施氮量和灌溉定额对引黄灌区麦后复种油菜产量和水氮利用的影响

韦广源, 谭军利, 李红, 马波, 王月梅, 田海梅, 王西娜

韦广源, 谭军利, 李红, 马波, 王月梅, 田海梅, 王西娜. 施氮量和灌溉定额对引黄灌区麦后复种油菜产量和水氮利用的影响[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1745−1757. DOI: 10.12357/cjea.20230215
引用本文: 韦广源, 谭军利, 李红, 马波, 王月梅, 田海梅, 王西娜. 施氮量和灌溉定额对引黄灌区麦后复种油菜产量和水氮利用的影响[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1745−1757. DOI: 10.12357/cjea.20230215
WEI G Y, TAN J L, LI H, MA B, WANG Y M, TIAN H M, WANG X N. Effects of nitrogen application rate and irrigation quota on yield and water and nitrogen utilization of post-spring wheat multiple cropping oilseed rape in Yellow River Irrigation Area[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1745−1757. DOI: 10.12357/cjea.20230215
Citation: WEI G Y, TAN J L, LI H, MA B, WANG Y M, TIAN H M, WANG X N. Effects of nitrogen application rate and irrigation quota on yield and water and nitrogen utilization of post-spring wheat multiple cropping oilseed rape in Yellow River Irrigation Area[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1745−1757. DOI: 10.12357/cjea.20230215
韦广源, 谭军利, 李红, 马波, 王月梅, 田海梅, 王西娜. 施氮量和灌溉定额对引黄灌区麦后复种油菜产量和水氮利用的影响[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1745−1757. CSTR: 32371.14.cjea.20230215
引用本文: 韦广源, 谭军利, 李红, 马波, 王月梅, 田海梅, 王西娜. 施氮量和灌溉定额对引黄灌区麦后复种油菜产量和水氮利用的影响[J]. 中国生态农业学报 (中英文), 2023, 31(11): 1745−1757. CSTR: 32371.14.cjea.20230215
WEI G Y, TAN J L, LI H, MA B, WANG Y M, TIAN H M, WANG X N. Effects of nitrogen application rate and irrigation quota on yield and water and nitrogen utilization of post-spring wheat multiple cropping oilseed rape in Yellow River Irrigation Area[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1745−1757. CSTR: 32371.14.cjea.20230215
Citation: WEI G Y, TAN J L, LI H, MA B, WANG Y M, TIAN H M, WANG X N. Effects of nitrogen application rate and irrigation quota on yield and water and nitrogen utilization of post-spring wheat multiple cropping oilseed rape in Yellow River Irrigation Area[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1745−1757. CSTR: 32371.14.cjea.20230215

施氮量和灌溉定额对引黄灌区麦后复种油菜产量和水氮利用的影响

基金项目: 国家重点研发计划项目(2018YFD0200405)、宁夏自然科学基金项目(2022AAC02013)、国家自然科学基金项目(31860590)和宁夏高等学校一流学科建设(水利工程)项目(NXYLXK2021A03)资助
详细信息
    作者简介:

    韦广源, 主要研究方向为农业水资源高效利用。E-mail: 1029832699@qq.com

    通讯作者:

    谭军利, 主要研究方向为农业水资源高效利用。E-mail: tanjl@nxu.edu.cn

  • 中图分类号: S565.4

Effects of nitrogen application rate and irrigation quota on yield and water and nitrogen utilization of post-spring wheat multiple cropping oilseed rape in Yellow River Irrigation Area

