Effects of rural landscape spatial morphology on plant diversity in the Yangtze River Delta region
-
摘要: 景观空间形态影响下的乡村植物多样性分析, 对于高质量提升乡村人居环境、稳定维持乡村生态系统及其生物多样性具有重要意义。选取江苏省南京市江宁区14个村落作为试验样区, 采用逐步回归、NMDS-Envfit等模型, 探讨了长三角乡村地区多维度景观空间形态指标对植物α多样性、β多样性的影响。结果表明: 1)乡村景观空间形态指标对植物α多样性产生了影响, 乡村半自然斑块面积比例、凝聚度、地表粗糙度、土地利用动态度等是影响长三角地区乡村植物α多样性最主要的景观空间因素。其中斑块欧式最邻近距离、斑块面积显著负向影响乔木层α多样性, 斑块破碎化和高密度道路建设对灌木层植物多样性有负作用, 土地利用动态度的增加导致了灌木层植物多样性降低, 道路距离与草本层植物多样性的负向关系突出。2)在乔木层, 地表粗糙度、半自然斑块面积比例等是β多样性的最主要影响因素; 在灌木层, 地表粗糙度、香农多样性指数为最主要的影响因素; 在草本层, 斑块面积、道路密度为最主要的影响因素。3)基于景观生态学的二维指标、三维地表度量指标对植物多样性影响最为显著, 四维景观历史动态度量指标对植物多样性影响微弱, 基于城市形态学的二维指标对植物多样性影响相对最弱。根据以上结果, 提出有效增加半自然生境面积比例和景观异质性、全面提升乡村景观凝聚度、科学维护乡村高价值林地景观、充分重视乡村历史土地利用等景观响应策略, 为乡村景观营建过程中的生物多样性维持提供参考, 并对长三角地区乡村空间规划提供了有益的量化引导。Abstract: Analyzing rural plant diversity in relation to landscape spatial morphology is necessary to improve rural living environments and maintaining stable rural ecosystems and biodiversity. Fourteen villages in Jiangning District, Nanjing City, Jiangsu Province were selected as experimental areas, and models such as stepwise regression and NMDS-Envfit were used to explore the impact of rural landscape spatial indicators on the α diversity and β diversity of rural plants in the Yangtze River Delta region. Landscape indicators included two-dimensional plane forms, three-dimensional surface features, and four-dimensional historical dynamics. The research conclusions can be summarized as follows: 1) Landscape spatial morphological indicators, such as the percentage of the landscape area covered with semi-natural patches, landscape cohesion index, surface roughness, and patch Euclidean nearest neighbor distance, had relatively significant impact on plant diversity. The patch Euclidean nearest-neighbor distance and patch area significantly and negatively affected the diversity of the arborous layer. Patch fragmentation, higher road density, and higher comprehensive dynamic degree of land use had a negative impact on the α diversity of shrub layer, while the distance from the road obviously affected the α diversity of herbaceous layer. 2) Rural landscape spatial morphological indicators had an impact on plant β diversity. Specifically, in the arborous layer, surface roughness and percentage of landscape area covered with semi-natural patches were the most important influencing factors. In the shrub layer, surface roughness and Shannon diversity index were the most important influencing factors. In the herbaceous layer, patch area and rural road density were the most important influencing factors. 3) Considering the significance of landscape indicators, landscape ecological indicators and three-dimensional surface characteristics had the most significant impact on plant diversity. The main manifestations were the positive correlation between the proportion of semi-natural patch area, patch area, cohesion degree, surface roughness, and plant diversity. The historical dynamics of the four-dimensional landscape had a weak impact on plant diversity, mainly manifesting as a positive correlation with the dynamic degree of semi-natural patches. Two-dimensional landscape indicators based on urban spatial morphology had the weakest impact on plant diversity, mainly manifesting as the negative effects of rural spatial accessibility and road density on plant diversity. Based on the above results, landscape response strategies are proposed to provide guidance for the rural landscape construction process, such as effectively increasing the proportion of semi-natural habitat areas and landscape heterogeneity, comprehensively improving rural landscape cohesion, scientifically maintaining rural high-value woodland landscapes, and fully focusing on rural historical land use. This study provides a reference for the maintenance of biodiversity during rural landscape construction and useful quantitative guidance for rural spatial planning in the Yangtze River Delta region.
