Effects of subsoiling tillage on grain dehydration characteristics of maize hybrids in different eras
-
摘要:
深松作为一种保护性耕作措施, 是当前玉米增密增产的有效调控手段, 在我国有良好的应用前景。但深松是否影响玉米籽粒脱水特性, 还缺乏更加深入的研究。据此, 本试验选用1970s—2010s 5个年代的代表性玉米品种, 采用深松(35 cm)和传统浅旋(15 cm)两种耕作方式, 设置裂区试验, 探究不同年代玉米品种生理成熟前后籽粒脱水特性及其对深松耕作的响应规律, 为机械化籽粒直收背景下采取该措施提供理论支持。结果表明, 不同年代玉米品种籽粒脱水特性存在显著差异, 2000s和2010s品种生理成熟期籽粒含水率低于其余品种, 2010s品种的收获期籽粒含水率明显低于其余品种, 而2000s和2010s品种的生理成熟前籽粒脱水速率高于其余品种。对比浅旋, 深松后1970s—2010s各品种吐丝后15~35 d籽粒含水率的下降幅度增加, 生理成熟前籽粒脱水速率有小幅度增加, 而生理成熟后籽粒脱水速率无显著变化, 且深松对生理成熟期和收获期籽粒含水率的影响均较小。深松后各品种苞叶和穗轴生理成熟前、后脱水速率均降低, 而穗柄脱水速率无明显变化。综合来看, 2000s和2010s品种的籽粒脱水特性明显优于其余年代品种, 而深松耕作主要通过提升吐丝后15~35 d籽粒含水率的下降量促进了籽粒脱水, 使深松下玉米生理成熟前籽粒脱水速率有较小幅度增加; 深松后苞叶、穗轴生理成熟前、后脱水速率降低, 而对生理成熟后籽粒脱水速率、生理成熟期和收获期籽粒含水率均无显著影响。
Abstract:As a protective tillage measure, subsoiling tillage is an effective control method for increasing maize density and yield and has good application prospects in China. However, researches on the effect of subsoiling on the dehydration characteristics of maize grains is lacking. Accordingly, we selected five representative maize hybrids from the 1970s to the 2010s in different eras, adopted two tillage methods, subsoiling tillage (35 cm deep) and shallow rotation tillage (15 cm deep), and set up a split plot test. The variations in grain dehydration characteristics before and after the physiological maturity of maize hybrids across different eras and their response to subsoiling tillage were investigated. The objective of the study is to offer theoretical support for the adoption of this practice in the context of mechanical grain harvesting. The results revealed significant differences in the grain dehydration characteristics of maize hybrids from different eras. The grain moisture contents at physiological maturity (MCpm) of the 2000s and the 2010s hybrids were lower than those of the other hybrids, whereas the grain moisture contents at harvest (MCh) of the 2010s hybrids were also lower than those of the other hybrids. The dehydration rates before physiological maturity (GDRbm) of the 2000s and 2010s hybrids were higher than those of the other hybrids. Compared with the traditional shallow rotation tillage, the decrease of grain water content in 15–35 d after anthesis increased, GDRbm had a small increasing trend, whereas the dehydration rates after physiological maturity (GDRam) showed no significant change under subsoiling tillage; and the effect of subsoiling on MCpm and MCh was small. Compared to shallow rotation tillage, the dehydration rates of the bracts and ear cobs under subsoiling tillage before and after physiological maturity decreased, whereas the dehydration rate of the ear stalks showed no significant change. In summary, the hybrids from the 2000s and 2010s demonstrated superior performance in dehydration characteristics for mechanical grain harvesting. Subsoiling tillage notably enhanced grain dehydration by primarily augmenting the reduction in grain water content in 15–35 d after anthesis. This resulted in a marginal increase in the grain dehydration rate before physiological maturity post-subsoiling along with a reduction in the dehydration rates of bract and ear cob both before and after physiological maturity following subsoiling tillage. However, there was no significant impact of tillage measures on the grain dehydration rate after physiological maturity or the water content of grains at physiological maturity and harvest stages.