Funds: This study was supported by the National Key Research and Development Program of China (2018YFD0200405), the Natural Science Foundation of Ningxia (2022AAC02013), the National Natural Science Foundation of China (31860590), and the First Class Discipline Construction (Hydraulic Engineering) Project of Ningxia Universities (NXYLXK2021A03).
More Information
  • 摘要: 为探讨小麦后复种油菜对小麦茬残留氮素吸收利用及水氮利用的影响, 以期为麦后土壤残留氮素有效利用和农业面源污染阻控提供理论依据, 通过田间定位试验, 研究了小麦茬施氮量[常规施氮(270 kg∙hm−2)、减施氮肥(202.5 kg∙hm−2)和不施氮(0 kg∙hm−2)]和灌溉定额[常规灌溉(400 mm)、节水20% (320 mm)和节水40% (240 mm)]对复种油菜的产量、氮素吸收量以及0~100 cm土壤含水率和矿质氮动态变化的影响, 并进行了两季作物的氮素平衡分析。结果表明, 小麦茬残留氮素对油菜产量和氮素吸收量有显著影响, 氮肥后效与小麦茬的施氮量呈正比。小麦茬常规施氮270 kg∙hm−2时油菜产量和氮素吸收量最高, 分别为6640 kg∙hm−2和25.7 kg∙hm−2, 较小麦茬减施氮肥与不施氮分别增加11.8%与43.5%和14.8%与58.8%; 小麦茬灌溉定额对油菜产量无显著影响, 但对氮素吸收量有显著影响, 常规施氮处理下常规灌溉处理油菜氮素吸收量较节水处理增加9.6%~10.2%。与油菜播前相比, 油菜收获后施氮处理0~100 cm土层土壤矿质氮降低18.8~96.1 kg·hm−2; 常规施氮处理较减氮和不施氮处理增加了油菜对残留氮素吸收能力。油菜翻压还田并经过冬季的冻融后, 在下一季小麦播前, 0~100 cm土层的土壤矿质氮增加86.1~171.8 kg·hm−2, 增加量与小麦茬的施氮量呈正相关。常规施氮+常规灌溉定额0~100 cm土壤贮水量变化较小, 氮肥后效显著提高了油菜灌溉水利用效率和水分利用效率及降水生产效率, 常规施氮+节水20%处理灌溉水利用效率和降水生产效率最高, 而常规施氮+节水40%处理油菜水分利用效率最高。在本试验条件下, 减氮+节水20%处理的氮肥累积利用率最高, 达89.8%。小麦茬施氮量为270 kg·hm−2, 灌溉定额为320~400 mm显著提高了复种油菜的产量、吸氮量、水分利用效率和灌溉水利用效率及降水生产效率, 并降低了施氮处理土壤矿质氮含量。而油菜翻压还田经过冬季冻融后显著增加了土壤矿质氮含量。
    Abstract: The effects of successive oilseed rape cropping on the absorption and utilization of residual nitrogen and water, and nitrogen use efficiency in spring wheat stubble was studied to provide a theoretical basis for the effective utilization of residual nitrogen in post-spring wheat soil and for the prevention and control of agricultural non-point source pollution. A field trial was conducted to investigate the effects of nitrogen application (conventional application, 270 kg∙hm2; reduced application, 202.5 kg∙hm2; and no application, 0 kg∙hm2) and irrigation quota (conventional irrigation, 400 mm; 20% water-saving irrigation, 320 mm; and 40% water-saving irrigation, 240 mm) on the yield and nitrogen uptake of succession oilseed rape crops, as well as the dynamic changes involving soil moisture and mineral nitrogen in the 0–100 cm layer. Nitrogen balance analysis was also conducted for both seasons. The results revealed that residual nitrogen in spring wheat stubble had a notable effect on the yield and nitrogen uptake of successive oilseed rape, and the residual effect of nitrogen fertilizer was positively correlated with the nitrogen applied to spring wheat stubble. When the nitrogen fertilizer application rate in spring wheat stubble was 270 kg·hm2, the yield and nitrogen uptake of succession oilseed rape were the highest, reaching 6640 kg·hm2 and 25.7 kg·hm2, respectively, which were 11.8%–43.5% and 14.8%–58.8% higher than those under reduced or no nitrogen application. Irrigation quota had no substantial effect on oilseed rape yield but had a significant effect on nitrogen uptake. Nitrogen uptake of oilseed rape under conventional nitrogen application was increased by 9.6%−10.2% compared with the water-saving treatments. Compared with before planting, mineral nitrogen levels in the 0–100 cm soil layer under nitrogen application treatment after oilseed rape harvesting decreased by 18.8–96.1 kg·hm2, indicating that succession oilseed rape cropping has an absorption capacity for residual nitrogen. The mineral nitrogen content of soil decreased by 96.1 kg·hm2 under conventional nitrogen application and conventional irrigation treatment compared with no or reduced nitrogen application. After the succession oilseed rape was crushed and turned over and returned to the field after winter freezing and thawing, the mineral nitrogen in the 0−100 cm soil layer increased by 86.1 to 171.8 kg·hm2. This increase was positively correlated with the nitrogen application rate in the spring wheat season. Conventional nitrogen application combined with conventional irrigation had a small effect on soil water storage, and the residual effect of nitrogen fertilizer significantly improved irrigation water use efficiency, water use efficiency, and precipitation productivity of oilseed rape. Conventional nitrogen application combined with a 20% water-saving treatment had the highest irrigation water use efficiency and precipitation productivity, whereas conventional nitrogen application combined with a 40% water-saving treatment had the highest oilseed rape water use efficiency. Under these experimental conditions, the cumulative utilization rate of nitrogen fertilizer was the highest at 89.8% with reduced nitrogen combined with a 20% water-saving treatment. Nitrogen application rates of 270 kg·hm2 and an irrigation quota of 320−400 mm considerably improved the yield, nitrogen uptake, water use efficiency, irrigation water use efficiency, and precipitation productivity of succession oilseed rape crops and reduced soil mineral nitrogen content under nitrogen application treatment. Turning over and returning the succession of oilseed rape to the field significantly increased soil mineral nitrogen content after winter freezing and thawing.
  • 引黄灌区光热资源丰富, 是宁夏的粮食主产区。近年来, 该地区春小麦(Triticum aestivum)水肥管理水平大幅度提升, 但仍存在盲目施肥的现象。据调查, 2018—2019年氮肥投入过量的农户高达97.1%[1]。过量施用氮肥增加了土壤氮残留量, 尤其是深层矿质氮大量累积, 是农业面源污染的主要来源之一。春小麦收获后, 7月中旬至9月份正值引黄河灌区雨季, 降雨量占全年降雨量的40%。如果土地休闲裸露, 大量残留氮被淋溶到深层土壤或以其他途径损失掉, 同时雨水资源也会以蒸发的形式白白损失。张学军等[2]研究表明, 宁夏春小麦常规水肥管理下氮淋失量可达36.1 kg∙hm−2。这不仅降低了水氮利用效率, 还引起土壤、地下水及大气的环境污染等问题[3-4]

    引种填闲作物是降低硝态氮淋溶、提高水氮利用效率和控制水土污染的一个重要手段[5]。大量研究表明[6-7], 填闲作物可以减少氮素淋溶, 其途径是通过吸收前茬作物土壤中残留的硝态氮, 从而减少农业面源污染的风险[8-9]。与休耕相比, 十字花科(Brassicaceae)和禾本科(Poaceae)的填闲作物分别减少75%和52%的硝酸盐淋溶量[10]。在宁夏引黄灌区设施菜田, 填闲作物可以对0~20 cm土层土壤残留硝态氮进行生物固定, 阻控了40~120 cm土壤硝态氮向深层土壤淋洗[11]

    但填闲作物的水分效应仍存争议。有试验结果表明[12-13], 种植填闲作物对土壤水分以及下一季粮食作物的水分利用影响较小, 甚至在一定程度上提高表层土壤含水量[14]。但黄土高原南部的研究表明[15], 在冬小麦播前, 在平水和干旱年轮作不同绿肥均显著降低 0~200 cm土壤含水量, 降幅分别为10.1%和15.7%[6]