-
-
图 1 研究区14个村落景观要素及植物群落调查样方空间分布
各村落名称见表1。The full name of each village is shown in Table 1.
Figure 1. Spatial distribution of landscape elements and plant communities survey quadrats in the 14 selected villages in the study area
图 2 研究区14个村落的乡村景观空间形态指标值
指标详情见表3。横轴为乡村, 其标签从左至右均按表1第2列从上至下顺序排列。
Figure 2. Values of spatial morphology indicators of rural landscape in 14 villages in the study area
Details of the codes for all indicators are shown in Table 3. The X axis is village, and the lables of X axis arranged from left to right in order from top to bottom in the second column in Table 1.
图 3 基于线性回归分析的景观空间形态指标对植物α多样性[Shannon-Wiener多样性指数(H)和Pielou均匀度指数(J)]的影响分析
指标详情见表3和表4。***、**和*分别表示因子的影响程度达P<0.001、P<0.01和P<0.05显著水平, 无*表示因子影响的显著程度为0.05<P<0.1。标准化回归系数绝对值越高, 因子相对影响作用越大。
Figure 3. Effects of landscape spatial morphological indicators on plant α diversity (Shannon-Wiener diversity index, H; and Pielou evenness index, J) based on linear regression analysis
Details of the codes for all indicators are shown in Table 3 and 4. ***, ** and * indicate significant effects of indicators at P<0.001, P<0.01 and P<0.05 levels, respectively; no * indicates effect degree of factors at 0.05<P<0.1. The higher the absolute value of the standardized regression coefficient, the greater the relative influence of the factor.
图 4 基于非度量多维分析(NMDS)的景观空间形态指标对植物β多样性的影响分析
指标详情见表3和表4。图中仅展示了影响显著(P<0.05)的景观空间形态指标。箭头表示变量的影响(Envfit相关性), 箭头长度与相关性强弱呈正比。
Figure 4. Effects of landscape spatial morphological indicators on plant β diversity based on non-metric multidimensional scaling (NMDS)
Details of the codes for all indicators are shown in Table 3 and 4. The indicators presented in the figures are landscape spatial morphological indicators with significant effects (P<0.05). Arrows indicate the influence of significant indicators (Envfit correlation), and the length of the arrow is proportional to the correlation.
表 1 基于山形地貌差异的乡村样本及其景观空间类型
Table 1 Rural samples and their landscape space types based on differences in mountain topography
景观空间类型
Landscape space type村落
Village编码
Code地理坐标(中心点) Geographical coordinates (center point) 经度 Longitude (°) 纬度 Latitude (°) 高岗丘陵型
High hilly type大冯 Dafeng DF 118.6947 31.7822 枯桩岘 Kuzhuangxian KZX 118.6853 31.7565 大山南 Dashannan DSN 118.6794 31.7327 黄龙岘 Huanglongxian HLX 118.6833 31.7837 戴村 Daicun DC 118.5787 31.7598 石塘 Shitang ST 118.7095 31.7274 低岗缓坡型
Low hill and gentle slope type千里 Qianli QL 118.6764 31.8082 晋家凹 Jinjia’ao JJA 118.7305 31.7931 山门口 Shanmenkou SMK 118.6424 31.7456 青年 Qingnian QN 118.6065 31.7872 水网平原型
Water network flat prototype郭家 Guojia GJ 118.6529 31.7828 石塘李 Shitangli STL 118.7207 31.8273 小庄 Xiaozhuang XZ 118.6305 31.8198 响水 Xiangshui XS 118.6562 31.7985 表 2 研究区不同生境不同层次植物样方数量统计
Table 2 Statistics of plant quadrats number of different layers in different habitats in the study area
生境类型
Habitat type释义
Definition乔木层
Arborous layer灌木层
Shrub layer草本层
Herbaceous layer茶林交错生境
Tea fields and woodlands
intersect habitat分布于茶田边缘与林地边缘交错区, 取样中心距茶田边缘50~200 m
Distributed in the intersecting area of tea field edge and woodland edge,
and the distance from quadrat center to tea field edge is 50−200 m41 87 216 近水生境
