Reasons for promoting rhizosphere nutrient absorption and utilization of Atractylodes lancea by intercropping with maize
-
摘要:
与玉米间作能够缓解苍术连作障碍, 而养分条件变化是关键因素之一。为探究苍术||玉米间作对苍术根际养分吸收利用的影响, 本研究开展了为期2年的苍术||玉米间作根际不同分隔处理的田间试验, 共设置了4种处理: 苍术单作(A)、苍术||玉米间作不隔膜(AI)、苍术||玉米间作隔尼龙膜(AN)和苍术||玉米间作隔塑料膜(AP), 分别测定了苍术生物量和4种挥发油成分含量, 苍术根茎氮磷钾含量, 根际土壤pH、有机质和土壤养分因子含量。结果发现, AI和AN处理的苍术根茎鲜重均高于A和AP, 且AI与A和AP的差异达显著水平(P<0.05)。苍术4种挥发油含量均表现为AI和AN高于A和AP, 其中AI的β-桉叶醇含量分别比A和AP显著高128.4%和205.6% (P<0.05), AI和AN的苍术素含量比A和AP显著提高75.0%~875.0% (P<0.05); 相比A和AP, AI和AN的苍术根茎4种挥发油成分总含量显著提高82.8%~210.3% (P<0.05), 表明苍术||玉米间作的地下根际互作对促进苍术根茎生物量和挥发油积累有重要作用。AI和AN比A和AP苍术根际土壤pH下降0.4%~6.3%、土壤有机质含量提高13.5%~48.1%; AI的苍术根际土壤碱解氮含量分别比A和AP显著提高32.8%和36.2% (P<0.05), AN的速效钾含量分别显著提高51.5%和46.7% (P<0.05)。相关性分析发现, 苍术酮主要与苍术根茎氮磷钾含量和根际土壤氮磷钾含量呈正相关, 而苍术素主要与根茎钾含量呈正相关。与A和AP相比, AI苍术磷吸收效率分别提高23.4%和30.0% (P<0.05); AI和AN的氮和钾利用效率比A显著提高131.3%~222.2% (P<0.05)。综上可知, 苍术||玉米间作体系中, 与无根际互作(A和AP)相比, 地下根际互作效应(AI和AN)可提高苍术根际酸化水平, 活化土壤氮磷钾, 促进苍术根茎养分吸收利用, 进而提高苍术产量, 同时影响苍术根茎挥发油积累。本研究揭示了苍术||玉米间作地下根际作用是促进苍术根际养分吸收利用的重要因素, 为药用植物生态多样性种植模式推广提供重要参考。
Abstract:Previous studies have found that intercropping with maize can mitigate the challenges associated with continuous cropping of Atractylodes lancea with alterations in nutrient conditions being a crucial factor. To explore the effect of A. lancea||maize intercropping on absorption and utilization of nutrients in the rhizosphere of A. lancea, through a 2-year field experiment employing different rhizosphere separation treatments. Four treatments were implemented: A. lancea monoculture (A), A. lancea||maize intercropping without separation (AI), A. lancea||maize intercropping with nylon separation (AN), and A. lancea||maize intercropping with a plastic film (AP). The biomass of A. lancea and the contents of four volatile oil components were measured at harvest. The contents of nitrogen, phosphorus, and potassium in the rhizomes of A. lancea, and rhizosphere soil pH, contents of organic matter and nutrients were compared and analyzed. The results indicated that the fresh weight of A. lancea rhizomes in the AI treatment was significantly 21.5% higher than that in treatment A and 69.1% higher than that in treatment AP (P<0.05). Additionally, the AN treatment demonstrated a 10.7% increase compared to the A treatment and a 54.2% increase compared to the AP treatment in A. lancea rhizomes (P<0.05), respectively. The content of β-eudesmol in the AI treatment was significantly higher than that of the A and AP treatments by 128.4% and 205.6%, respectively (P<0.05). The atractylodin content in the AI treatment was significantly higher than those in the A and AP treatments by 875.0% and 97.7% (P<0.05), respectively; and that in the AN treatment was significantly higher than those in the A and AP treatments by 764.0% and 75.0% (P<0.05), respectively. The total content of the four volatile oil components in A. lancea in the AI and AN treatments was significantly higher than that in the A and AP treatments by 82.8%−210.3% (P<0.05), indicating that the underground rhizosphere interaction of A. lancea||maize intercropping played an important role in promoting biomass and volatile oil accumulation in A. lancea rhizome. Compared with the A and AP treatments, the AI and AN treatments decreased the rhizosphere soil pH of A. lancea by 0.4%−6.3%, and the soil organic matter increased by 13.5%−48.1%. While the AI treatment significantly increased the alkali-hydrolyzable nitrogen content by 32.8% and 36.2%; AN treatment significantly increased the available potassium content by 51.5% and 46.7%, and the available phosphorus content by 78.3% and 86.6%, respectively, compared with A and AP treatments. These findings demonstrate that the rhizosphere interaction between A. lancea and maize enhances the rhizosphere acidification level of A. lancea and stimulates soil nitrogen, phosphorus, and potassium compared with no rhizosphere