    宁夏引黄灌区小麦收获后复种油菜(Brassica napus)既可以当作绿肥还田又是良好的饲料。宁夏引黄灌区麦后复种油菜的研究主要集中于施肥处理对油菜产量、品质以及养分吸收的影响[16-17], 而油菜对春小麦茬土壤残留氮素及夏秋降水的利用还少见报道。本文通过田间定位试验研究了不同水氮管理措施下小麦茬残留氮素对麦后复种油菜产量、氮素吸收量的影响, 探明复种油菜对残留矿质氮和土壤水分的利用规律, 以及油菜翻压对土壤矿质氮分布的影响, 为引黄灌区春小麦-油菜复种体系水氮管理提供理论依据。

    试验地点位于宁夏永宁县望洪镇宁夏大学实验农场(106°10′E, 38°19′N, 海拔1117 m)。研究区月降水量如图1所示, 年降水量180~200 mm, 年均气温8.5 ℃, 无霜期140~160 d, 降雨量相对较少, 属于温带干旱气候。7—10月份油菜种植期间降雨量67.2 mm, 平均气温19 ℃, 最高气温28.3 ℃, 最低气温4.8 ℃。供试土壤类型主要为灌淤土。研究区土壤基础理化性质如表1所示。春小麦于2021年3月5日播种, 7月15日收获, 小麦收获后, 种植油菜, 油菜于10月15日收获, 收获时即将油菜翻压还田。油菜品种为‘华油杂62’。

    图  1  2021年研究区月降水量
    Figure  1.  Monthly precipitation in the study area in 2021
    表  1  供试土壤0~100 cm基本理化性状
    Table  1.  Basic physical and chemical properties in 0−100 cm layer of the tested soil
    土层
    Soil layer
    (cm)
    容重
    Bulk density
    (g·cm−3)
    有机质
    Organic matter
    (g·kg−1)
    全氮
    Total nitrogen
    (g·kg−1)
    矿质态氮
    Mineral nitrogen
    (mg·kg−1)
    全磷
    Total phosphorus
    (g·kg−1)
    速效磷
    Available phosphorus
    (mg·kg−1)
    速效钾
    Available potassium
    (mg·kg−1)
    pH
    0~201.1816.300.5932.010.5724.69143.017.83
    20~401.2114.820.4127.570.4322.70135.257.50
    40~601.1913.080.4223.560.3815.84126.907.32
    60~801.2313.620.3421.790.3016.31122.727.31
    80~1001.2311.600.2217.220.267.89128.697.31
    下载: 导出CSV 
    | 显示表格

    小麦季试验设计如表2所示, 本试验为二因素裂区设计, 灌水处理作为主区, 设3个水平: 常规灌溉(400 mm, WC)、节水20% (320 mm, W1)和节水40% (240 mm, W2)。施肥处理作为副区, 设置3个水平: 常规施氮(270 kg∙hm−2, NC)、减量施氮 25% (202.5 kg∙hm−2, NJ)和不施氮(0 kg∙hm−2, N0)。试验共9个处理, 每个处理重复3次, 小区总数为27个, 小区面积24 m×3 m。试验区周围南北设6.5 m保护行, 东设6 m保护行, 西设3 m保护行。为避免小区间水和肥迁移造成影响, 主区之间设0.4 m隔离道, 副区之间设0.4 m隔离道, 在主区间埋设隔离带(塑料薄膜)。

    表  2  不同处理小麦季试验施氮量和灌溉定额
    Table  2.  Nitrogen application levels and irrigation regimes of different treatments for spring wheat
    处理
    Treatment
    施氮水平
    Nitrogen
    level
    灌溉定额
    Irrigation
    regime
    施氮量
    Nitrogen
    application rate
    (kg·hm−2)
    灌溉定额
    Irrigation quota
    (mm)
    NCWCNCWC270400
    NCW1NCW1270320
    NCW2NCW2270240
    NJWCNJWC202.5400
    NJW1NJW1202.5320
    NJW2NJW2202.5240
    N0WCN0WC0400
    N0W1N0W10320
    N0W2N0W20240
    下载: 导出CSV 
    | 显示表格

    春小麦分别于2021年4月20日、5月6日、5月21日、6月3日、6月18日灌水, 全生育期内等量灌水5次, 肥料按分配比例实施微喷带水肥一体化随水一同施入, 具体操作见参考文献[18]。油菜15 cm等行距播种, 播种量为13.5 kg·hm−2。油菜茬不再施用肥料, 分别于2021年7月20日、8月3日、8月18日和9月3日进行等量灌水, 灌水定额均为25 mm。春小麦与油菜灌水均采用喷灌带喷灌, 水源为地下水。其他管理措施与当地生产习惯一致。

    地上部干物质量: 油菜成熟期每个小区采集单行1 m长的油菜地上部分, 置于烘箱中105 ℃杀青30 min, 之后75 ℃恒温烘干。 烘干后称重计算单位面积地上部干物质量。

    植株全氮含量: 取上述烘干样品粉碎后, 采用H2SO4-H2O2消煮, 凯氏定氮法测定植株全氮含量。

    土壤矿质氮含量: 于第一季春小麦收获后、油菜收获后以及下一季春小麦播前用土钻分层采集各试验小区0~20 cm、20~40 cm、40~60 cm、60~80 cm和80~100 cm土壤样品, 0~20 cm、20~40 cm土层各试验小区取两个点采集, 其余土层各试验小区取一个点。土样风干后碾细过1 mm筛, 用1 mol·L−1的KCl溶液浸提, 采用紫外分光光度计测定浸提液硝态氮含量, 用靛酚蓝法测定浸提液铵态氮含量。以每20 cm为1个层次计算0~100 cm土壤硝态氮和铵态氮积累量。