Habitat near water样方中心与池塘边缘距离100 m以内范围
Area within 100 m from quadrat center to the pond edge26 67 148 居民点周边生境
Habitat around settlements样方中心与居民点建筑距离在100 m以内范围
Area within 100 m from quadrat center to the residential buildings24 53 140 农田边缘生境
Habitat at the edge of farmland样方中心与农田边缘距离100 m以内范围的非农生境
Non-agricultural habitat within 100 m from the quadrat center to the edge of farmland15 28 80 人工林生境
Artificial forest habitat主要为单一树种人工林
Artificial forests with single tree species10 28 73 其他林地生境
Other forest habitat其他低干扰性次生林生境
Other low-disturbed secondary forest habitats24 57 123 表 3 乡村景观空间形态四维定量指标体系(景观尺度)
Table 3 Four-dimensional quantitative indicator system of spatial morphology in rural landscape (landscape scale)
指标类型 Indicator type 指标 Indicator 释义 Definition 基于景观生态
学的二维指标
Two-dimensional indicators based on landscape ecology景观形状面积指标
Landscape shape and area indicators1 斑块密度
Patch density (PD) [patche∙(100 hm2)−1]单位面积上的斑块数量
Number of patches per unit area2 边缘密度
Edge density (ED) (m∙hm−2)揭示景观被分割的破碎程度
Revealing the fragmented level of landscape3 景观形状指数
Landscape shape index (LSI)随着景观形状变得更加不规则而增加
Increasing as landscape shape becoming more irregular4 平均形状指数
Mean shape index (SHAPE_AM)面积加权结果。反映斑块形状复杂程度, 圆形为最小值1,
斑块形状越复杂值越大
It is the area-weighted value, and reflects the complexity of patch shape. The minimum value is 1, which refers to circle. The more complex the patch shape, the larger the value景观聚合性指标
Landscape aggregation indicators5 欧式最邻近距离
Euclidean nearest neighbor distance (ENN) (m)利用基于斑块之间的欧几里得最邻近距离来量化斑块
隔离度
Quantifying patch isolation level based on Euclidean nearest neighbor distance between patches6 连通性
Connectance index (CONNECT)反映景观组分之间的功能连接性
Reflecting the functional connectivity level between landscape components7 凝聚度
Cohesion index (COHESION)反映斑块聚集状态, 越大越聚集
Reflecting the aggregation status of patches. The larger the value, the more aggregated it is8 蔓延度
Contagion index (CONTAG)描述不同斑块类型的延展趋势, 值越低景观破碎化越严重
Describing the extension trends of different patch types. The lower the value, the more serious the landscape fragmentation景观多样性
Landscape diversity9 香农多样性指数
Shannon’s diversity index (SHDI)反映景观异质性, 且稀有斑块类型对指标值贡献大
Reflecting landscape heterogeneity, and rare patch types contribute greatly to the index value半自然景观指标
Semi-natural landscape indicators10 半自然斑块面积比例
Percentage of the landscape area covered with semi-natural patch (PLAND_Semi) (%)半自然生境的斑块面积比例, 用以评估土地利用强度
Proportion of patch areas in semi-natural habitats is used to assess land use intensity续表3 指标类型 Indicator type 指标 Indicator 释义 Definition 基于景观生态
学的二维指标
Two-dimensional indicators based on landscape ecology半自然景观指标
Semi-natural landscape indicators11 半自然斑块连通性
Connectance index of semi-natural patches (CONNECT_Semi)反映的是半自然景观之间的功能连接性
Reflecting the functional connectivity between semi-natural landscapes基于城市形态学的二维指标
Two-dimensional indicators based on urban morphology12 村庄边界形状指数
Shape index of the settlement boundary (SISB)代表乡村聚落生活空间边界的复杂程度,
数值越高说明边界越凹凸破碎Representintg the boundary complexity of rural settlement’s living space. The higher the value, the more concave and convex the boundary is 13 半自然斑块分维指数
Fractal dimension of semi-natural patches (FRAC_Semi)值越大, 代表半自然斑块形状不规则程度越高,
