有机和常规管理对茶园土壤固碳的影响以林地为对照

郑玉婷, 黄鑫慧, 李浩, 王彪, 李攀锋, 崔吉晓, 隋鹏, 高旺盛, 陈源泉

郑玉婷, 黄鑫慧, 李浩, 王彪, 李攀锋, 崔吉晓, 隋鹏, 高旺盛, 陈源泉. 有机和常规管理对茶园土壤固碳的影响−以林地为对照[J]. 中国生态农业学报 (中英文), 2024, 32(1): 53−60. DOI: 10.12357/cjea.20230429
引用本文: 郑玉婷, 黄鑫慧, 李浩, 王彪, 李攀锋, 崔吉晓, 隋鹏, 高旺盛, 陈源泉. 有机和常规管理对茶园土壤固碳的影响−以林地为对照[J]. 中国生态农业学报 (中英文), 2024, 32(1): 53−60. DOI: 10.12357/cjea.20230429
ZHENG Y T, HUANG X H, LI H, WANG B, LI P F, CUI J X, SUI P, GAO W S, CHEN Y Q. Effects of organic and conventional management on soil carbon sequestration in tea gardens: comparison with forest land[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 53−60. DOI: 10.12357/cjea.20230429
Citation: ZHENG Y T, HUANG X H, LI H, WANG B, LI P F, CUI J X, SUI P, GAO W S, CHEN Y Q. Effects of organic and conventional management on soil carbon sequestration in tea gardens: comparison with forest land[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 53−60. DOI: 10.12357/cjea.20230429
郑玉婷, 黄鑫慧, 李浩, 王彪, 李攀锋, 崔吉晓, 隋鹏, 高旺盛, 陈源泉. 有机和常规管理对茶园土壤固碳的影响−以林地为对照[J]. 中国生态农业学报 (中英文), 2024, 32(1): 53−60. CSTR: 32371.14.cjea.20230429
引用本文: 郑玉婷, 黄鑫慧, 李浩, 王彪, 李攀锋, 崔吉晓, 隋鹏, 高旺盛, 陈源泉. 有机和常规管理对茶园土壤固碳的影响−以林地为对照[J]. 中国生态农业学报 (中英文), 2024, 32(1): 53−60. CSTR: 32371.14.cjea.20230429
ZHENG Y T, HUANG X H, LI H, WANG B, LI P F, CUI J X, SUI P, GAO W S, CHEN Y Q. Effects of organic and conventional management on soil carbon sequestration in tea gardens: comparison with forest land[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 53−60. CSTR: 32371.14.cjea.20230429
Citation: ZHENG Y T, HUANG X H, LI H, WANG B, LI P F, CUI J X, SUI P, GAO W S, CHEN Y Q. Effects of organic and conventional management on soil carbon sequestration in tea gardens: comparison with forest land[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 53−60. CSTR: 32371.14.cjea.20230429

有机和常规管理对茶园土壤固碳的影响以林地为对照

基金项目: 云南省重大科技专项(202202AE090029)资助
详细信息
    作者简介:

    郑玉婷, 主要研究方向为土壤有机碳和土壤质量研究。E-mail: 15236020632@163.com

    通讯作者:

    陈源泉, 主要研究方向为绿色高效低碳农作制度。E-mail: chenyq@cau.edu.cn

  • 中图分类号: S151.9

Effects of organic and conventional management on soil carbon sequestration in tea gardens: comparison with forest land

Funds: This study was supported by the Key Science and Technology Project of Yunnan Province (202202AE090029)
More Information
  • 摘要:

    为探究有机和常规管理方式对茶园土壤有机碳的影响, 选择云南省普洱市思茅区常规管理茶园、有机管理茶园和附近自然林地3种典型土地利用类型, 通过测定0~20 cm和20~40 cm土层的土壤有机碳(SOC)、易氧化有机碳(EOC)、非活性有机碳(NLOC)、颗粒态有机碳(POC)和矿物结合态有机碳(MOC)含量, 计算土壤各组分有机碳的分配比例以及土壤碳库管理指数(CPMI), 研究3种土地利用方式下土壤有机碳各组分含量和质量的变化特征。结果显示: 1)常规管理茶园的SOC含量和储量分别比自然林地低48.67%~51.94%和27.25%~35.71% (P<0.05), 而有机管理茶园的SOC含量和储量比常规管理茶园分别高52.09%~62.86%、15.54%~20.26% (P<0.05)。2)常规管理茶园的EOC、NLOC、POC和MOC含量均低于自然林地(P<0.05), 而有机管理茶园的EOC、NLOC、POC和MOC含量比常规管理茶园分别高出46.39%~57.89%、54.24%~66.15%、80.87%~121.01%和40.07%~46.28% (P<0.05)。3)与自然林地相比, 常规管理茶园的POC/SOC、NLOC/SOC较低, 有机管理茶园的POC/SOC、NLOC/SOC则高于常规管理茶园。4)常规管理茶园具有较高的CPAI和较低的CPMI, 常规管理茶园的CPMI比自然林地低24.53%~46.12%, 有机管理茶园的CPMI比常规管理茶园高67.88%~100.33%, 其差异均显著(P<0.05)。以上研究结果表明, 与自然林地相比, 常规管理的茶园土壤有机碳含量和土壤碳库质量下降, 存在一定程度的土地退化, 而有机管理是提高茶园土壤碳库质量的有效措施。

    Abstract:

    To explore the effects of organic and conventional management methods on soil organic carbon in tea gardens, we selected three typical land use types in Simao District, Pu’er City, Yunnan Province to carry out the investigation. The three land use types were a conventionally managed tea garden, an organically managed tea garden, and a nearby natural forest land. Based on the land use types, we measured the contents of soil organic carbon (SOC), easily oxidizable organic carbon (EOC), non-liable organic carbon (NLOC), particulate organic carbon (POC), and mineral-associated organic carbon (MOC) in 0−20 cm and 20−40 cm soil layers in three sample plots. We estimated the distribution ratio of the different types of organic carbon in soil and the soil carbon pool management index (CPMI), and analyzed the changes of the content of SOC component and quality of soil carbon pool from the selected land use types. The results were as follows: 1) the content and storage of SOC in the 0–40 cm soil layer of the conventionally managed tea garden were significantly lower than those in the natural forest land by 48.67%−51.94% and 27.25%−35.71% (P<0.05), respectively. The content and storage of SOC in the 0−40 cm soil layer of the organically managed tea garden were respectively 52.09%−62.86% and 15.54%−20.26% higher than those in the conventionally managed tea garden (P<0.05). 2) In the 0–20 cm and 20–40 cm soil layers, the contents of EOC, NLOC, POC, and MOC in the soils from the tea garden under conventional management were significantly lower than those from the natural forest land (P<0.05). The contents of EOC, NLOC, POC, and MOC in the soils from the organically managed tea garden were significantly higher than those from the conventionally managed tea garden (P<0.05), which were higher by 46.39%–57.89%, 54.24%–66.15%, 80.87%–121.01%, and 40.07%–46.28%, respectively. 3) The POC/SOC and NLOC/SOC of the tea garden under conventional management were lower than those of natural forest land, while the POC/SOC and NLOC/SOC of organically managed tea garden were higher than those of conventionally managed tea garden. 4) Conventionally managed tea gardens had high CPAI and low CPMI. The CPMI of conventionally managed tea garden was 24.53%−46.12% lower than that of the natural forest land (P<0.05), and the CPMI of organically managed tea garden was 67.88%−100.33% higher than that of conventionally managed tea garden (P<0.05). The aforementioned results showed that when compared with natural forest land, the reclamation of tea plantations with conventional management measures can reduce SOC content and soil carbon pool quality, resulting in a certain degree of land degradation. Given the limitations of conventional management, organic management is an effective measure for improving the quality of the soil carbon pool in tea plantations.