    土壤体积含水量: 于2021年7月9日小麦收获后(油菜播前)、10月16日油菜收获后、2022年3月3日(下一季小麦播前)用TDR测定0~20 cm、20~40 cm、40~60 cm、60~80 cm、80~100 cm 土层土壤体积含水量。根据测定的体积含水量, 计算0~100 cm土壤贮水量。TDR型号为Trime PICO IPH2 (德国IMKO公司)。

    $$ \begin{split} &\qquad 氮肥利用率(\text{%})=(施氮区吸氮量-未施氮区吸\\ & 氮量)/施氮量\times 100 \end{split} $$ (1)
    $$ \begin{split} &\qquad 氮肥残留利用率(\text{%})=(施氮处理油菜吸氮量-\\ & 不施氮油菜吸氮量)/氮肥投入量\times 100^{[19]} \end{split}$$ (2)
    $$ \begin{split} &\qquad 土壤硝态氮积累量({\rm{kg}}\cdot{\rm{hm}}^{-2})=土层厚度({\rm{cm}})\times \\ & 土壤容重({\rm{g}}\cdot {\rm{cm}}^{-3})\times 土壤硝态氮含量({\rm{mg}}\cdot {\rm{kg}}^{-1})/10^{[20]} \end{split} $$ (3)
    $$ \begin{split} &\qquad 土壤铵态氮积累量({\rm{kg}}\cdot {\rm{hm}}^{-2})=土层厚度({\rm{cm}})\times \\ & 土壤容重({\rm{g}}\cdot {\rm{cm}}^{-3}) \times 土壤铵态氮含量({\rm{mg}}\cdot {\rm{kg}}^{-1}) \end{split} $$ (4)
    $$ 土壤矿质氮({\rm{kg}}\cdot {\rm{hm}}^{-2})=土壤硝态氮+土壤铵态氮 $$ (5)

    作物耗水量用水量平衡法计算[21]

    $$ {\mathrm{E}\mathrm{T}}_{1-2}=10{\sum }_{i=1}^{n}{\gamma }_{i}\times{H}_{i}\times({W}_{i1}-{W}_{i2})+M+P+K-F $$ (6)

    式中: ET1−2为阶段耗水量, mm; i为土壤层次; n为土壤层次总数; $ {\gamma }_{i} $为第i层土壤容重, g·cm−3; $ {H_i} $为第i层土壤的厚度, cm; $ {W_{i{\text{1}}}} $$ {W_{i2}} $分别为第i层土壤在时段初、末的含水率; M为时段内的灌水量, mm; P为时段内的降水量, mm; K为时段内的地下水补给量, mm; F为深层渗漏量, mm。本研究区域的地下水埋深大于2.5 m, 故地下水补给量和深层渗漏量视为0。

    $$ \begin{split} &\qquad 土壤贮水量({\rm{mm}})=土层质量含水量(\text{%})\times 土壤\\ & 容重({\rm{g}}\cdot{\rm{cm}}^{-3})\times 土层厚度({\rm{cm}})\times 10/100 ^{[22]} \end{split} $$ (7)
    $$ 土层体积含水量(\text{%})=质量含水量 \times 土壤容重 $$ (8)
    $$ 水分利用效率({\rm{kg}}\cdot {\rm{m}}^{-3})=籽粒产量/耗水量^{[23]} $$ (9)
    $$ 灌溉水利用效率({\rm{kg}}\cdot {\rm{m}}^{-3})=籽粒产量/灌溉水量^{[24]} $$ (10)
    $$ 降水生产效率({\rm{kg}}\cdot {\rm{mm}}^{-1})=籽粒产量/有效降雨量 $$ (11)
    $$ \begin{split} &\qquad 0 \sim 100 \;{\rm{cm}}土层氮素表观矿化量({\rm{kg}}\cdot {\rm{hm}}^{-2}) = 对照\\ & 区作物吸氮量 + 对照区作物收获时土壤矿质氮 - 不施 \\ & 氮播前土壤残留矿质氮 \end{split}$$ (12)
    $$ 氮素表观残留({\rm{kg}}\cdot {\rm{hm}}^{-2})=收获时土壤残留的氮^{[25]} $$ (13)
    $$ \begin{split} &\qquad 氮素表观损失量({\rm{kg}}\cdot {\rm{hm}}^{-2})=氮素总输入-作物\\ & 吸收氮素-土壤残留的氮^{[26]} \end{split} $$ (14)
    $$ 累积氮利用率(\text{%})=氮素利用率+氮肥残留利用率 $$ (15)

    本文采用Excel 2013处理数据。采用SPSS 26软件进行数据方差分析及多重比较(LSD), 表中数据为3个重复的平均值±标准差。

    表3可知, 施氮处理显著提高春小麦收获后0~100 cm的土壤矿质氮残留量(P<0.05), 灌溉处理无显著影响。常规施氮(NC)处理 0~100 cm土层土壤矿质氮最高, 显著高于减氮处理(NJ)和不施氮(N0)处理(P<0.05), 为227.26~278.07 kg·hm−2, 较NJ与N0分别提高15.6%~24.6%和37.7%~87.5%。常规施氮和减氮处理均为常规灌溉(WC)处理下土壤矿质态氮残留量最高, 但不同灌溉处理间无显著差异。此外, 土壤矿质氮残留量主要分布在0~40 cm, 以NCWC处理的土壤矿质氮残留量最高, 为148.8 kg·hm−2, 占0~100 cm土层土壤矿质氮53.5%, 显著高于NJWC和N0WC处理(P<0.05), 分别较NJWC和N0WC处理提高43.9%和108.0%, 说明春小麦茬常规施氮处理下土壤表层(0~40 cm)有大量矿质态氮残留。