interaction. Correlation analysis showed that atractylon content was positively correlated with nitrogen, phosphorus, and potassium contents in the rhizomes of A. lancea; and nitrogen, phosphorus, and potassium contents in the rhizosphere soil. Atractylodin content was positively correlated with potassium content in the rhizomes of A. lancea. Compared with the A and AP treatments, the AI treatment increased the phosphorus absorption efficiency of A. lancea by 23.4% and 30.0%, respectively. The phosphorus utilization efficiency significantly increased by 224.6% and 43.6% under the AI treatment, and by 157.0% and 13.6% under the AN treatment, compared with the A and AP treatments, respectively. The nitrogen and potassium utilization efficiency was significantly increased by 131.3%−222.2% under the AI and AN treatments compared with the A treatment, indicating that the rhizosphere interaction of intercropping crops promotes phosphorus absorption and improves the nitrogen and potassium utilization of A. lancea. In conclusion, in A. lancea||maize intercropping system, the underground rhizosphere interaction (under AI and AN treatments) promoted the absorption and utilization of nutrients of A. lancea compared to no rhizosphere interaction (under A and AP treatments), thereby increasing the yield of A. lancea and affecting volatile oil accumulation in the rhizomes of A. lancea. This study reveals that the underground rhizosphere interaction in A. lancea||maize intercropping is a key factor that promotes nutrient absorption and utilization of A. lancea and provides an important reference for promoting the ecological diversity of the planting mode of medicinal plants.
-
-
图 2 苍术生物量(A)、挥发油(B)与根茎氮磷钾、土壤理化因子相关程度网络图
Phei: 株高; Bran: 分支数; Adrw: 不定根重; Rhiw: 根茎重; Unfw: 地下总鲜重; Hine: 苍术醇; Eude: β-桉叶醇; A_lon: 苍术酮; A_lodin: 苍术素; Sum: 4种挥发油成分总含量; PNit: 根茎氮; PPho: 根茎磷; PPot: 根茎钾; pH: 土壤酸碱度; Omat: 土壤有机质; TNit: 土壤全氮; TPho: 土壤全磷; TPot: 土壤全钾; ANit: 土壤碱解氮; APho: 土壤速效磷; APot: 土壤速效钾。图中八边形为根茎氮磷钾、土壤理化因子指标, 圆形分别是苍术生物量和挥发油指标, 各指标间连线粗细表示相关程度高低。Phei: plant height; Bran: branches number; Adrw: adventitious root weight; Rhiw: rhizome weight; Unfw: total underground fresh weight; Hine: hineso; Eude: β-eudesmol; A_lon: atractylon; A_lodin: atractylodin; Sum: total volatile oil components; PNit: rhizome nitrogen; PPho: rhizome phosphorus; PPot: rhizome potassium; pH: soil pH; Omat: soil organic matter; TNit: soil total nitrogen; TPho: soil total phosphorus; TPot: soil total potassium; ANit: soil alkali-hydrolyzable nitrogen; APho: soil available phosphorus; APot: soil available potassium. In the figure, the octagons are the indexes of nitrogen, phosphorus and potassium in rhizome of A. lancea and soil physical and chemical factors, and the circles are the biomass and volatile oil indexes of A. lancea respectively. The thickness of the line between each index indicates the degree of correlation.
Figure 2. Network diagram of the correlations of biomass (A) and volatile oils contents (B) of Atractylodes lancea with nitrogen, phosphorus and potassium contents in A. lancea rhizome and soil physical and chemical factors
图 3 苍术生物量、挥发油与根茎氮磷钾、土壤氮磷钾相关趋势
Phei: 株高; Bran: 分支数; Adrw: 不定根重; Rhiw: 根茎重; Unfw: 地下总鲜重; Hine: 苍术醇; Eude: β-桉叶醇; A_lon: 苍术酮; A_lodin: 苍术素; Sum: 4种挥发油成分总含量; PNit: 根茎氮; PPho: 根茎磷; PPot: 根茎钾; TNit: 土壤全氮; TPho: 土壤全磷; TPot: 土壤全钾; ANit: 土壤碱解氮; APho: 土壤速效磷; APot: 土壤速效钾。Phei: plant height; Bran: branches number; Adrw: adventitious root weight; Rhiw: rhizome weight; Unfw: total underground fresh weight; Hine: hineso; Eude: β-eudesmol; A_lon: atractylon; A_lodin: atractylodin; Sum: total volatile oil components; PNit: rhizome nitrogen; PPho: rhizome phosphorus; PPot: rhizome potassium; TNit: soil total nitrogen; TPho: soil total phosphorus; TPot: soil total potassium; ANit: soil alkali-hydrolyzable nitrogen; APho: soil available phosphorus; APot: soil available potassium.