  • 图  1   不同样地类型不同深度土壤各组分有机碳含量和储量

    NF: 自然林地; CM: 常规管理茶园; OM: 有机管理茶园。SOC: 土壤有机碳; EOC: 土壤易氧化有机碳; NLOC: 土壤非活性有机碳; POC: 土壤颗粒态有机碳; MOC: 土壤矿物结合态有机碳。不同小写字母表示同种有机碳组分在同一土层不同样地间差异显著(P<0.05)。NF: natural forest land; CM: conventionally managed tea garden; OM: organically managed tea garden. SOC: soil organic carbon; EOC: soil easily oxidizable organic carbon; NLOC: soil non-liable organic carbon; POC: soil particulate organic carbon; MOC: soil mineral-associated organic carbon. Different lowercase letters indicate significant differences of the same organic carbon component in the same soil layer among different plots (P<0.05).

    Figure  1.   Soil organic carbon contents and storages of each component in different soil layers of different sample plot types

    图  2   不同样地类型不同深度土壤各组分有机碳分配比例

    NF: 自然林地; CM: 常规管理茶园; OM: 有机管理茶园。SOC: 土壤有机碳; EOC: 土壤易氧化有机碳; NLOC: 土壤非活性有机碳; POC: 土壤颗粒态有机碳; MOC: 土壤矿物结合态有机碳。不同小写字母表示同种有机碳组分分配比例在同一土层不同样地间差异显著(P<0.05)。NF: natural forest land; CM: conventionally managed tea garden; OM: organically managed tea garden. SOC: soil organic carbon; EOC: soil easily oxidizable organic carbon; NLOC: soil non-liable organic carbon; POC: soil particulate organic carbon; MOC: soil mineral-associated organic carbon. Different lowercase letters indicate significant differences of proportion of same soil carbon fraction in the same soil layer among different plots (P<0.05).

    Figure  2.   Proportion of different soil carbon fractions in different soil layers from different sample plot types

    表  1   样地基本信息

    Table  1   Basic information of the sample plots

    样地类型
    Sample plot type
    地理坐标
    Geographic coordinate
    海拔
    Altitude
    (m)
    土壤pH
    Soil pH
    土壤容重
    Soil bulk density (g·cm−3)
    基本概况
    Basic information
    自然林地
    Natural forest land
    22°71′65′′N;
    101°06′48′′E
    1538.5 4.73 0.96 思茅松(Pinus kesiyas)和西南桦(Betula alnoides)混交林, 林龄超过30年, 林下植被种类丰富, 覆盖度在80%左右
    It is a mixed forest of Pinus kesiyas and Betula alnoides with rich understory vegetation species, the forest age is older than 30 years, and the coverage rate is about 80%
    常规管理茶园
    Conventionally managed tea garden
    22°71′65′′N;
    101°06′48′′E
    1542.3 3.83 1.32 茶龄为20年, 常规管理年限为20年; 每年翻耕、打剪各一次, 施肥两次; 施用茶园常用复合肥, 用除草剂和杀虫剂治理病虫害
    The age of the tea trees is 20 years, and the conventional management period is 20 years. The ploughing and cutting are once a year, and the fertilization is twice a year. Compound fertilizer is commonly used, and herbicides and insecticides are used to control diseases and pests
    有机管理茶园
    Organically managed tea garden
    22°71′47′′N;
    101°06′49′′E
    1541.7 4.07 0.99 茶龄为20年, 常规管理年限为14年, 有机管理年限为6年, 每年翻耕、打剪各一次, 施肥两次; 施用有机肥, 用粘虫板捕虫, 定期进行人工除草, 不施用任何化学药品和激素类物质; 已获得中国、美国和欧盟有机认证
    The age of the tea trees is 20 years. The conventional management period is 14 years, and the organic management period is 6 years. The tillage and cutting are once a year, and the fertilization is twice a year. Organic fertilizer is applied, insects are caught using insect sticky, and weeding is done regularly by hand. There is no chemicals and hormone substances applied. The tea garden has obtained the organic certification from China, United States of America and the European Union
    下载: 导出CSV