半自然界面围合更多
The larger the value, the higher irregularity degree the semi-natural patch shape is, and the more enclosed the semi-natural interface is14 整合度
Integration衡量空间吸引交通的潜力, 值越高可达性越高
Measuring the potential of a space to attract traffic. The higher the value, the higher the accessibility15 选择度
Choice衡量空间被穿行的可能性, 值越高交通吸引力越强
Measures the possibility of space being flowed through. The higher the value, the stronger the traffic attraction16 道路密度
Road density (RD) (m∙hm−2)反映交通路线疏密程度, 值越高交通连接度越强
Reflecting the density of traffic routes, with higher values indicating stronger traffic connections in the area三维地表度量指标
Three-dimensional surface indicators17 地势起伏度
Relief amplitude (R) (m)反映总体地势起伏情况
Reflecting the overall terrain fluctuations18 地表粗糙度
Surface roughness (SR)地表单元的曲面面积与投影面积之比,
反映地表起伏和侵蚀程度
Ratio of the surface area to the projected area of the surface unit reflecting the degree of surface relief and erosion四维景观历史动态度量指标
Four-dimensional landscape historical dynamic measurement indicators19 半自然斑块动态度
Dynamic degree of semi-natural patches (K_Semi) (%)研究时段内半自然生境的土地利用动态度
Land use dynamics of semi-natural habitats during the
study period20 综合土地利用动态度
Comprehensive dynamic degree of land use (LC) (%)描述区域整体土地利用变化的速度
Describe the rate of overall land use change in
the region表 4 斑块尺度乡村景观空间形态指标
Table 4 Spatial morphological indicators of rural landscapes at the patch scale
指标 Indicator 释义 Definition 斑块面积
Patch area (hm2)表示斑块的面积大小
Indicating the area size of patches斑块形状指数
Patch shape index (Patch Shape)表示斑块形状复杂程度
Indicating the shape complexity of patches斑块欧式最邻近距离
Patch Euclidean nearest neighbor distance (Patch ENN) (m)表示同类斑块隔离度
Representing the isolation degree of similar patches道路距离
Distance from the road (D_Road) (m)样方与道路之间的距离
Distance between quadrat and road居民点距离
Distance from settlements (D_Set) (m)样方与居民点之间的距离
Distance between quadrat and residential area干扰度
Interference分为5种级别: 极强(5)、强(4)、中(3)、弱(2)、几乎无(1)
Divided into 5 levels: extremely strong (5), strong (4), medium (3),
weak (2), and almost none (1)生境类型
Habitat type按照研究区植物群落所处空间的自然程度进行量化
Quantified according to the natural degree of the space where the
plant communities in the study area are located -
[1] 王云才, 刘滨谊. 论中国乡村景观及乡村景观规划[J]. 中国园林, 2003, 19(1): 55−58 WANG Y C, LIU B Y. Discussions on rural landscape and rural landscape planning in China[J]. Journal of Chinese Landscape Architecture, 2003, 19(1): 55−58
[2] JIANG M K, BULLOCK J M, HOOFTMAN D A P. Mapping ecosystem service and biodiversity changes over 70 years in a rural English County[J]. Journal of Applied Ecology, 2013, 50(4): 841−850 doi: 10.1111/1365-2664.12093
[3] ROSIN Z M, HIRON M, ŻMIHORSKI M, et al. Reduced biodiversity in modernized villages: a conflict between sustainable development goals[J]. Journal of Applied Ecology, 2020, 57(3): 467−475 doi: 10.1111/1365-2664.13566
[4] 陈思淇, 张玉钧. 乡村景观生物多样性研究进展[J]. 生物多样性, 2021, 29(10): 1411−1424 doi: 10.17520/biods.2021135 CHEN S Q, ZHANG Y J. Research progress on biodiversity in the rural landscape[J]. Biodiversity Science, 2021, 29(10): 1411−1424 doi: 10.17520/biods.2021135