-
Keywords:
- Maize /
- Subsoiling tillage /
- Hybrids from different eras /
- Dehydration characteristics /
- Ear organ
-
-
图 2 2018年和2019年浅旋(RT)和深松(SS)下不同年代玉米品种籽粒含水率的动态变化
ZD2: 1970s品种‘中单2号’; DY13: 1980s品种‘丹玉13’; YD13: 1990s品种‘掖单13’; XY335: 2000s品种‘先玉335’; DH618: 2010s品种‘登海618’。RT: 浅旋15 cm; SS: 深松35 cm。ZD2: 1970s hybrid of ‘Zhongdan 2’; DY13: 1980s hybrid of ‘Danyu 13’; YD13: 1990s hybrid of ‘Yedan 13’; XY335: 2000s hybrid of ‘Xianyu 335’; DH618: 2010s hybrid of ‘Denghai 618’. RT: shallow rotation 15 cm; SS: subsoiling 35 cm.
Figure 2. Dynamics of grain water contents of different maize hybrids from different eras under shallow rotation (RT) and subsoiling (SS) tillage in 2018 and 2019
图 3 2018年和2019年浅旋(RT)和深松(SS)下不同年代玉米品种生理成熟前后的籽粒脱水速率
不同小写字母表示相同耕作措施下不同品种间差异显著(P<0.05)。ZD2: 1970s品种‘中单2号’; DY13: 1980s品种‘丹玉13’; YD13: 1990s品种‘掖单13’; XY335: 2000s品种‘先玉335’; DH618: 2010s品种‘登海618’。RT: 浅旋15 cm; SS: 深松35 cm。Different lowercase letters indicate significant differences at P<0.05 level among different hybrids under same tillage measure. ZD2: 1970s hybrid of ‘Zhongdan 2’; DY13: 1980s hybrid of ‘Danyu 13’; YD13: 1990s hybrid of ‘Yedan 13’; XY335: 2000s hybrid of ‘Xianyu 335’; DH618: 2010s hybrid of ‘Denghai 618’. RT: shallow rotation 15 cm; SS: subsoiling 35 cm.
Figure 3. Grain dehydration rates of different maize hybrids from different eras before and after physiological maturity under shallow rotation (RT) and subsoiling (SS) tillage in 2018 and 2019
图 4 2018年和2019年浅旋(RT)和深松(SS)下不同年代玉米品种苞叶含水率的动态变化
ZD2: 1970s品种‘中单2号’; DY13: 1980s品种‘丹玉13’; YD13: 1990s品种‘掖单13’; XY335: 2000s品种‘先玉335’; DH618: 2010s品种‘登海618’。RT: 浅旋15 cm; SS: 深松35 cm。ZD2: 1970s hybrid of ‘Zhongdan 2’; DY13: 1980s hybrid of ‘Danyu 13’; YD13: 1990s hybrid of ‘Yedan 13’; XY335: 2000s hybrid of ‘Xianyu 335’; DH618: 2010s hybrid of ‘Denghai 618’. RT: shallow rotation 15 cm; SS: subsoiling 35 cm.
Figure 4. Dynamics of bract water contents of different maize hybrids from different eras under shallow rotation (RT) and subsoiling (SS) tillage in 2018 and 2019
图 5 2018年和2019年浅旋(RT)和深松(SS)下不同年代玉米品种生理成熟前后苞叶的脱水速率
不同小写字母表示相同耕作措施下不同品种间差异显著(P<0.05)。ZD2: 1970s品种‘中单2号’; DY13: 1980s品种‘丹玉13’; YD13: 1990s品种‘掖单13’; XY335: 2000s品种‘先玉335’; DH618: 2010s品种‘登海618’。RT: 浅旋15 cm; SS: 深松35 cm。Different lowercase letters indicate significant differences at P<0.05 level among different hybrids under same tillage measure. ZD2: 1970s hybrid of ‘Zhongdan 2’; DY13: 1980s hybrid of ‘Danyu 13’; YD13: 1990s hybrid of ‘Yedan 13’; XY335: 2000s hybrid of ‘Xianyu 335’; DH618: 2010s hybrid of ‘Denghai 618’. RT: shallow rotation 15 cm; SS: subsoiling 35 cm.
Figure 5. Bract dehydration rates of different maize hybrids from different eras before and after physiological maturity under shallow rotation (RT) and subsoiling (SS) tillage in 2018 and 2019
图 6 2018年和2019年浅旋(RT)和深松(SS)条件下不同年代玉米品种穗轴含水率的动态变化
ZD2: 1970s品种‘中单2号’; DY13: 1980s品种‘丹玉13’; YD13: 1990s品种‘掖单13’; XY335: 2000s品种‘先玉335’; DH618: 2010s品种‘登海618’。RT: 浅旋15 cm; SS: 深松35 cm。ZD2: 1970s hybrid of ‘Zhongdan 2’; DY13: 1980s hybrid of ‘Danyu 13’; YD13: 1990s hybrid of ‘Yedan 13’; XY335: 2000s hybrid of ‘Xianyu 335’; DH618: 2010s hybrid of ‘Denghai 618’. RT: shallow rotation 15 cm; SS: subsoiling 35 cm.