    表  2   不同样地类型的土壤碳库管理指数

    Table  2   Soil carbon pool management index in different sample plot types

    土层深度 Soil layer (cm)样地类型 Sample plot typeCPACPICPAICPMI
    0~20 NF 0.32±0.07a 1.00a 1.00a 100a
    CM 0.38±0.07a 0.51±0.04b 1.20±0.22a 53.88±4.41b
    OM 0.36±0.10a 0.88±0.18a 1.14±0.30a 107.94±8.93a
    20~40 NF 0.38±0.06b 1.00a 1.00b 100b
    CM 0.66±0.06a 0.47±0.04c 1.73±0.15a 75.47±9.51c
    OM 0.63±0.04a 0.77±0.09b 1.65±0.09a 126.70±13.26a
      NF: 自然林地; CM: 常规管理茶园; OM: 有机管理茶园。CPA: 碳库活度; CPI: 碳库指数; CPAI: 碳库活度指数; CPMI: 碳库管理指数。不同小写字母表示同一土层深度的同一指标在不同样地间差异显著(P<0.05)。NF: natural forest land; CM: conventionally managed tea garden; OM: organically managed tea garden. CPA: carbon pool activity; CPI: carbon pool index; CPAI: carbon pool activity index; CPMI: carbon pool management index. Different lowercase letters indicate significant differences of the same index in the same soil layer among different plots (P<0.05).
    下载: 导出CSV
  • [1] 何雨芩, 张茂松, 黄成兵, 等. 基于GIS的云南省茶树种植气候适宜性区划[J]. 安徽农业科学, 2015, 43(25): 218−221 doi: 10.3969/j.issn.0517-6611.2015.25.080

    HE Y Q, ZHANG M S, HUANG C B, et al. Study on the climatic suitability division of planting tea in Yunnan Province based on GIS[J]. Journal of Anhui Agricultural Sciences, 2015, 43(25): 218−221 doi: 10.3969/j.issn.0517-6611.2015.25.080

    [2] 曾小力. 普洱市茶产业发展问题研究[J]. 新丝路(下旬), 2016(3): 31−32

    ZENG X L. Study on the development of Pu’er tea industry[J]. New Silk Road, 2016(3): 31−32

    [3] 陈玉真, 王峰, 吴志丹, 等. 林地转变为茶园对土壤团聚体及渗透性能的影响[J]. 水土保持学报, 2018, 32(5): 134−139

    CHEN Y Z, WANG F, WU Z D, et al. Effects of conversion from forestland into tea garden on soil aggregate and infiltration capability[J]. Journal of Soil and Water Conservation, 2018, 32(5): 134−139

    [4] 付丽军, 张爱敏, 王向东, 等. 生物有机肥改良设施蔬菜土壤的研究进展[J]. 中国土壤与肥料, 2017(3): 1−5 doi: 10.11838/sfsc.20170301

    FU L J, ZHANG A M, WANG X D, et al. Advances on application of bio organic fertilizer for restoring facility vegetable soil[J]. Soil and Fertilizer Sciences in China, 2017(3): 1−5 doi: 10.11838/sfsc.20170301

    [5]

    LI J, WEN Y C, LI X H, et al. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain[J]. Soil and Tillage Research, 2018, 175: 281−290 doi: 10.1016/j.still.2017.08.008

    [6]

    JÓZEFOWSKA A, LOAIZA-USUGA J C, SCHMIDT O. Consequences of land-use changes for soil quality and function, with a focus on the EU and Latin America[M]//Climate Change and Soil Interactions. Amsterdam: Elsevier, 2020: 207–228

    [7] 仝利红, 蒋珊, 祝凌, 等. 有机种植对温室土壤有机碳库和酶活性的影响[J]. 中国土壤与肥料, 2020(6): 75−82 doi: 10.11838/sfsc.1673-6257.19519