    表  3  不同施氮量和灌溉定额处理下春小麦收获后0~100 cm土壤矿质氮残留量
    Table  3.  Residual mineral nitrogen contents in 0−100 cm soil layer after spring wheat harvesting with different treatments of nitrogen application and irrigation
    kg·hm−2 
    处理
    Treatment
    土层深度 Soil depth (cm)
    0~2020~4040~6060~8080~1000~100
    NCWC81.07±7.76Aa67.77±8.75Aa51.51±5.21Aa42.03±4.80Aa35.68±6.10Aa278.07±26.70Aa
    NCW166.31±0.71Ba52.74±5.39Aa41.84±4.01Aa36.55±1.51ABa29.81±0.35Aa227.26±9.27Aa
    NCW260.78±3.35Ba54.63±8.33Aa45.28±9.75Aa34.32±0.66Bab35.18±6.96Aa230.19±27.16Aa
    NJWC51.45±10.26Ab52.01±2.75Ab48.83±12.90Aab39.31±11.92Aa31.56±4.65Aab223.16±13.85Ab
    NJW150.32±2.32Ab49.19±6.78ABa35.93±1.37Aab31.43±2.77Aa29.82±2.67Aa196.69±9.01Ab
    NJW248.08±4.60Aab40.15±2.12Ba33.00±2.19Aa39.49±5.98Aa32.64±2.36Aa193.35±11.85Ab
    N0WC38.18±3.17Ab33.35±1.50Ac30.02±2.07Ab26.25±2.26Aa20.48±4.97Ab148.28±7.56Ac
    N0W140.13±9.64Ab39.75±5.69Aa32.22±3.52Ab28.65±3.48Ab24.27±6.68Aa165.02±15.77Ac
    N0W236.85±12.60Ab37.32±8.68Aa36.66±18.46Aa26.44±4.67Ab22.90±10.51Aa160.17±19.59Ac
      不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application treatments (NC, NJ, N0) at the same irrigation quota (P<0.05).
    下载: 导出CSV 
    | 显示表格

    图2方差分析可知, 春小麦茬施氮量对油菜产量有极显著(P<0.01)影响; 灌水对油菜产量有显著(P<0.05)影响; 灌水施氮互作对油菜产量无显著影响。在常规灌水和节水(W1, W2)条件下, 油菜产量均以常规施氮量最高, 其中NCW1处理油菜产量最高, 达6641 kg·hm−2, 显著高于NJW1和N0W1处理(P<0.05), 分别较NJW1和N0W1处理提高11.8%和43.5%。这是因为春小麦茬残留的土壤矿质氮显著提高了油菜的产量。各施氮处理不同灌溉定额间虽无显著差异, 但在减氮处理下, 常规灌水和节水20% (W1)处理油菜产量要明显高于节水40% (W2)处理, 较节水40%处理分别提高11.3%~14.1%。

    图  2  春小麦茬不同施氮量和灌溉定额处理下油菜的产量
    *和**分别代表影响在P<0.05和P<0.01水平显著, ns代表未达到显著水平。N为施氮量, W为灌溉定额。不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。* and ** indicate significant effects at P<0.05 and P<0.01 levels, respectively; “ns” indicates no significant effect. N is the nitrogen application level, W is the irrigation quota. Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application treatments (NC, NJ, N0) at the same irrigation quota (P<0.05).
    Figure  2.  Yield of succession oilseed rape under different treatments of nitrogen application and irrigation of spring wheat

    图3可知, 春小麦茬施氮量和灌溉定额对油菜累积氮素吸收量均有极显著影响(P<0.01)。油菜氮素吸收量随春小麦茬施氮量增加而增加, 且处理间差异显著(P<0.05)。在同一灌溉水平下NC处理的氮素吸收量较NJ和N0处理的分别提高14.8%和58.8%。相同施氮水平下不同灌溉处理的氮素吸收量之间存在显著差异(P<0.05), 各施氮处理均在WC处理有最大值, 所有处理中氮素吸收量最高为NCWC处理, 达25.7 kg·hm−2, 显著高于NCW1与NCW2处理(P<0.05), 较NCW1与NCW2处理分别提高9.7%和10.2%。

    图  3  春小麦茬不同施氮量和灌溉定额处理下油菜的氮素吸收量
    *和**分别代表影响在P<0.05和P<0.01水平显著, ns代表未达到显著水平。N为施氮量, W为灌溉定额。不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。* and ** indicate significant effects at P<0.05 and P<0.01 levels, respectively; “ns” indicates no significant effect. N is the nitrogen application level, W is the irrigation quota. Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application treatments (NC, NJ, N0) at the same irrigation quota (P<0.05).
    Figure  3.  Nitrogen uptake of succession oilseed rape under different treatments of nitrogen application and irrigation of spring wheat

    图4可知, 油菜播种前, 0~100 cm土层土壤贮水量表现为春小麦茬WC和W1处理较W2处理土壤贮水量提高16~29 mm, 但同一施氮水平下各灌水处理间无显著差异。与油菜播前相比, 复种油菜后W2处理0~100 cm土层土壤贮水量变化最明显, 油菜播种前, W2处理0~100 cm土层土壤贮水量分别为186 mm、165 mm和178 mm, 经过复种油菜后土壤贮水量与播前相比分别增加26 mm、42 mm和53 mm, 且土壤贮水量增加量随春小麦茬施氮量增加而减少(图4a, 4b)。WC处理下, 除NC土壤贮水量下降外, 其他处理略有增加, 不同施氮处理之间无显著差异。W1处理下, 施氮量对土壤贮水量影响较小, 且无显著差异。下一季春小麦播前(图4c), WC和W1处理下不同施氮处理0~100 cm土层土壤贮水量无显著差异, W2处理下, N0处理0~100 cm土层土壤贮水量显著高于NC和NJ处理(P<0.05), 较NC和NJ处理分别提高25.5 mm和36.9 mm。说明施氮处理一定程度增加了土壤水分的消耗。下一季小麦播前, 土壤贮水量最高的为N0W2处理, 为239 mm, 较油菜播种前增加61 mm, NCWC处理变化最小, 较播前仅增加5 mm。

    图  4  春小麦茬不同施氮量和灌溉定额处理下油菜的0~100 cm土层土壤水分分布(a、b、c分别为油菜播前、油菜收获和下一季春小麦播前)
    Figure  4.  Soil water distribution in 0−100 cm soil layer of succession oilseed rape under different treatments of nitrogen application and irrigation of spring wheat (a, b and c are before oilseed rape sowing, oilseed rape harvest and before the next spring wheat sowing, respectively)