Figure 3. Correlation trend of biomass, volatile oil and rhizome nitrogen, phosphorus and potassium, soil nitrogen, phosphorus and potassium of Atractylodes lancea
表 1 苍术||玉米间作不同分隔处理的苍术生物量变化(n=12)
Table 1 Changes of biomass of Atractylodes lancea under different separation treatments in A. lancea||maize intercropping (n=12)
处理
Treatment株高
Plant height
(cm)分支数
Branch number不定根鲜重
Adventitious root
fresh weight (g∙plant−1)根茎鲜重
Rhizome fresh weight
(g∙plant−1)地下总鲜重
Total underground
fresh weight (g∙plant−1)A 47.01±23.95a 3.56±1.31c 11.64±6.70ab 64.13±34.38b 75.77±40.33ab AI 51.94±14.71a 4.75±0.91ab 15.41±6.97a 77.91±32.92a 92.46±40.43a AN 51.33±23.27a 5.63±1.73a 5.51±2.92b 71.01±24.62ab 76.51±25.82ab AP 55.52±6.53a 3.86±1.02bc 5.78±3.83b 46.06±25.30b 51.84±29.39b A、AI、AN和AP分别为苍术单作、苍术||玉米间作不隔膜、苍术||玉米间作隔尼龙膜和苍术||玉米间作隔塑料膜。同列数据不同小写字母表示不同处理间差异显著(P<0.05)。A, AI, AN and AP are A. lancea monoculture, A. lancea||maize intercropping without separation, A. lancea||maize intercropping with nylon separation and A. lancea||maize intercropping with plastic film separation, respectively. Different lowercase letters in the same column indicate significant differences among treatments (P<0.05). 表 2 苍术||玉米间作不同分隔处理的苍术挥发油含量变化(n=12)
Table 2 Changes of volatile oils contents of Atractylodes lancea under different separation treatments in A. lancea||maize intercropping (n=12)
mg∙g−1(DW) 处理
Treatment苍术醇含量
Hinesol contentβ-桉叶醇含量
β-eudesmol content苍术酮含量
Atractylon content苍术素含量
Atractylodin content挥发油成分总含量
Total content of volatile oil componentsA 3.49±2.08a 2.85±1.91b 1.82±1.91a 1.64±1.12c 9.81±4.07b AI 5.08±3.67a 6.51±2.72a 2.85±1.27a 15.99±5.98a 30.44±12.47a AN 5.82±5.37a 4.43±4.15ab 2.49±1.66a 14.17±7.90a 26.92±16.28a AP 2.32±0.97a 2.13±0.86b 2.20±1.30a 8.09±2.00b 14.73±3.65b A、AI、AN和AP分别为苍术单作、苍术||玉米间作不隔膜、苍术||玉米间作隔尼龙膜和苍术||玉米间作隔塑料膜。同列数据不同小写字母表示不同处理间差异显著(P<0.05)。A, AI, AN and AP are A. lancea monoculture, A. lancea||maize intercropping without separation, A. lancea||maize intercropping with nylon separation and A. lancea||maize intercropping with plastic film separation, respectively. Different lowercase letters in the same column indicate significant differences among treatments (P<0.05). 表 3 苍术||玉米间作不同分隔处理的苍术根茎氮磷钾含量和根际土壤理化因子(n=5)
Table 3 Nitrogen, phosphorus and potassium contents in Atractylodes lancea rhizome and physical and chemical factors in rhizosphere soil of A. lancea||maize intercropping under different separation treatments (n=5)
指标 Index A AI AN AP 根茎含量
Rhizome content氮 Nitrogen (g·kg−1) 20.18±5.08a 19.50±2.80a 19.96±4.43a 17.08±3.10a 磷 Phosphorus (g·kg−1) 3.60±0.41ab 3.69±0.29ab 3.97±0.59a 3.27±0.31b 钾 Potassium (g·kg−1) 7.62±0.49b 7.87±0.64b 9.12±1.07a 7.72±0.61b 根际土壤含量
Rhizosphere soil contentpH 5.12±0.10a 5.10±0.12a 5.09±0.14a 5.44±0.40a 有机质 Organic matter (g·kg−1) 17.88±0.21ab 20.29±1.55ab 22.79±4.37a 15.39±3.69b 全氮 Total nitrogen (g·kg−1) 0.96±0.11ab 1.07±0.08ab 1.24±0.35a 0.91±0.17b 全磷 Total phosphorus (g·kg−1) 1.00±0.12b 0.82±0.07b 1.21±0.21a 0.96±0.16b 全钾 Total potassium (g·kg−1) 12.40±0.91c 17.53±0.91a 15.69±1.74b 14.02±1.01bc 碱解氮 Alkali-hydrolyzable nitrogen (mg·kg−1) 67.33±6.42b 89.42±14.68a 91.68±15.60a 65.66±14.32b 速效磷 Available phosphorus (mg·kg−1) 14.38±2.81ab 10.21±1.94ab 25.64±18.56a 13.74±4.82ab 速效钾 Available potassium (mg·kg−1) 143.00±36.29b 127.60±13.46b 216.60±53.43a 147.64±42.99b A、AI、AN和AP分别为苍术单作、苍术||玉米间作不隔膜、苍术||玉米间作隔尼龙膜和苍术||玉米间作隔塑料膜。同列数据不同小写字母表示不同处理间差异显著(P<0.05)。A, AI, AN and AP are A. lancea monoculture, A. lancea||maize intercropping without separation, A. lancea||maize intercropping with nylon separation and A. lancea||maize intercropping with plastic film separation, respectively. Different lowercase letters in the same column indicate significant differences among treatments (P<0.05). 表 4 苍术根茎氮磷钾含量与土壤理化因子相关性(n=5)