[5] 梁冰晶, 王成, 孙睿霖, 等. 珠海市不同类型乡村人居林的树种构成特征研究[J]. 中国城市林业, 2019, 17(1): 6−11 LIANG B J, WANG C, SUN R L, et al. Characteristics of tree species composition in different types of rural residential treescape in Zhuhai City[J]. Journal of Chinese Urban Forestry, 2019, 17(1): 6−11
[6] DORRESTEIJN I, LOOS J, HANSPACH J, et al. Socioecological drivers facilitating biodiversity conservation in traditional farming landscapes[J]. Ecosystem Health and Sustainability, 2015, 1(9): 1−9
[7] LI X, LIU Y H, DUAN M C, et al. Different response patterns of epigaeic spiders and carabid beetles to varying environmental conditions in fields and semi-natural habitats of an intensively cultivated agricultural landscape[J]. Agriculture, Ecosystems & Environment, 2018, 264: 54−62
[8] BIGSBY K M, MCHALE M R, HESS G R. Urban morphology drives the homogenization of tree cover in Baltimore, MD, and Raleigh, NC[J]. Ecosystems, 2014, 17(2): 212−227 doi: 10.1007/s10021-013-9718-4
[9] KONG N, WANG Z T. Response of plant diversity of urban remnant mountains to surrounding urban spatial morphology: a case study in Guiyang of Guizhou Province, China[J]. Urban Ecosystems, 2022, 25(2): 437−452 doi: 10.1007/s11252-021-01154-y
[10] AMICI V, LANDI S, FRASCAROLI F, et al. Anthropogenic drivers of plant diversity: perspective on land use change in a dynamic cultural landscape[J]. Biodiversity and Conservation, 2015, 24(13): 3185−3199 doi: 10.1007/s10531-015-0949-x
[11] BUTSIC V, SHAPERO M, MOANGA D, et al. Using InVEST to assess ecosystem services on conserved properties in Sonoma County, CA[J]. California Agriculture, 2017, 71(2): 81−89 doi: 10.3733/ca.2017a0008
[12] REY BENAYAS J M, BULLOCK J M. Restoration of biodiversity and ecosystem services on agricultural land[J]. Ecosystems, 2012, 15(6): 883−899 doi: 10.1007/s10021-012-9552-0
[13] TORRALBA M, FAGERHOLM N, BURGESS P J, et al. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis[J]. Agriculture, Ecosystems & Environment, 2016, 230: 150−161
[14] 董阳. 基于自然地理因素的长三角地区典型传统聚落绿色智慧探析[D]. 南京: 东南大学, 2020 DONG Y. Research on green design wisdom of typical traditional settlements in Yangtze River Delta based on natural geographical factors[D]. Nanjing: Southeast University, 2020
[15] MASKELL L C, BOTHAM M, HENRYS P, et al. Exploring relationships between land use intensity, habitat heterogeneity and biodiversity to identify and monitor areas of High Nature Value farming[J]. Biological Conservation, 2019, 231: 30−38 doi: 10.1016/j.biocon.2018.12.033
[16] 方精云, 王襄平, 沈泽昊, 等. 植物群落清查的主要内容、方法和技术规范[J]. 生物多样性, 2009, 17(6): 533−548 doi: 10.3724/SP.J.1003.2009.09253 FANG J Y, WANG X P, SHEN Z H, et al. Methods and protocols for plant community inventory[J]. Biodiversity Science, 2009, 17(6): 533−548 doi: 10.3724/SP.J.1003.2009.09253
[17] OSEN K, SOAZAFY M R, MARTIN D A, et al. Land-use history determines stand structure and tree diversity in vanilla agroforests of northeastern Madagascar[J]. Applied Vegetation Science, 2021, 24(1): e12563 doi: 10.1111/avsc.12563
[18] HENDRICKX F, MAELFAIT J P, VAN WINGERDEN W, et al. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes[J]. Journal of Applied Ecology, 2007, 44(2): 340−351 doi: 10.1111/j.1365-2664.2006.01270.x