    TONG L H, JIANG S, ZHU L, et al. Effects of organic planting on soil carbon pool and enzyme activity in greenhouse[J]. Soil and Fertilizer Sciences in China, 2020(6): 75−82 doi: 10.11838/sfsc.1673-6257.19519

    [8] 王磊, 杨静, 席运官, 等. 有机耕作方式对我国南方典型土壤质量影响的评价[J]. 生态与农村环境学报, 2017, 33(6): 564−570 doi: 10.11934/j.issn.1673-4831.2017.06.011

    WANG L, YANG J, XI Y G, et al. Assessment of quality of soils under organic farming in South China[J]. Journal of Ecology and Rural Environment, 2017, 33(6): 564−570 doi: 10.11934/j.issn.1673-4831.2017.06.011

    [9] 连玉珍, 刘合满, 曹丽花, 等. 西藏林芝不同土地利用方式的土壤团聚体及其有机碳分布[J]. 浙江农业学报, 2019, 31(8): 1353−1360 doi: 10.3969/j.issn.1004-1524.2019.08.17

    LIAN Y Z, LIU H M, CAO L H, et al. Distribution of soil aggregate and organic carbon under different land use types in Linzhi, Tibet[J]. Acta Agriculturae Zhejiangensis, 2019, 31(8): 1353−1360 doi: 10.3969/j.issn.1004-1524.2019.08.17

    [10]

    BERIHU T, GIRMAY G, SEBHATLEAB M, et al. Soil carbon and nitrogen losses following deforestation in Ethiopia[J]. Agronomy for Sustainable Development, 2017, 37(1): 1−12 doi: 10.1007/s13593-016-0408-4

    [11]

    GATTINGER A, MULLER A, HAENI M, et al. Enhanced top soil carbon stocks under organic farming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(44): 18226−18231

    [12]

    MELERO S, PORRAS J C R, HERENCIA J F, et al. Chemical and biochemical properties in a silty loam soil under conventional and organic management[J]. Soil and Tillage Research, 2006, 90(1/2): 162−170

    [13]

    FLIEßBACH A, OBERHOLZER H R, GUNST L, et al. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming[J]. Agriculture, Ecosystems & Environment, 2007, 118(1/2/3/4): 273−284

    [14] 阮建云. 茶园生态系统固碳潜力及低碳茶叶生产技术[J]. 中国茶叶, 2010, 32(7): 6−9 doi: 10.3969/j.issn.1000-3150.2010.07.001

    RUAN J Y. Carbon sequestration potential of tea garden ecosystem and low-carbon tea production technology[J]. China Tea, 2010, 32(7): 6−9 doi: 10.3969/j.issn.1000-3150.2010.07.001

    [15]

    PRAMANIK P, MANABJYOTI P. Assimilating atmospheric carbon dioxide in tea gardens of northeast India[J]. Journal of Environmental Management, 2020, 256: 109912 doi: 10.1016/j.jenvman.2019.109912

    [16] 孙小祥, 杨桂山, 徐昔保. 太湖流域西部丘陵区茶园生态系统碳通量特征[J]. 生态学杂志, 2014, 33(8): 2072−2077

    SUN X X, YANG G S, XU X B. Characteristics of carbon fluxes for tea garden ecosystems in the hills of western Lake Taihu Basin, China[J]. Chinese Journal of Ecology, 2014, 33(8): 2072−2077

    [17] 萧自位, 王丽娟, 毛加梅, 等. 西双版纳不同林茶复合生态系统碳储量[J]. 生态学杂志, 2012, 31(7): 1617−1625 doi: 10.13292/j.1000-4890.2012.0277

    XIAO Z W, WANG L J, MAO J M, et al. Carbon storage of different tree-tea agroforestry systems in Xishuangbanna, Yunnan Province of Southwest China[J]. Chinese Journal of Ecology, 2012, 31(7): 1617−1625 doi: 10.13292/j.1000-4890.2012.0277

    [18]