Table 4 Correlation between nitrogen, phosphorus and potassium contents in rhizome of Atractylodes lancea and soil physical and chemical factors (n=5)
PNit PPho PPot pH Omat TNit TPho TPot ANit APho APot PNit 1.000 PPho 0.7515*** 1.000 PPot 0.2092 0.6035** 1.000 pH −0.4390 −0.5580* −0.3336 1.000 Omat 0.2010 0.3509 0.1800 −0.3359 1.000 TNit 0.2561 0.4289 0.6448** −0.3534 0.2439 1.000 TPho 0.2408 0.3685 0.5647** −0.2354 0.1568 0.7216*** 1.000 TPot 0.0137 0.1968 0.3028 −0.2751 0.1658 0.3646 0.0332 1.000 ANit −0.0256 0.2149 0.4438* −0.3275 0.5613* 0.6545** 0.2758 0.4416 1.000 APho 0.3585 0.4490* 0.6608** −0.2110 −0.0093 0.8705*** 0.8183*** 0.1335 0.3195 1.000 APot 0.0803 0.1364 0.4912* −0.0626 0.2194 0.8037*** 0.8135*** 0.1308 0.5378* 0.7805*** 1.000 PNit: 根茎氮; PPho: 根茎磷; PPot: 根茎钾; pH: 土壤酸碱度; Omat: 土壤有机质; TNit: 土壤全氮; TPho: 土壤全磷; TPot: 土壤全钾; ANit: 土壤碱解氮; APho: 土壤速效磷; APot: 土壤速效钾; *: P<0.05; **: P<0.01; ***: P<0.001。PNit: rhizome nitrogen; PPho: rhizome phosphorus; PPot: rhizome potassium; pH: soil pH; Omat: soil organic matter; TNit: soil total nitrogen; TPho: soil total phosphorus; TPot: soil total potassium; ANit: soil alkali-hydrolyzable nitrogen; APho: soil available phosphorus; APot: soil available potassium; *: P<0.05; **: P<0.01; ***: P<0.001. 表 5 苍术||玉米间作不同分隔处理的苍术根茎养分吸收和利用效率(n=5)
Table 5 Nutrient absorption and utilization efficiency of rhizomes of Atractylodes lancea||maize intercropping under different separation treatments (n=5)
处理
Treatment养分吸收效率 Nutrient uptake efficiency (mg·kg−1) 养分利用效率 Nutrient utilization efficiency (kg·kg−1) 氮 Nitrogen 磷 Phosphorus 钾 Potassium 氮 Nitrogen 磷 Phosphorus 钾 Potassium A 21.53±6.54a 3.67±0.64ab 0.62±0.05a 1.62±0.68b 8.32±1.49d 4.00±1.12d AI 18.40±3.30a 4.53±0.65a 0.45±0.03b 5.22±1.22a 27.01±4.22a 12.70±2.03a AN 16.70±3.53a 3.32±0.57b 0.59±0.10a 4.33±0.71a 21.36±2.64ab 9.25±1.25b AP 19.93±7.01a 3.49±0.58b 0.55±0.06ab 3.71±1.62a 18.81±7.43bc 7.87±3.03b A、AI、AN和AP分别为苍术单作、苍术||玉米间作不隔膜、苍术||玉米间作隔尼龙膜和苍术||玉米间作隔塑料膜。同列数据不同小写字母表示不同处理间差异显著(P<0.05)。A, AI, AN and AP are A. lancea monoculture, A. lancea||maize intercropping without separation, A. lancea||maize intercropping with nylon separation and A. lancea||maize intercropping with plastic film separation, respectively. Different lowercase letters in the same column indicate significant differences among treatments (P<0.05). -
[1] 唐明明, 董楠, 包兴国, 等. 西北地区不同间套作模式养分吸收利用及其对产量优势的影响[J]. 中国农业大学学报, 2015, 20(5): 48−56 TANG M M, DONG N, BAO X G, et al. Effects of nutrient uptake and utilization on yield of intercropping systems in Northwest China[J]. Journal of China Agricultural University, 2015, 20(5): 48−56
[2] 苏本营, 陈圣宾, 李永庚, 等. 间套作种植提升农田生态系统服务功能[J]. 生态学报, 2013, 33(14): 4505−4514 doi: 10.5846/stxb201204200574 SU B Y, CHEN S B, LI Y G, et al. Intercropping enhances the farmland ecosystem services[J]. Acta Ecologica Sinica, 2013, 33(14): 4505−4514 doi: 10.5846/stxb201204200574
[3] 邓小燕. 玉米—大豆和玉米—甘薯套作模式下玉米磷素吸收利用特性研究[D]. 雅安: 四川农业大学, 2014 DENG X Y. Study on phosphorus uptake and utilization of maize in maize-soybean and maize-sweet potato relay strip intercropping systems[D]. Ya’an: Sichuan Agricultural University, 2014
[4] 李隆, 李淑敏, 孙建好, 等. 多样性增加生产力的一种机制−蚕豆和玉米间套作对根际磷吸收的促进[J]. 中国基础科学, 2007, 9(4): 22, 65 LI L, LI S M, SUN J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. China Basic Science, 2007, 9(4): 22, 65