[19] PACIFIC O R. Fragstats, Spatial Pattern Analysis Program for Quantifying Landscape Structure[M]. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1995
[20] TANNIER C, THOMAS I. Defining and characterizing urban boundaries: a fractal analysis of theoretical cities and Belgian cities[J]. Computers, Environment and Urban Systems, 2013, 41: 234−248 doi: 10.1016/j.compenvurbsys.2013.07.003
[21] MARCH L, STEADMAN P. The Geometry of Environment: An Introduction to Spatial Organization in Design[M]. Cambridge, Mass: M. I. T. Press, 1974
[22] IMRE A R, BOGAERT J. The fractal dimension as a measure of the quality of habitats[J]. Acta Biotheoretica, 2004, 52(1): 41−56 doi: 10.1023/B:ACBI.0000015911.56850.0f
[23] SCOWN M W, THOMS M C, DE JAGER N R. Measuring floodplain spatial patterns using continuous surface metrics at multiple scales[J]. Geomorphology, 2015, 245: 87−101 doi: 10.1016/j.geomorph.2015.05.026
[24] 付建新, 曹广超, 郭文炯. 1980—2018年祁连山南坡土地利用变化及其驱动力[J]. 应用生态学报, 2020, 31(8): 2699−2709 FU J X, CAO G C, GUO W J. Land use change and its driving force on the southern slope of Qilian Mountains from 1980 to 2018[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2699−2709
[25] PENG Y, MI K, WANG H T, et al. Most suitable landscape patterns to preserve indigenous plant diversity affected by increasing urbanization: a case study of Shunyi District of Beijing, China[J]. Urban Forestry & Urban Greening, 2019, 38: 33−41
[26] 杨宇亮, 罗丹, 角媛梅. 元江南岸稻作聚落的多尺度人居环境效应研究[J]. 城市规划, 2021, 45(8): 20−30 YANG Y L, LUO D, JIAO Y M. A study on multi-scale human settlements effects of rice farming settlements on the southern bank of Yuanjiang River[J]. City Planning Review, 2021, 45(8): 20−30
[27] JAMES W R, TOPOR Z M, SANTOS R O. Seascape configuration influences the community structure of marsh nekton[J]. Estuaries and Coasts, 2021, 44(6): 1521−1533 doi: 10.1007/s12237-020-00853-7
[28] MONGE-SALAZAR M J, TOVAR C, CUADROS-ADRIAZOLA J, et al. Ecohydrology and ecosystem services of a natural and an artificial bofedal wetland in the central Andes[J]. Science of the Total Environment, 2022, 838: 155968
[29] OPEDAL Ø H, ARMBRUSTER W S, GRAAE B J. Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape[J]. Plant Ecology & Diversity, 2015, 8(3): 305–15
[30] PREVEDELLO J A, ALMEIDA-GOMES M, LINDENMAYER D B. The importance of scattered trees for biodiversity conservation: a global meta-analysis[J]. Journal of Applied Ecology, 2018, 55(1): 205−214 doi: 10.1111/1365-2664.12943
[31] BANKS-LEITE C, EWERS R M, METZGER J P. The confounded effects of habitat disturbance at the local, patch and landscape scale on understorey birds of the Atlantic Forest: implications for the development of landscape-based indicators[J]. Ecological indicators, 2013, 31: 82−88 doi: 10.1016/j.ecolind.2012.04.015
[32] CORREA AYRAM C A, MENDOZA M E, ETTER A, et al. Habitat connectivity in biodiversity conservation: a review of recent studies and applications[J]. Progress in Physical Geography, 2016, 40(1): 7−37 doi: 10.1177/0309133315598713
[33] ROSSMAN A K, HALPERN C B, HARROD R J, et al. Benefits of thinning and burning for understory diversity vary with spatial scale and time since treatment[J]. Forest Ecology and Management, 2018, 419: 58−78