Figure 6. Dynamics of ear cob water contents of different maize hybrids from different eras under shallow rotation (RT) and subsoiling (SS) tillage in 2018 and 2019
图 7 2018年和2019年浅旋(RT)和深松(SS)下不同年代玉米品种生理成熟前后穗轴的脱水速率
不同小写字母表示相同耕作措施下不同品种间差异显著(P<0.05)。ZD2: 1970s品种‘中单2号’; DY13: 1980s品种‘丹玉13’; YD13: 1990s品种‘掖单13’; XY335: 2000s品种‘先玉335’; DH618: 2010s品种‘登海618’。RT: 浅旋15 cm; SS: 深松35 cm。Different lowercase letters indicate significant differences at P<0.05 level among different hybrids under same tillage measrue. ZD2: 1970s hybrid of ‘Zhongdan 2’; DY13: 1980s hybrid of ‘Danyu 13’; YD13: 1990s hybrid of ‘Yedan 13’; XY335: 2000s hybrid of ‘Xianyu 335’; DH618: 2010s hybrid of ‘Denghai 618’. RT: shallow rotation 15 cm; SS: subsoiling 35 cm.
Figure 7. Ear cob dehydration rates of different maize hybrids from different eras before and after physiological maturity under shallow rotation (RT) and subsoiling (SS) tillage in 2018 and 2019
图 8 2018年和2019年浅旋(RT)和深松(SS)下不同年代玉米品种穗柄含水率的动态变化
ZD2: 1970s品种‘中单2号’; DY13: 1980s品种‘丹玉13’; YD13: 1990s品种‘掖单13’; XY335: 2000s品种‘先玉335’; DH618: 2010s品种‘登海618’。RT: 浅旋15 cm; SS: 深松35 cm。ZD2: 1970s hybrid of ‘Zhongdan 2’; DY13: 1980s hybrid of ‘Danyu 13’; YD13: 1990s hybrid of ‘Yedan 13’; XY335: 2000s hybrid of ‘Xianyu 335’; DH618: 2010s hybrid of ‘Denghai 618’. RT: shallow rotation 15 cm; SS: subsoiling 35 cm.
Figure 8. Dynamics of ear stalk water contents of different maize hybrids from different eras under shallow rotation (RT) and subsoiling (SS) tillage in 2018 and 2019
图 9 2018年和2019年浅旋(RT)和深松(SS)下不同年代玉米品种生理成熟前后穗柄的脱水速率
不同小写字母表示相同耕作措施下不同品种间差异显著(P<0.05)。ZD2: 1970s品种‘中单2号’; DY13: 1980s品种‘丹玉13’; YD13: 1990s品种‘掖单13’; XY335: 2000s品种‘先玉335’; DH618: 2010s品种‘登海618’。RT: 浅旋15 cm; SS: 深松35 cm。Different lowercase letters indicate significant differences at P<0.05 level among different hybrids under same tillage measrue. ZD2: 1970s hybrid of ‘Zhongdan 2’; DY13: 1980s hybrid of ‘Danyu 13’; YD13: 1990s hybrid of ‘Yedan 13’; XY335: 2000s hybrid of ‘Xianyu 335’; DH618: 2010s hybrid of ‘Denghai 618’. RT: shallow rotation 15 cm; SS: subsoiling 35 cm.