    图5所示, NC处理的矿质氮变化较明显, 且变化集中在表层0~20 cm土层。油菜播种前(图5a), 小麦茬NC、NJ和N0处理0~40 cm土层矿质氮累积量分别为115.4~148.8 kg·hm−2、88.2~103.6 kg·hm−2和71.5~79.9 kg·hm−2, 分别占0~100 cm土层矿质氮累积量50%~54%、46%~51%和46%~48%, 表现为矿质氮大量盈余, 0~100 cm土层土壤矿质氮含量随着土层深度增加而降低。油菜收获时(图5b), NC和NJ施氮处理的0~100 cm土层土壤矿质氮有不同程度降低, 其中0~40 cm土层NC和NJ处理的土壤矿质氮分别下降20.8~62.7 kg·hm−2和2.6~30.2 kg·hm−2。WC处理下, 施氮处理的0~40 cm土层土壤矿质氮累积量分别下降62.6 kg·hm−2和30.2 kg·hm−2; W1处理下分别下降47.1 kg·hm−2和18.6 kg·hm−2; W2处理下分别下降20.8 kg·hm−2和2.6 kg·hm−2。这说明矿质氮减少量与小麦茬灌溉定额呈正比。

    图  5  春小麦茬不同施氮量和灌溉定额处理下油菜的0~100 cm土层土壤矿质氮分布(a、b、c分别为油菜播前、油菜收获和下一季春小麦播前)
    Figure  5.  Soil mineral nitrogen distribution in 0−100 cm soil layer of succession oilseed rape under different treatments of nitrogen application and irrigation of spring wheat (a, b and c are before oilseed rape sowing, oilseed rape harvest and before the next spring wheat sowing, respectively)

    油菜翻压还田后(图5c), 0~100 cm土层土壤矿质氮明显增加, 增加量为86.1~171.8 kg·hm−2, 其中0~40 cm土层增加最多。NC、NJ和N0处理土壤矿质氮分别增加85.5~121.8 kg·hm−2、74.3~98.1 kg·hm−2和56.7~71.1 kg·hm−2, 增加量与施氮量呈正比关系。但同一施氮水平下灌水定额之间无显著差异。

    表4可知, 春小麦茬施氮量和灌溉定额对后茬油菜全生育期总耗水量均有极显著(P<0.01)影响, 灌溉定额与施氮量的互作也达显著水平(P<0.05)。在春小麦茬相同施氮量, WC和W1处理的油菜耗水量显著高于W2处理, 而WC和W1之间无显著差异。NC、NJ和N0处理下, WC与W1的耗水量较W2的分别提高24.6%~26.5%、23.3%~28.6%和29.4%~31.9%。

    表  4  春小麦茬不同施氮量和灌溉定额处理对油菜水分利用效率的影响
    Table  4.  Effects of different treatments of nitrogen application and irrigation of spring wheat on water use efficiency of the succession oilseed rape
    处理
    Treatment
    耗水量
    Water consumption
    (mm)
    灌溉水利用效率
    Utilization rate of irrigation water
    (kg·m−3)
    水分利用效率
    Water use efficiency
    (kg·m−3)
    降水生产效率
    Precipitation productivity
    (kg·mm−1)
    NCWC 181.81±5.17Aa 5.32±0.37Ba 3.27±0.33Ca 111.64±7.46Aa
    NCW1 184.57±8.66Aa 5.95±0.29Aa 3.61±0.33Ba 124.87±5.83Aa
    NCW2 145.96±9.72Ba 5.33±0.13Ba 4.10±0.33Aa 111.89±2.56Aa
    NJWC 163.34±9.06Ab 5.20±0.42ABa 3.58±0.49Ba 109.06±8.57Aa
    NJW1 156.57±12.92Ab 5.33±0.13Ab 3.82±0.30ABa 111.74±2.70Ab
    NJW2 126.99±5.67Bb 4.55±0.12Bb 4.01±0.26Aa 97.97±2.65Ab
    N0WC 161.55±7.37Ab 4.06±0.13Ab 2.81±0.06Ab 85.19±2.59Ab
    N0W1 158.50±3.23Aa 4.15±0.15Ac 2.46±0.13Bb 87.01±3.06Ac
    N0W2 122.52±1.81Bb 4.26±0.06Ac 2.88±0.10Ab 89.43±1.15Ac
    N ** ** ** **
    W ** * ** *
    N×W * * ns ns
      不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。*和**分别代表影响在P<0.05和P<0.01水平显著, ns代表未达到显著水平。N为施氮量, W为灌溉定额。Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application levels (NC, NJ, N0) at the same irrigation quota (P<0.05). * and ** indicate significant effects at P<0.05 and P<0.01 levels, respectively; “ns” indicates no significant effect. N is the nitrogen application level, W is the irrigation quota.
    下载: 导出CSV 
    | 显示表格

    春小麦茬施氮对油菜灌溉水利用效率有极显著(P<0.01)影响, 灌溉和施氮灌溉互作对油菜灌溉水利用效率有显著(P<0.05)影响。N0处理下, 春小麦茬不同灌溉处理下油菜灌溉水利用效率无显著差异; NC处理下, 灌溉水利用效率最高的为W1处理, 较W2处理提高了11.6%; NJ处理下, 灌溉水利用效率最高为W1处理, 较W2处理提高17.14%。在同一灌溉水平下, NC和NJ处理的灌溉水利用效率显著高于N0处理(P<0.05), 灌水利用效率最高的为NCW1处理, 为5.95 kg·m−3