[5] 黄武艺. 甘蔗间套种模式成绩斐然[J]. 农家之友, 2009(6): 14−16 HUANG W Y. The intercropping model of sugarcane has made great achievements[J]. Friends of the Farm, 2009(6): 14−16
[6] DUAN Y, SHANG X W, LIU G D, et al. The effects of tea plants-soybean intercropping on the secondary metabolites of tea plants by metabolomics analysis[J]. BMC Plant Biology, 2021, 21(1): 482 doi: 10.1186/s12870-021-03258-1
[7] GITARI H I, KARANJA N N, GACHENE C K K, et al. Nitrogen and phosphorous uptake by potato (Solanum tuberosum L.) and their use efficiency under potato-legume intercropping systems[J]. Field Crops Research, 2018, 222: 78−84 doi: 10.1016/j.fcr.2018.03.019
[8] 李恩慧, 王玉慧, 杨慎骄, 等. 小麦间套作苜蓿对土壤养分及作物养分吸收效率的影响[J]. 中国草地学报, 2020, 42(5): 110−117 doi: 10.16742/j.zgcdxb.20190291 LI E H, WANG Y H, YANG S J, et al. Effects of wheat-alfalfa intercropping system on soil nutrients and plant nutrient absorption efficiency[J]. Chinese Journal of Grassland, 2020, 42(5): 110−117 doi: 10.16742/j.zgcdxb.20190291
[9] LI L, LI S M, SUN J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192−11196
[10] YU R P, YANG H, XING Y, et al. Belowground processes and sustainability in agroecosystems with intercropping[J]. Plant and Soil, 2022, 476(1): 263−288
[11] 钱韩玲, 朱启林, 周龙, 等. 间作促进作物磷吸收的氮素调控效应[J]. 农业资源与环境学报, 2019, 36(4): 471−479 doi: 10.13254/j.jare.2018.0108 QIAN H L, ZHU Q L, ZHOU L, et al. Regulation effect of nitrogen application on promotion of phosphorus uptake of crops under intercropping[J]. Journal of Agricultural Resources and Environment, 2019, 36(4): 471−479 doi: 10.13254/j.jare.2018.0108
[12] SALEHI A, MEHDI B, FALLAH S, et al. Productivity and nutrient use efficiency with integrated fertilization of buckwheat-fenugreek intercrops[J]. Nutrient Cycling in Agroecosystems, 2018, 110(3): 407−425 doi: 10.1007/s10705-018-9906-x
[13] LU W T, SHEN X F, CHEN Y. Effects of intercropping peanut on soil nutrient status and microbial activity within young Camellia oleifera plantation[J]. Communications in Soil Science and Plant Analysis, 2019, 50(10): 1232−1238 doi: 10.1080/00103624.2019.1614600
[14] YU M, WANG X C, LING F, et al. Atractylodes lancea volatile oils attenuated helicobacter pylori NCTC11637 growth and biofilm[J]. Microbial Pathogenesis, 2019, 135: 103641 doi: 10.1016/j.micpath.2019.103641
[15] BAILLY C. Atractylenolides, essential components of Atractylodes-based traditional herbal medicines: Antioxidant, anti-inflammatory and anticancer properties[J]. European Journal of Pharmacology, 2021, 891: 173735 doi: 10.1016/j.ejphar.2020.173735
[16] XU K, JIANG J S, FENG Z M, et al. Bioactive sesquiterpenoid and polyacetylene glycosides from Atractylodes lancea[J]. Journal of Natural Products, 2016, 79(6): 1567−1575 doi: 10.1021/acs.jnatprod.6b00066
[17] 杨东方, 姚雪峰, 蔡翠芳, 等. 苍术组织培养与栽培技术研究进展[J]. 山西中医, 2012, 28(4): 52−54 YANG D F, YAO X F, CAI C F, et al. Advances in tissue culture and cultivation techniques of Atractylodes lancea[J]. Shanxi Journal of Traditional Chinese Medicine, 2012, 28(4): 52−54
[18] 郭兰萍, 黄璐琦, 胡娟, 等. 基于生物信息分析的苍术挥发油成分变异及其化学型的划分[J]. 资源科学, 2008, 30(5): 770−777 GUO L P, HUANG L Q, HU J, et al. Variation rules and chemotype classification of Atractylodes lancea essential oil based on bio-information science[J]. Resources Science, 2008, 30(5): 770−777
[19] 黄璐. 怀地黄连作障碍及块根发育受阻机理研究[D]. 新乡: 河南师范大学, 2019 HUANG L. Study on the mechanism of continuous cropping obstacles and blocked root development in Rehmannia glutinosa[D]. Xinxiang: Henan Normal University, 2019