Figure 9. Ear stalk dehydration rates of different maize hybrids from different eras before and after physiological maturity under shallow rotation (RT) and subsoiling (SS) tillage in 2018 and 2019
表 1 2018—2019年试验区基础肥力
Table 1 Soil basic fertility of the experimental area during 2018−2019
年份
Year有机质
Organic matter
(g∙kg−1)全氮
Total nitrogen
(g∙kg−1)碱解氮
Alkali hydrolyzed nitrogen
(mg∙kg−1)速效磷
Available phosphorus
(mg∙kg−1)速效钾
Available potassium
(mg∙kg−1)pH 2018 19.63 1.48 78.18 17.06 155.19 7.95 2019 17.74 1.31 79.31 18.45 144.00 8.49 表 2 2018—2019年试验区不同耕作方式下玉米不同生育期土壤主要物理性状
Table 2 Main soil physical properties at different maize growth stages under different tillage methods in the experimental area during 2018−2019
年份
Year耕作方式
Tillage method苗期
Seedling stage (VE)成熟期
Maturity stage (R6)土壤紧实度
Soil compactness
(kPa)土壤含水率
Soil moisture content
(%)土壤容重
Soil bulk density
(g∙cm−3)土壤紧实度
Soil compactness
(kPa)土壤含水率
Soil moisture content
(%)土壤容重
Soil bulk density
(g∙cm−3)2018 RT 2194.19 16.59 1.57 2675.50 14.94 1.61 SS 1775.23 19.23 1.46 2443.14 16.11 1.55 2019 RT 2532.46 16.97 1.54 1333.41 18.84 1.64 SS 1850.77 14.01 1.43 1143.86 15.90 1.54 RT: 浅旋15 cm; SS: 深松35 cm。RT: shallow rotation 15 cm; SS: subsoiling 35 cm. 表 3 2018年和2019年浅旋(RT)和深松(SS)下不同年代玉米品种生理成熟期籽粒含水率差异和方差分析
Table 3 Difference and variance analysis of grain water contents of different maize hybrids from different eras at physiological maturity satge under shallow rotation (RT) and subsoiling (SS) tillage in 2018 and 2019
% 年代
Era品种
Hybrid2018 2019 RT SS SS效应 SS effect RT SS SS效应 SS effect 1970s 中单2号 ZD2 32.20±0.12abc 32.71±1.03abc 0.51 31.24±0.22b 31.04±0.39a −0.19 1980s 丹玉13 DY13 32.95±0.43ab 33.12±1.20ab 0.17 33.64±0.53a 32.47±0.48a −1.17 1990s 掖单13 YD13 33.15±0.63a 34.23±0.60a 1.08 33.89±0.10a 32.08±0.81a −1.81** 2000s 先玉335 XY335 32.15±0.51bc 30.68±0.69c −1.47** 31.18±0.11b 30.85±1.04a −0.33 2010s 登海618 DH618 31.27±0.04c 31.20±0.86bc −0.07 31.43±0.42b 31.34±1.14a −0.09 因素 Factor 均方 Mean square 均方 Mean square 耕作方式 Tillage method (T) 0.011 3.881 品种 Hybrid (H) 26.360** 24.843** T×H 5.457 3.325 同列不同小写字母表示不同品种间差异显著(P<0.05); **表示P<0.01水平显著。RT: 浅旋15 cm; SS: 深松35 cm。Different lowercase letters in the same column indicate significant differences at P<0.05 level among different hybrids. ** means significant differences at P<0.01 level. RT: shallow rotation 15 cm; SS: subsoiling 35 cm. 表 4 2018年和2019年浅旋(RT)和深松(SS)下不同年代玉米品种收获期籽粒含水率差异和方差分析
Table 4 Difference and variance analysis of grain water contents of different maize hybrids from different eras at harvest stage under shallow rotation (RT) and subsoiling (SS) tillage in 2018 and 2019
% 年代
Era品种
Hybrid2018 2019 RT SS SS效应 SS effect RT SS SS效应 SS effect 1970s 中单2号 ZD2 24.05±0.45b 24.02±0.48b −0.03 26.62±0.34b 26.18±0.77a −0.44 1980s 丹玉13 DY13 25.81±0.44a 24.81±0.34a −1.00* 26.87±0.80ab 26.00±0.40a −0.87 1990s 掖单13 YD13 25.40±0.05a 25.39±0.16a −0.01 28.13±0.66a 26.35±0.55a −1.78* 2000s 先玉335 XY335 24.03±0.76b 23.76±0.35b −0.27 25.76±0.03bc 26.45±1.21a 0.69 2010s 登海618 DH618 23.67±0.35b 23.91±0.19b 0.24 25.14±0.76c 24.92±1.14a −0.22 因素 Factor 均方 Mean square 均方 Mean square 耕作方式 Tillage method (T) 0.329 2.070 品种 Hybrid (H) 15.077** 15.319** T×H 1.381 4.940 同列不同小写字母表示不同品种间差异显著(P<0.05); *和**分别表示P<0.05和P<0.01显著水平。RT: 浅旋15 cm; SS: 深松35 cm。Different lowercase letters in the same column indicate significant differences at P<0.05 level among different hybrids. * and ** mean significant differences at P<0.05 and P<0.01 levels, respectively. RT: shallow rotation 15 cm; SS: subsoiling 35 cm. 表 5 玉米籽粒水分指标与穗部其他器官脱水速率的相关性