    春小麦茬灌溉定额和施氮量对油菜水分利用效率有极显著(P<0.01)影响, 两者互作对油菜水分利用效率没有显著影响, 水分利用效率最高的为NCW2处理, 为4.10 kg·m−3。在同一施氮处理下, 油菜在不同灌溉处理下的水分利用效率表现为, 随着灌溉量的增加水分利用效率呈下降的趋势, 在NC和NJ处理, 均在W2处理下有最高的水分利用效率, 在WC处理下最低; 此外, 施氮处理水分利用效率显著高于不施氮处理(P<0.05), NC和NJ处理的水分利用效率分别较N0处理提高16.4%~46.7%和27.4%~55.3%。春小麦茬施氮量对油菜降水生产效率有极显著(P<0.01)的影响, 灌溉定额对油菜降水生产效率有显著(P<0.05)的影响, 两者互作对油菜降水生产效率没有显著的影响。油菜降水生产效率最高的为NCW1处理, 为124.87 kg·mm−1, NC和NJ处理下降水生产效率显著高于N0处理(P<0.05), 较N0处理分别提高25.1%~43.5%和9.6%~28.4%。在NJ处理下, WC和W1处理降水生产效率高于W2处理, 较W2处理提高11.3%~14.1%, 但各灌水处理间无显著差异。

    表5可知, 春小麦季相同施氮量下, 油菜氮素吸收量随春小麦季灌溉定额的增加而增加, 灌溉定额之间存在显著差异(P<0.05)。相同灌溉定额下, 油菜氮素吸收量与小麦季施氮量呈正比, 施氮水平间存在显著差异(P<0.05)。NC和NJ处理下, W2处理的氮素残留量为197.75 kg·hm−2和189.16 kg·hm−2, 显著高于WC和W1处理(P<0.05)。N0处理下, 灌溉定额处理间氮素残留量无显著差异。土壤的表观损失量随春小麦季施氮量的增加而增加。NC处理下, 氮素表观损失量随灌溉定额的增大而增加, WC处理的氮素表观损失量最大, 为70.43 kg·hm−2

    表  5  春小麦茬不同施氮量和灌溉定额处理对后茬油菜土壤氮素平衡的影响
    Table  5.  Effects of different treatments of nitrogen application and irrigation of spring wheat on soil nitrogen balance of the succession oilseed rape
    kg·hm−2 
    处理
    Treatment
    氮输入 Nitrogen input氮输出 Nitrogen output
    矿化氮
    Mineral nitrogen
    油菜起始矿质氮
    Initial mineral nitrogn for rape season
    油菜吸收量
    Nitrogen uptake of rape
    残留氮
    Residual nitrogen
    氮素表观损失量
    Apparent nitrogen loss
    NCWC −70.43±11.45 278.07±26.70 25.68±0.94Aa 181.96±15.84Ba 70.43±11.45
    NCW1 −49.03±12.12 227.26±9.27 23.41±0.23Ba 154.82±12.58Cc 49.03±12.12
    NCW2 −9.15±17.66 230.20±27.16 23.30±0.69Ba 197.75±9.43Aa 9.15±17.66
    NJWC −31.16±6.82 223.17±13.85 22.37±1.19Ab 169.64±13.38Bb 31.16±6.82
    NJW1 1.74±4.84 196.70±9.01 20.59±0.60Bb 177.85±8.94ABa 0
    NJW2 16.51±5.27 193.35±11.85 20.70±0.46Bb 189.16±11.10Aa 0
    N0WC 35.57±5.36 148.29±7.56 16.17±0.80Ac 167.69±8.33Ab 0
    N0W1 18.48±9.31 165.02±15.77 15.25±0.43ABc 168.25±13.01Aab 0
    N0W2 22.65±6.00 160.17±19.59 14.31±0.23Bc 168.51±13.50Ab 0
      不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application levels (NC, NJ, N0) at the same irrigation level (P<0.05).
    下载: 导出CSV 
    | 显示表格

    表6可知, 春小麦季残留的氮素仍有2.64%~3.40%可以被下季油菜所吸收利用, 不同水氮处理间油菜残留氮素利用率没有显著差异。充分考虑氮肥的后效后, 小麦季水氮处理氮肥的累积利用率为38.72%~89.82%, 处理间有显著差异(P<0.05), 其中以NJW1处理的氮肥累积利用率最大, 为89.82%, 较常规施氮处理NC提高33.6%~51.1%。

    表  6  春小麦茬不同施氮量和灌溉定额处理对氮肥利用率及残留氮利用率的影响
    Table  6.  Effects of different treatments of nitrogen application and irrigation of spring wheat on nitrogen utilization and residual nitrogen utilization of the succession oilseed rape
    % 
    处理
    Treatment
    氮肥利用率
    Nitrogen recovery efficiency
    残留氮利用率
    Residual nitrogen efficiency
    累积氮利用率
    Accumulative nitrogen efficiency
    NCWC40.25±2.40B3.40±0.16A43.65B
    NCW153.19±1.96A3.02±0.14A56.21A
    NCW235.42±2.46C3.30±0.19A38.72C
    NJWC56.73±1.51B3.07±0.17A59.80B
    NJW187.18±3.05A2.64±0.07A89.82A
    NJW246.41±5.79C3.16±0.27A49.57C
      不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application levels (NC, NJ, N0) at the same irrigation level (P<0.05).
    下载: 导出CSV 
    | 显示表格

    小麦茬氮肥具有一定的后效, 能够提高氮肥的实际利用率, 氮肥的后效随施氮量的增加而增大, 这与国内许多研究一致[27-28]。在本试验条件下, 后茬绿肥作物油菜的产量与氮素吸收量均在春小麦茬高氮处理时有最大值, 且春小麦茬高灌水量处理也能提高油菜产量和氮素吸收量, 这可能是春小麦茬高灌水量处理为油菜保持较高的土壤水分, 更有利于油菜的生长。与当季氮肥利用率相比, 后续单季作物对土壤残留化肥氮的回收利用率普遍较低。王盈盈等[29]在长期不施氮的水稻-小麦轮作农田的试验结果显示, 当季小麦收获后, 第2季水稻(Oryza sativa)、第3季小麦和第4季水稻对残留的回收率平均分别仅为3.1%、0.8%和2.1%; 卜容燕等[19]在水稻-油菜轮作条件下, 水稻季氮肥在油菜季的利用率为2.9%~4.7%, 与本试验结果相近。 在本试验结果下, 节水20%处理下的残留氮肥利用率较低, 这可能与春小麦茬节水20%处理氮素利用率较高, 导致残留在土壤中的氮素较少有关。本试验处理下, 油菜播前节水20%处理的初始矿质氮显著低于常规灌水处理。后季作物氮肥回收率低的原因可能是随时间推移, 大部分残留氮肥逐渐被固持在土壤有机氮库, 不易矿化为速效氮被作物利用[30]。且本试验的氮肥残留利用率只考虑了油菜地上部的氮素吸收, 这在一定程度上低估了作物对肥料的利用率。王西娜等[26]对连续4年开展冬小麦-夏玉米(Zea mays)轮作的农田研究发现, 后季作物累积氮肥回收率约为14.6%~18.1%, 化肥氮的累积利用率可高达50%。本试验只进行了一年, 所以对油菜的累积氮肥回收率还需进一步研究。