    PHUKAN M, SAVAPONDIT D, HAZRA A, et al. Algorithmic derivation of CO2 assimilation based on some physiological parameters of tea bushes in North-East India[J]. Ecological Indicators, 2018, 91: 77−83 doi: 10.1016/j.ecolind.2018.03.091

    [19] 兰景权. 基于总有机碳分析仪的土壤有机质测定研究[J]. 海峡科学, 2021(10): 40−42 doi: 10.3969/j.issn.1673-8683.2021.10.009

    LAN J Q. Determination of soil organic matter based on total organic carbon analyzer[J]. Straits Science, 2021(10): 40−42 doi: 10.3969/j.issn.1673-8683.2021.10.009

    [20]

    BLAIR G J, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459 doi: 10.1071/AR9951459

    [21]

    CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777−783 doi: 10.2136/sssaj1992.03615995005600030017x

    [22] 姜勇, 张玉革, 梁文举, 等. 潮棕壤不同利用方式有机碳剖面分布及碳储量[J]. 中国农业科学, 2005, 38(3): 544−550 doi: 10.3321/j.issn:0578-1752.2005.03.018

    JIANG Y, ZHANG Y G, LIANG W J, et al. Profile distribution and storage of soil organic carbon in an aquic brown soil as affected by land use[J]. Scientia Agricultura Sinica, 2005, 38(3): 544−550 doi: 10.3321/j.issn:0578-1752.2005.03.018

    [23] 唐国勇, 李昆, 孙永玉, 等. 干热河谷不同利用方式下土壤活性有机碳含量及其分配特征[J]. 环境科学, 2010, 31(5): 1365−1371 doi: 10.13227/j.hjkx.2010.05.041

    TANG G Y, LI K, SUN Y Y, et al. Soil labile organic carbon contents and their allocation characteristics under different land uses at dry-hot valley[J]. Environmental Science, 2010, 31(5): 1365−1371 doi: 10.13227/j.hjkx.2010.05.041

    [24] 徐英德. 基于保护性农业的土壤固碳过程研究进展[J]. 中国生态农业学报(中英文), 2022, 30(4): 658−670 doi: 10.12357/cjea.20210889

    XU Y D. Conservation agriculture-mediated soil carbon sequestration: a review[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 658−670 doi: 10.12357/cjea.20210889

    [25] 张帅. 黄土丘陵区深层土壤有机碳对土地利用变化的响应[D]. 北京: 中国科学院大学, 2015

    ZHANG S. Response of soil organic carbon in deep layer to land use changes on the hilly Loess Plateau[D]. Beijing: University of Chinese Academy of Sciences, 2015

    [26] 汪润池, 宗良纲, 邱晓蕾, 等. 有机与常规种植蔬菜地土壤微生物群落特征的比较[J]. 南京农业大学学报, 2012, 35(2): 99−104 doi: 10.7685/j.issn.1000-2030.2012.02.017

    WANG R C, ZONG L G, QIU X L, et al. Comparison of soil microbial community characteristics of organic and conventional vegetable fields[J]. Journal of Nanjing Agricultural University, 2012, 35(2): 99−104 doi: 10.7685/j.issn.1000-2030.2012.02.017

    [27] 邱晓蕾, 宗良纲, 刘一凡, 等. 不同种植模式对土壤团聚体及有机碳组分的影响[J]. 环境科学, 2015(3): 1045−1052 doi: 10.13227/j.hjkx.2015.03.038

    QIU X L, ZONG L G, LIU Y F, et al. Effects of different planting patterns on soil aggregates and organic carbon components[J]. Environmental Science, 2015(3): 1045−1052 doi: 10.13227/j.hjkx.2015.03.038

    [28]

    FOEREID B, HØGH-JENSEN H. Carbon sequestration potential of organic agriculture in northern Europe—A modelling approach[J]. Nutrient Cycling in Agroecosystems, 2004, 68(1): 13−24 doi: 10.1023/B:FRES.0000012231.89516.80