Table 5 Correlation between grain water indexes and dehydration rates of other organs in the ear of maize
籽粒水分指标
Grain water index时期
Period苞叶脱水速率
Dehydration rate of bract穗轴脱水速率
Dehydration rate of ear cob穗柄脱水速率
Dehydration rate of ear stalk生理成熟前
Before maturity生理成熟后
After maturity生理成熟前
Before maturity生理成熟后
After maturity生理成熟前
Before maturity生理成熟后
After maturity籽粒含水率
Grain water content生理成熟期
Maturation stage−0.565** −0.675** −0.440 −0.490* −0.082 −0.228 收获期
Harvest stage−0.722** −0.145 −0.827** −0.450* 0.004 0.318 籽粒脱水速率
Dehydration rate of grain生理成熟前
Before maturation0.598** −0.139 0.731** 0.769** 0.130 −0.411 生理成熟后
After maturation0.344 −0.006 0.338 −0.214 −0.169 −0.131 *: P<0.05; **: P<0.01. -
[1] 封志明, 孙通, 杨艳昭. 2003—2013年中国粮食增产格局及其贡献因素研究[J]. 自然资源学报, 2016, 31(6): 895−907 FENG Z M, SUN T, YANG Y Z. Study on the spatiotemporal patterns and contribution factors of China grain output increase during 2003−2013[J]. Journal of Natural Resources, 2016, 31(6): 895−907
[2] 李少昆, 王克如, 谢瑞芝, 等. 实施密植高产机械化生产实现玉米高产高效协同[J]. 作物杂志, 2016(4): 1−6 LI S K, WANG K R, XIE R Z, et al. Implementing higher population and full mechanization technologies to achieve high yield and high efficiency in maize production[J]. Crops, 2016(4): 1−6
[3] 王克如, 李璐璐, 郭银巧, 等. 不同机械作业对玉米子粒收获质量的影响[J]. 玉米科学, 2016, 24(1): 114−116 WANG K R, LI L L, GUO Y Q, et al. Effects of different mechanical operation on maize grain harvest quality[J]. Journal of Maize Sciences, 2016, 24(1): 114−116
[4] 王克如, 李少昆. 玉米籽粒脱水速率影响因素分析[J]. 中国农业科学, 2017, 50(11): 2027−2035 WANG K R, LI S K. Analysis of influencing factors on kernel dehydration rate of maize hybrids[J]. Scientia Agricultura Sinica, 2017, 50(11): 2027−2035
[5] 王振华, 鲁晓民, 张新, 等. 我国玉米全程机械化育种目标浅析[J]. 河南农业科学, 2011, 40(11): 1−3, 21 WANG Z H, LU X M, ZHANG X, et al. Analysis of maize breeding objective from full mechanization in China[J]. Journal of Henan Agricultural Sciences, 2011, 40(11): 1−3, 21
[6] 李少昆. 我国玉米机械粒收质量影响因素及粒收技术的发展方向[J]. 石河子大学学报(自然科学版), 2017, 35(3): 265−272 LI S K. Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology[J]. Journal of Shihezi University (Natural Science), 2017, 35(3): 265−272
[7] 郭银巧. 影响玉米机械收粒质量及农户机收采用行为的因素分析[D]. 北京: 中国农业科学院, 2015 GUO Y Q. Analysis on factors influencing quality of mechanized kernel harvesting and characteristics of farmer adaption in typical ecoregion of maize in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015
[8] 李少昆, 王克如, 谢瑞芝, 等. 机械粒收推动玉米生产方式转型[J]. 中国农业科学, 2018, 51(10): 1842−1844 LI S K, WANG K R, XIE R Z, et al. Grain mechanical harvesting technology promotes the transformation of maize production mode[J]. Scientia Agricultura Sinica, 2018, 51(10): 1842−1844
[9] 王振华, 张忠臣, 常华章, 等. 黑龙江省38个玉米自交系生理成熟期及子粒自然脱水速率的分析[J]. 玉米科学, 2001, 9(2): 53−55 WANG Z H, ZHANG Z C, CHANG H Z, et al. Analysis of physiological mature stage and kernel naturally dry-down rate in 38 corn inbred lines in Heilongjiang[J]. Maize Sciences, 2001, 9(2): 53−55