[20] 王文庆. 平遥长山药连作障碍机理研究及其防治对策[D]. 太原: 山西大学, 2011 WANG W Q. The mechanisms research and countermeasures of continuous cropping barriers of Pingyao Chinese yam[D]. Taiyuan: Shanxi University, 2011
[21] 侯慧芝, 张绪成, 汤瑛芳, 等. 半干旱区全膜覆盖垄沟种植马铃薯/蚕豆间作的产量和水分效应[J]. 草业学报, 2016, 25(6): 71−80 HOU H Z, ZHANG X C, TANG Y F, et al. Effects of potato-faba bean intercropping on crop productivity and soil water under a plastic mulch and ridge-furrow planting system in a semiarid area[J]. Acta Prataculturae Sinica, 2016, 25(6): 71−80
[22] 杨坚群. 玉米花生间作对缓解花生连作障碍的作用机理研究[D]. 泰安: 山东农业大学, 2019 YANG J Q. Mechanism of maize and peanut intercropping on alleviating peanut continuous cropping[D]. Tai’an: Shandong Agricultural University, 2019
[23] PENG Z, GUO X Z, XIANG Z X, et al. Maize intercropping enriches plant growth-promoting rhizobacteria and promotes both the growth and volatile oil concentration of Atractylodes lancea[J]. Frontiers in Plant Science, 2022, 13: 1029722 doi: 10.3389/fpls.2022.1029722
[24] 储成才, 王毅, 王二涛. 植物氮磷钾养分高效利用研究现状与展望[J]. 中国科学: 生命科学, 2021, 51(10): 1415−1423 doi: 10.1360/SSV-2021-0163 CHU C C, WANG Y, WANG E T. Improving the utilization efficiency of nitrogen, phosphorus and potassium: current situation and future perspectives[J]. Scientia Sinica (Vitae), 2021, 51(10): 1415−1423 doi: 10.1360/SSV-2021-0163
[25] 赵鑫, 蔡慢弟, 董倩倩, 等. 中低品位磷矿资源高效利用机制与途径研究进展[J]. 植物营养与肥料学报, 2018, 24(4): 1121−1130 doi: 10.11674/zwyf.17418 ZHAO X, CAI M D, DONG Q Q, et al. Advances of mechanisms and technology pathway of efficient utilization of medium-low grade phosphate rock resources[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 1121−1130 doi: 10.11674/zwyf.17418
[26] 臧祎娜, 张德闪, 李海港, 等. 褪黑素调控根系生长和根际互作的机制研究进展[J]. 植物营养与肥料学报, 2019, 25(4): 671−682 ZANG Y N, ZHANG D S, LI H G, et al. Progress in mechanism of melatonin regulation of root growth and rhizosphere interactions[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 671−682
[27] 李强, 姚霞, 孙楷, 等. 不同光质对茅苍术生长、抗氧化酶活性及挥发油含量的影响[J]. 中国实验方剂学杂志, 2018, 24(10): 27−32 LI Q, YAO X, SUN K, et al. Effect of different light quality on growth, anti-oxidative enzyme activities and volatile oil content of Atractylodes lancea[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2018, 24(10): 27−32
[28] 中华人民共和国农业部. 植物中氮、磷、钾的测定: NY/T 2017—2011[S]. 北京: 中国农业出版社, 2011 Ministry of Agriculture of People’s Republic of China. NY/T 2017—2011 Determination of Nitrogen, Phosphorus and Potassium in Plants[S]. Beijing: China Agriculture Press, 2011
[29] 全国农业技术推广服务中心. 土壤分析技术规范[M]. 2版. 北京: 中国农业出版社, 2006: 13–84 National Agricultural Technology Extension Service Center. Technical Specification for Soil Analysis[M]. 2nd Edition. Beijing: China Agriculture Press, 2006: 13–84
[30] 全国农业技术推广服务中心, 中国农业科学院农业资源与农业区划研究所, 华中农业大学. NY/T 1121.6—2006 土壤检测第 6 部分: 土壤有机质的测定[S]. 北京: 农业行业标准, 2006 National Agricultural Technology Extension Service Center, Institute of Agricultural Resources and Agricultural Regionalization of Chinese Academy of Agricultural Sciences, Huazhong Agricultural University. NY/T 1121.6—2006 Soil Testing Part 6: Method for Determination of Soil Organic Matter[S]. Beijing: Agricultural Industry Standards, 2006
[31] 中国林业科学研究院林业研究所. LY/T 1228—1999 森林土壤全氮的测定[S]. 北京: 中国林业科学研究院林业研究所, 1999 Institute of Forestry, Chinese Academy of Forestry Sciences. LY/T 1228—1999 Determination of Total Nitrogen in Forest Soil[S]. Beijing: Institute of Forestry, Chinese Academy of Forestry Sciences, 1999