    [29] 孔樟良. 浙西北茶园土壤固碳能力及其不同形态有机碳的积累特点[J]. 浙江大学学报(农业与生命科学版), 2016, 42(2): 209−219

    KONG Z L. Carbon sequestration potential of tea garden soil in northwest Zhejiang and its accumulation characteristic on different fractions of organic carbon[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 209−219

    [30]

    LIU M Y, LI P, LIU M M, et al. The trend of soil organic carbon fractions related to the successions of different vegetation types on the tableland of the Loess Plateau of China[J]. Journal of Soils and Sediments, 2021, 21(1): 203−214 doi: 10.1007/s11368-020-02710-3

    [31] 章明奎, 郑顺安, 王丽平. 利用方式对砂质土壤有机碳、氮和磷的形态及其在不同大小团聚体中分布的影响[J]. 中国农业科学, 2007, 40(8): 1703−1711 doi: 10.3321/j.issn:0578-1752.2007.08.016

    ZHANG M K, ZHENG S A, WANG L P. Chemical forms and distributions of organic carbon, nitrogen and phosphorus in sandy soil aggregate fractions as affected by land uses[J]. Scientia Agricultura Sinica, 2007, 40(8): 1703−1711 doi: 10.3321/j.issn:0578-1752.2007.08.016

    [32] 王阳, 章明奎. 不同类型林地土壤颗粒态有机碳和黑碳的分布特征[J]. 浙江大学学报(农业与生命科学版), 2011, 37(2): 193−202

    WANG Y, ZHANG M K. Distribution characters of particulate organic carbon and black carbon in soils under different forestry vegetations[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(2): 193−202

    [33]

    LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology, 2020, 26(1): 261−273 doi: 10.1111/gcb.14859

    [34] 黄鸿翔, 李书田, 李向林, 等. 我国有机肥的现状与发展前景分析[J]. 土壤肥料, 2006(1): 3−8

    HUANG H X, LI S T, LI X L, et al. Analysis on the status of organic fertilizer and its development strategies in China[J]. Soil and Fertilizer Sciences in China, 2006(1): 3−8

    [35] 梁尧. 有机培肥对黑土有机质消长及其组分与结构的影响[D]. 北京: 中国科学院大学, 2012

    LIANG Y. Effects of organic fertilization on the growth and decline of organic matter and its composition and structure in black soil[D]. Beijing: University of Chinese Academy of Sciences, 2012

    [36] 宋小艳, 张丹桔, 张健, 等. 马尾松(Pinus massoniana)人工林林窗对土壤不同形态活性有机碳的影响[J]. 生态学报, 2015, 35(16): 5393−5402

    SONG X Y, ZHANG D J, ZHANG J, et al. Effects of gap size in Pinus massoniana plantations on different soil labile organic carbon fractions[J]. Acta Ecologica Sinica, 2015, 35(16): 5393−5402

    [37] 张亚杰, 钱慧慧, 李伏生, 等. 不同土地管理和利用方式喀斯特坡地养分和碳库管理指数的差异[J]. 中国岩溶, 2016, 35(1): 27−35 doi: 10.11932/karst20160105

    ZHANG Y J, QIAN H H, LI F S, et al. Differences in soil nutrient and carbon pool management index under different land management and utilization modes in karst slope region[J]. Carsologica Sinica, 2016, 35(1): 27−35 doi: 10.11932/karst20160105

    [38] 吴崇书, 谢国雄, 章明奎. 农艺措施与土地利用方式转变对土壤碳库管理指数的影响[J]. 浙江农业学报, 2015, 27(4): 611−617 doi: 10.3969/j.issn.1004-1524.2015.04.17

    WU C S, XIE G X, ZHANG M K. Effects of agricultural practices and land use transformation on soil carbon management index[J]. Acta Agriculturae Zhejiangensis, 2015, 27(4): 611−617 doi: 10.3969/j.issn.1004-1524.2015.04.17

图(2)  /  表(2)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  133
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-03
  • 修回日期:  2023-09-05
  • 录用日期:  2023-09-12
  • 网络出版日期:  2023-09-10
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回