[10] 赵红香, 张慧, 孙旭东, 等. 不同基因型夏玉米果穗脱水特性综合评价[J]. 山东农业科学, 2014, 46(12): 18−22 ZHAO H X, ZHANG H, SUN X D, et al. Comprehensive evaluation on ear dehydration characteristics of different genotypes of summer maize[J]. Shandong Agricultural Sciences, 2014, 46(12): 18−22
[11] 刘思奇, 钟雪梅, 李凤海, 等. 东北地区4个代表性玉米品种的灌浆和脱水速率比较[J]. 种子, 2015, 34(12): 69−72 LIU S Q, ZHONG X M, LI F H, et al. Comparisons of grain filling and dehydration rates in 4 representative maize varieties in northeast provinces[J]. Seed, 2015, 34(12): 69−72
[12] 刘思奇, 钟雪梅, 史振声. 玉米果穗各部性状对籽粒含水量和脱水速率的影响[J]. 江苏农业科学, 2016, 44(8): 130−132 LIU S Q, ZHONG X M, SHI Z S. Effects of ear traits on grain water content and dehydration rate in maize[J]. Jiangsu Agricultural Sciences, 2016, 44(8): 130−132
[13] 黄璐, 乔江方, 刘京宝, 等. 夏玉米不同密植群体抗倒性及机收指标探讨[J]. 华北农学报, 2015, 30(2): 198−201 HUANG L, QIAO J F, LIU J B, et al. Research on the relationship between maize lodging resistance and grain mechanically harvesting qualities in different planting density[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(2): 198−201
[14] 谢瑞芝, 雷晓鹏, 王克如, 等. 黄淮海夏玉米子粒机械收获研究初报[J]. 作物杂志, 2014(2): 76−79 XIE R Z, LEI X P, WANG K R, et al. Research on corn mechanically harvesting grain quality in Huanghuaihai Plain[J]. Crops, 2014(2): 76−79
[15] 柳枫贺, 王克如, 李健, 等. 影响玉米机械收粒质量因素的分析[J]. 作物杂志, 2013(4): 116−119 LIU F H, WANG K R, LI J, et al. Factors affecting corn mechanically harvesting grain quality[J]. Crops, 2013(4): 116−119
[16] 王立静, 马丰刚, 蒋明洋, 等. 不同玉米品种籽粒灌浆脱水特性研究[J]. 山东农业科学, 2016, 48(7): 48−50, 54 WANG L J, MA F G, JIANG M Y, et al. Grain filling and dehydration characteristics of different maize hybrids[J]. Shandong Agricultural Sciences, 2016, 48(7): 48−50, 54
[17] 杨坤. 不同生育期玉米籽粒灌浆和脱水特性分析[J]. 中国农业文摘-农业工程, 2021, 33(6): 65−68 YANG K. Analysis of grain filling and dehydration characteristics of maize at different growth stages[J]. Agricultural Science and Engineering in China, 2021, 33(6): 65−68
[18] 徐田军, 吕天放, 赵久然, 等. 黄淮海区主推夏播玉米品种籽粒脱水特性研究[J]. 中国农业科学, 2021, 54(4): 708−719 doi: 10.3864/j.issn.0578-1752.2021.04.004 XU T J, LYU T F, ZHAO J R, et al. The grain dehydration characteristics of the main summer maize varieties in Huang-Huai-Hai region[J]. Scientia Agricultura Sinica, 2021, 54(4): 708−719 doi: 10.3864/j.issn.0578-1752.2021.04.004
[19] 刘艳秋, 李明顺, 李新海, 等. 1970s~2000s玉米主栽品种灌浆与脱水速率研究[J]. 玉米科学, 2015, 23(1): 85−91 LIU Y Q, LI M S, LI X H, et al. Preliminary study on grain filling and dehydration rate of maize hybrids used predominantly in 1970s–2000s[J]. Maize Science, 2015, 23(1): 85−91
[20] CRANE P L, MILES S R, NEWMAN J E. Factors associated with varietal differences in rate of field drying in corn[J]. Agronomy Journal, 1959, 51(6): 318−320 doi: 10.2134/agronj1959.00021962005100060003x
[21] CROSS H Z. Leaf expansion rate effects on yield and yield components in early-maturing maize[J]. Crop Science, 1991, 31(3): 579−583 doi: 10.2135/cropsci1991.0011183X003100030006x
[22] HICKS D R, GEADELMANN G L, PETERSON R H. Drying rates of frosted maturing maize[J]. Agronomy Journal, 1976, 68(3): 452−455 doi: 10.2134/agronj1976.00021962006800030004x
[23] 闫淑琴. 玉米籽粒灌浆、脱水速率的配合力和相关分析[D]. 北京: 中国农业科学院, 2006 YAN S Q. Combining ability and correlation of kernel dry-down and grain filling rate in maize[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006