[32] 中国林业科学研究院林业研究所. LY/T 1232—1999 森林土壤全磷的测定[S]. 北京: 中国林业科学研究院林业研究所, 1999 Institute of Forestry, Chinese Academy of Forestry Sciences. LY/T 1232—1999 Determination of Total Phosphorus in Forest Soil[S]. Beijing: Institute of Forestry, Chinese Academy of Forestry Sciences, 1999
[33] 中国林业科学研究院林业研究所. LY/T 1233—1999 森林土壤有效磷的测定[S]. 北京: 中国林业科学研究院林业研究所, 1999 Institute of Forestry, Chinese Academy of Forestry Sciences. LY/T 1233—1999 Determination of Available Phosphorus in Forest Soil[S]. Beijing: Institute of Forestry, Chinese Academy of Forestry Sciences, 1999
[34] 全国农业技术推广服务中心, 中国农业大学, 杭州土壤肥料测试中心. NY/T 889—2004 土壤速效钾和缓效钾含量的测定[S]. 北京: 中华人民共和国农业部, 2005 National Agricultural Technology Extension Service Center, China Agricultural University, Hangzhou Soil and Fertilizer Testing Center. NY/T 889—2004 Determination of Exchangeable Potassium and Non-exchangeable Potassium Content in Soil[S]. Beijing: Ministry of Agriculture of People’s Republic of China, 2005
[35] XU Z, LI C J, ZHANG C C, et al. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use: A meta-analysis[J]. Field Crops Research, 2020, 246: 107661 doi: 10.1016/j.fcr.2019.107661
[36] ROOHI M, SALEEM ARIF M, GUILLAUME T, et al. Role of fertilization regime on soil carbon sequestration and crop yield in a maize-cowpea intercropping system on low fertility soils[J]. Geoderma, 2022, 428: 116152 doi: 10.1016/j.geoderma.2022.116152
[37] ZHANG J, YIN B J, XIE Y H, et al. Legume-cereal intercropping improves forage yield, quality and degradability[J]. PLoS One, 2015, 10(12): e0144813 doi: 10.1371/journal.pone.0144813
[38] 祝蕾, 严辉, 刘培, 等. 药用植物根际微生物对其品质形成的影响及其作用机制的研究进展[J]. 中草药, 2021, 52(13): 4064−4073 ZHU L, YAN H, LIU P, et al. Research progress on effects of rhizosphere microorganisms on quality formation of medicinal plants and their interaction mechanisms[J]. Chinese Traditional and Herbal Drugs, 2021, 52(13): 4064−4073
[39] 张宝华. 药用植物与根际微生物互作的研究进展[J]. 化工设计通讯, 2021, 47(5): 195−196 doi: 10.3969/j.issn.1003-6490.2021.05.092 ZHANG B H. Research progress on the interaction between medicinal plants and rhizosphere microorganisms[J]. Chemical Engineering Design Communications, 2021, 47(5): 195−196 doi: 10.3969/j.issn.1003-6490.2021.05.092
[40] 郭秀芝, 彭政, 王铁霖, 等. 间套作体系下种间互作对药用植物影响的研究进展[J]. 中国中药杂志, 2020, 45(9): 2017−2022 GUO X Z, PENG Z, WANG T L, et al. Research progress in effects of interspecific interaction on medicinal plants in intercropping system[J]. China Journal of Chinese Materia Medica, 2020, 45(9): 2017−2022
[41] 王琪, 王红兰, 孙辉, 等. 蚕豆间作对羌活次生代谢产物及根际土壤微生物多样性的影响[J]. 中国中药杂志, 2022, 47(10): 2597−2604 doi: 10.19540/j.cnki.cjcmm.20220117.102 WANG Q, WANG H L, SUN H, et al. Effect of intercropping with Vicia faba on secondary metabolites and rhizosphere soil microbial diversity of Notopterygium incisum[J]. China Journal of Chinese Materia Medica, 2022, 47(10): 2597−2604 doi: 10.19540/j.cnki.cjcmm.20220117.102
[42] LI B, LI Y Y, WU H M, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23): 6496−6501
[43] MOHAMMADZADEH V, REZAEI-CHIYANEH E, MAHDAVIKIA H, et al. Effect of intercropping and bio-fertilizer application on the nutrient uptake and productivity of mung bean and marjoram[J]. Land, 2022, 11(10): 1825 doi: 10.3390/land11101825
[44] 董艳, 董坤, 汤利, 等. 小麦蚕豆间作对蚕豆根际微生物群落功能多样性的影响及其与蚕豆枯萎病发生的关系[J]. 生态学报, 2013, 33(23): 7445−7454 DONG Y, DONG K, TANG L, et al. Relationship between rhizosphere microbial community functional diversity and faba bean fusarium wilt occurrence in wheat and faba bean intercropping system[J]. Acta Ecologica Sinica, 2013, 33(23): 7445−7454
