑大玮, 刘晓英, 等. 中国农业适应气候变化关键问题研究[M]. 北京: 气象出版社, 2014 XU Y L, ZHENG D W, LIU X Y, et al. Studies on Critical Issues of Agricultural Adaptation to Climate Change in China[M]. Beijing: China Meteorological Press, 2014
[12] 丁永建, 罗勇, 宋连春. 中国气候与生态环境演变—2021第二卷上—领域和行业影响、脆弱性与适应[M]. 北京: 科学出版社, 2021 DING Y J, LUO Y, SONG L C. Evolution of Climate and Ecological Environment in China − 2021 Volume Ⅱ − Impacts, Vulnerability and Adaptation of Sectors and Industries[M]. Beijing: Science Press, 2021
[13] BERNTHAL F. IPCC, 1990. Climate Change 1990: The IPCC Response Strategies, Report Prepared for Intergovernmental Panel on Climate Change by Working Group Ⅲ[R]. Nairobi: United Nations Environment Programme; Geneva: World Meteorological Organisation, 1990: 270
[14] WATSON R T, ZINYOWERA M C, MOAA R H. IPCC, 1996. Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change-Scientific and Technical Analysis. Contribution of Work Group Ⅱ to the Second Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)[M]. Cambridge: Cambridge University Press, 1996: 878
[15] MCCARTHY J J, VALDO O S, CANZIANI. IPCC, 2001. Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group Ⅱ to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)[M]. Cambridge: Cambridge University Press, 2001: 1032
[16] PARRY M L, CANZIANI O F, PALUTIKOF J P, et al. IPCC, 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group Ⅱ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007: 976
[17] FIELD C B, BARROS V R, DOKKEN D J, et al. IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group Ⅱ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2014: 1132
[18] Food and Agriculture Organization of the United Nations. Climate-Smart Agriculture Sourcebook[M]. Rome: Food and Agriculture Organization of the United Nations, 2013
[19] Food and Agriculture Organization of the United Nations, Chinese Academy of Agricultural Sciences. Carbon Neutral Tea Production in China–Three Pilot Case Studies[R/OL]. Rome: Food and Agriculture Organization of the United Nations, 2021. https://doi.org/10.4060/cb4580en
[20] Global Commission on Adaptation. Adaptation Now: a Global Call for Leadership on Climate Resilience[R/OL]. Rotterdam: Global Commission on Adaptation. (2019-09-13). https://gca.org/reports/adapt-now-a-global-call-for-leadership-on-climate-resilience/