[24] 李凤海, 郭佳丽, 于涛, 等. 不同熟期玉米杂交种及其亲本子粒脱水速率的比较研究[J]. 玉米科学, 2012, 20(6): 17−20, 24 doi: 10.3969/j.issn.1005-0906.2012.06.004 LI F H, GUO J L, YU T, et al. Comparative study on dehydration rate of kernel among maize hybrids and parents with different maturity periods[J]. Journal of Maize Sciences, 2012, 20(6): 17−20, 24 doi: 10.3969/j.issn.1005-0906.2012.06.004
[25] 何启平, 董树亭, 高荣岐. 玉米果穗维管束系统的发育及其与穗粒库容的关系[J]. 作物学报, 2005, 31(8): 995−1000, 1105 HE Q P, DONG S T, GAO R Q. Relationship between development of spike vascular bundle and sink capacity of ear and kernel in maize ( Zea mays L.)[J]. Acta Agronomica Sinica, 2005, 31(8): 995−1000, 1105
[26] 李璐璐, 谢瑞芝, 范盼盼, 等. 郑单958与先玉335子粒脱水特征研究[J]. 玉米科学, 2016, 24(2): 57−61, 71 LI L L, XIE R Z, FAN P P, et al. Study on dehydration in kernel between Zhengdan 958 and Xianyu 335[J]. Journal of Maize Sciences, 2016, 24(2): 57−61, 71
[27] FARNHAM D E. Row spacing, plant density, and hybrid effects on corn grain yield and moisture[J]. Agronomy Journal, 2001, 93(5): 1049−1053 doi: 10.2134/agronj2001.9351049x
[28] WIDDICOMBE W D, THELEN K D. Row width and plant density effects on corn grain production in the northern Corn Belt[J]. Agronomy Journal, 2002, 94(5): 1020−1023 doi: 10.2134/agronj2002.1020
[29] 刘亚楠, 路战远, 孙峰成, 等. 种植密度对不同玉米品种籽粒脱水特性和机收质量的影响[J]. 华北农学报, 2022, 37(6): 132−141 LIU Y N, LU Z Y, SUN F C, et al. Effects of planting density on grain dehydration characteristics and harvesting quality of maize varieties[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(6): 132−141
[30] 王荣焕, 徐田军, 赵久然, 等. 播期和密度对玉米子粒机收主要性状的影响[J]. 玉米科学, 2017, 25(3): 94−98 WANG R H, XU T J, ZHAO J R, et al. Effects of sowing date and planting density on maize grain mechanical harvesting related traits[J]. Journal of Maize Sciences, 2017, 25(3): 94−98
[31] 夏来坤, 谷利敏, 丁勇, 等. 不同夏玉米品种及其密度对子粒机收质量的影响[J]. 玉米科学, 2019, 27(5): 143−150 XIA L K, GU L M, DING Y, et al. Effect of different summer maize genotypes and planting density on mechanically grain harvesting quality[J]. Journal of Maize Sciences, 2019, 27(5): 143−150
[32] GU R L, HUANG R, JIA G Y, et al. Effect of mechanical threshing on damage and vigor of maize seed threshed at different moisture contents[J]. Journal of Integrative Agriculture, 2019, 18(7): 1571−1578 doi: 10.1016/S2095-3119(18)62026-X
[33] 姜宇鹏. 不同种植密度下玉米品种适应性研究[D]. 哈尔滨: 东北农业大学, 2019 JIANG Y P. Study on adaptability of maize varieties in different planting densities[D]. Harbin: Northeast Agricultural University, 2019
[34] 许海涛, 许波, 王友华, 等. 群体密度对机收型玉米灌浆、机收特性及产量性状的影响[J]. 中国种业, 2019(3): 69−71 XU H T, XU B, WANG Y H, et al. Effects of population density on grain filling, harvesting characteristics and yield traits of mechanical harvested corn[J]. China Seed Industry, 2019(3): 69−71
[35] 张博文. 深松对黑土区土壤特性及细菌群落结构影响[D]. 呼和浩特: 内蒙古农业大学, 2018 ZHANG B W. Effects of subsoiling on soil properties and bacterial community structure in black soil region[D]. Hohhot: Inner Mongolia Agricultural University, 2018
[36] 于晓芳, 雷娟玮, 高聚林, 等. 提升土壤肥力可实现玉米机械粒收增产减损[J]. 中国生态农业学报(中英文), 2021, 29(6): 1061−1075 YU X F, LEI J W, GAO J L, et al. Soil fertility improvement increases maize yield and reduces loss during mechanized grain harvest[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1061−1075