[45] 于洪杰. 施磷与间作对番茄和分蘖洋葱根系分布与磷吸收的影响[D]. 哈尔滨: 东北农业大学, 2016 YU H J. Effect of phosphate application and intercropping on tomato and tillered-onion’s root distribution and phosphorus uptake[D]. Harbin: Northeast Agricultural University, 2016
[46] 杨欢, 周颖, 陈平, 等. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476−1487 doi: 10.3724/SP.J.1006.2022.13017 YANG H, ZHOU Y, CHEN P, et al. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system[J]. Acta Agronomica Sinica, 2022, 48(6): 1476−1487 doi: 10.3724/SP.J.1006.2022.13017
[47] 徐强, 谢宝英, 卢涛, 等. 线辣椒玉米套作的养分吸收利用及产量优势分析[J]. 园艺学报, 2010, 37(8): 1247−1256 doi: 10.16420/j.issn.0513-353x.2010.08.020 XU Q, XIE B Y, LU T, et al. Studies on uptake and utilization of nitrogen, phosphorus and potassium and yield advantage in Capsicum/maize relay intercropping system[J]. Acta Horticulturae Sinica, 2010, 37(8): 1247−1256 doi: 10.16420/j.issn.0513-353x.2010.08.020
[48] 王瑞雪, 苏丽珍, 张连娅, 等. 玉米与大豆间作土壤生物学活性对磷有效性影响的定量解析[J]. 中国生态农业学报(中英文), 2022, 30(7): 1155−1163 doi: 10.12357/cjea.20210636 WANG R X, SU L Z, ZHANG L Y, et al. Quantitative mechanism analysis of the improved P availability in red soil during maize/soybean intercropping[J]. Chinese Journal of Eco-Agriculture, 2022, 30(7): 1155−1163 doi: 10.12357/cjea.20210636
[49] 姜玉超. 玉米花生间作对土壤肥力特性的影响[D]. 洛阳: 河南科技大学, 2015 JIANG Y C. Effects of maize-peanut intercropping on soil fertility characteristics[D]. Luoyang: Henan University of Science and Technology, 2015
[50] ZHU S G, CHENG Z G, WANG J, et al. Soil phosphorus availability and utilization are mediated by plant facilitation via rhizosphere interactions in an intercropping system[J]. European Journal of Agronomy, 2023, 142: 126679 doi: 10.1016/j.eja.2022.126679
[51] INAL A, GUNES A, ZHANG F, et al. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots[J]. Plant Physiology and Biochemistry, 2007, 45(5): 350−356 doi: 10.1016/j.plaphy.2007.03.016
[52] LI Q, CHEN J, WU L, et al. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems[J]. International Journal of Molecular Sciences, 2018, 19(2): 622 doi: 10.3390/ijms19020622
[53] WEI W, YE C, HUANG H C, et al. Appropriate nitrogen application enhances saponin synthesis and growth mediated by optimizing root nutrient uptake ability[J]. Journal of Ginseng Research, 2020, 44(4): 627−636 doi: 10.1016/j.jgr.2019.04.003
[54] 冯玄. 鱼腥草(Houttuynia cordata Thunb)次生代谢产物与土壤特征的相关性[D]. 贵阳: 贵州师范大学, 2019 FENG X. Secondary metabolites and rhizosphere soil characteristics of Houttuynia cordata Thunb[D]. Guiyang: Guizhou Normal University, 2019
[55] 王静, 王渭玲, 徐福利, 等. 氮磷钾对桔梗生长及次生代谢产物的影响[J]. 草业科学, 2012, 29(4): 586−591 WANG J, WANG W L, XU F L, et al. Effects of nitrogen, phosphorus and potassium on the growth and secondary metabolites of Platycodon grandiflorum[J]. Pratacultural Science, 2012, 29(4): 586−591
[56] 张洁, 张莹, 贾小云, 等. 远志养分吸收规律及其与药效成分积累的关系[J]. 植物营养与肥料学报, 2019, 25(7): 1230−1238 doi: 10.11674/zwyf.18299 ZHANG J, ZHANG Y, JIA X Y, et al. Nutrient uptake rules of Polygala tenuifolia and its relationship with accumulation of bioactive components[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1230−1238 doi: 10.11674/zwyf.18299
[57] 邢雪荣, 韩兴国, 陈灵芝. 植物养分利用效率研究综述[J]. 应用生态学报, 2000, 11(5): 785−790 doi: 10.3321/j.issn:1001-9332.2000.05.033 XING X R, HAN X G, CHEN L Z. A review on research of plant nutrient use efficiency[J]. Chinese Journal of Applied Ecology, 2000, 11(5): 785−790 doi: 10.3321/j.issn:1001-9332.2000.05.033
[58] 周健民, 沈仁芳. 土壤学大辞典[M]. 北京: 科学出版社, 2013 ZHOU J M, SHEN R F. Dictionary of Soil Science[M]. Beijing: Science Press, 2013