[37] BROOKING I R. Maize ear moisture during grain-filling and its relation to physiological maturity and grain-drying[J]. Field Crops Research, 1990, 23(1): 55−68 doi: 10.1016/0378-4290(90)90097-U
[38] HALLAUER A R, RUSSELL W A. Effects of selected weather factors on grain moisture reduction from silking to physiologic maturity in corn[J]. Agronomy Journal, 1961, 53(4): 225−229 doi: 10.2134/agronj1961.00021962005300040006x
[39] SCHMIDT J L, HALLAUER A R. Estimating harvest date of corn in the field[J]. Crop Science, 1966, 6(3): 227−231 doi: 10.2135/cropsci1966.0011183X000600030003x
[40] 高尚, 明博, 李璐璐, 等. 黄淮海夏玉米籽粒脱水与气象因子的关系[J]. 作物学报, 2018, 44(12): 1755−1763 doi: 10.3724/SP.J.1006.2018.01755 GAO S, MING B, LI L L, et al. Relationship between grain dehydration and meteorological factors in the Yellow-Huai-Hai Rivers summer maize[J]. Acta Agronomica Sinica, 2018, 44(12): 1755−1763 doi: 10.3724/SP.J.1006.2018.01755
[41] 丁佳琦. 我国不同年代玉米单交种及其亲本灌浆和脱水速率的研究[D]. 北京: 中国农业科学院, 2012 DING J Q. A study of grain filling and dehydration of rate for different periods of maize single-cross hybrids and their parents in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012
[42] 李轶冰, 逄焕成, 李华, 等. 粉垄耕作对黄淮海北部春玉米籽粒灌浆及产量的影响[J]. 中国农业科学, 2013, 46(14): 3055−3064 LI Y B, PANG H C, LI H, et al. Effects of deep vertically rotary tillage on grain filling and yield of spring maize in North Huang-Huai-Hai region[J]. Scientia Agricultura Sinica, 2013, 46(14): 3055−3064
[43] 关劼兮, 陈素英, 邵立威, 等. 华北典型区域土壤耕作方式对土壤特性和作物产量的影响[J]. 中国生态农业学报(中英文), 2019, 27(11): 1663−1672 GUAN J X, CHEN S Y, SHAO L W, et al. Effects of soil tillage methods on soil characteristics and crop yield in North China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(11): 1663−1672
[44] 郑洪兵. 耕作方式对土壤环境及玉米生长发育的影响[D]. 沈阳: 沈阳农业大学, 2019 ZHENG H B. Effects of tillage methods on soil environment and maize growth and development[D]. Shenyang: Shenyang Agricultural University, 2019
[45] 尹斌. 深松深度对高产春玉米花粒期根冠特性及产量形成影响的研究[D]. 呼和浩特: 内蒙古农业大学, 2013 YIN B. Study on the effect of subsoiling depth on the root-shoot characteristics and yield formation of high yield spring maize[D]. Hohhot: Inner Mongolia Agricultural University, 2013
[46] WEI S, WANG X, WEI H, et al. Enhanced defense ability facilitates the water loss of maize kernels during physiological dehydration[J]. Agronomy Journal, 2020, 112(6): 4926−4938 doi: 10.1002/agj2.20359
[47] 张立国, 张林, 管春云, 等. 玉米生理成熟后籽粒脱水速率与品质性状的相关分析[J]. 东北农业大学学报, 2007, 38(5): 582−585 ZHANG L G, ZHANG L, GUAN C Y, et al. Correlation analysis on dry-down rate and quality traits in corn after physiological maturity[J]. Journal of Northeast Agricultural University, 2007, 38(5): 582−585
[48] 渠建洲. 玉米籽粒含水率和脱水速率的基因挖掘与分析[D]. 杨凌: 西北农林科技大学, 2021 QU J Z. Gene mining and analysis of maize kernel moisture content and dehydration rate[D]. Yangling: Northwest A&F University, 2021
[49] 李璐璐. 玉米籽粒脱水特征及与灌浆的关系[D]. 北京: 中国农业科学院, 2021 LI L L. Characterization of maize grain in-field dry-down and its relation to grain filling[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021
[50] 王利青. 不同年代玉米品种籽粒灌浆特性对深松增密的响应机制研究[D]. 呼和浩特: 内蒙古农业大学, 2021 WANG L Q. Response mechanism of grain filling characteristics of maize varieties in different eras to deep loosening and densification[D]. Hohhot: Inner Mongolia Agricultural University, 2021