    在宁夏引黄灌区的小麦种植体系中, 往往大水大肥, 造成大量的矿质氮在土壤中累积, 再加上大量的灌溉和夏季的强降雨, 很容易向土壤深层和地下水淋失, 如何有效控制矿质氮的淋失是当前宁夏引黄灌区小麦种植体系中需要尽快解决的问题。巨昇容等[31]的研究表明, 在设施蔬菜休闲期, 种植填闲作物显著减少了表层(0~20 cm)土壤的硝态氮含量; 闵炬等[32]的研究表明, 在设施菜地揭棚休闲期, 种植填闲作物可以有效降低0~10 cm土壤中硝态氮含量, 减少矿质氮淋溶。本试验结果表明, 在降雨量较小, 且降雨主要集中在夏季的宁夏引黄灌区, 复种油菜明显降低土壤矿质氮数量, 油菜收获后高氮处理0~40 cm表层土壤矿质氮数量下降明显, 降幅达43%, 起到了减少矿质氮淋溶的作用, 这可能与油菜根系分布有关, 这与前人的研究结果相似; 且本试验发现土壤矿质氮的下降幅度随春小麦茬施氮量的减少而减少, 这可能是与土壤中矿质态数量影响了油菜对氮素的固持有关。而油菜对土壤矿质氮的固持也与春小麦茬灌溉量呈现出一定的规律, 春小麦茬高灌水量处理下, 油菜对土壤矿质态的固持效果最好, 说明春小麦茬高灌水量使土壤保持了较高的土壤水分, 促进了油菜的生长, 使油菜对土壤矿质氮的固持起到更好的效果。

    油菜翻压、分解后, 还可将自身的氮元素归还土壤, 培肥土壤。李富翠等[33]研究发现, 种植绿肥处理表层(0~20 cm)土壤硝态氮较播前显著增加, 提高土壤养分供应能力。本研究表明, 油菜还田当年就有显著增加表层土壤硝态氮含量的趋势, 油菜翻压还田后, 0~40 cm土层土壤矿质氮含量明显提高, 且矿质氮的增幅与春小麦茬施氮量呈正比, 可能与春小麦茬高氮处理的油菜吸氮量较高有关。此外, 有研究结果表明[34-35], 冬季土壤冻融有利于土壤中矿质氮的增加。所以本试验油菜翻压还田后土壤矿质氮的提升是绿肥还田矿化和12月份至翌年3月份冬季土壤冻融交替促进了土壤有机氮的矿化共同作用的结果。

    本试验从氮素平衡角度出发, 研究油菜投入氮与作物总吸收氮, 土壤氮素的总残留和损失之间的关系, 发现随春小麦茬施氮量增加油菜氮素表观损失量增加。刘学军等[36]研究表明表观损失量随施氮量的增加而急剧增加, 复种油菜试验并未施氮, 但起始矿质氮含量表现为高氮处理显著大于减氮处理和不施氮处理, 因此可能导致了小麦茬高氮处理在油菜季表观损失量较大。本试验氮素表观损失量同样随春小麦茬灌水量增加而增加, 可能是春小麦茬高灌水处理导致了土壤氮素向土壤深层淋溶累积, 这一部分氮素在油菜茬灌水以及夏季降雨影响下进一步向下淋溶, 造成了氮素淋移。

    宁夏引黄灌区降雨主要集中在夏季, 尝试种植填闲作物提高休闲期水分利用效率是否可行, 还存在一定争议。填闲作物生长一方面会消耗土壤水分; 另一方面则可以通过遮荫抑蒸降低水分损失, 并通过改良土壤物理结构来促进水分有效存贮。种植填闲作物后下一季作物播种前的土壤水分状况与常规处理的接近, 即不会大幅增加水分消耗而影响下一季作物的水分供应[9]。而邓建强等[37]发现引种饲用油菜显著降低了小麦播前土壤贮水量。本文认为种植绿肥作物消耗了夏季降水, 油菜收获后较播前各处理土壤贮水量均有不同的变化; 高氮处理的油菜土壤贮水量变化最小, 原因是高氮处理促进了油菜的生长和水分消耗, 导致土壤贮水量变化不大, 甚至有较播前出现下降的现象。不施氮处理土壤贮水量较播前的增加61 mm。由于本试验没有设置裸地对照, 无法判断复种油菜对下一季春小麦播前土壤贮水量的影响。但是引黄灌区有冬灌的习惯, 油菜季消耗的水分可以通过冬灌补充。甚至通过消耗夏秋雨季的降水为土壤容纳冬灌水分提供空间, 减少冬灌水分的深层渗漏。与不施氮处理相比, 春小麦茬施氮处理显著提高了油菜的水分利用效率和灌溉水利用效率及降水生产效率, 说明氮肥后效对后茬作物水分利用效率和灌溉水利用效率及降水生产效率也有显著的影响。而在施氮处理下, 春小麦茬节水20%处理油菜的水分利用效率和灌溉水利用效率及降水生产效率较高。水分利用效率随着灌溉定额的增加, 呈“先升后降”的趋势[38], 这可能说明春小麦茬节水20%处理对提高油菜水分利用效率和灌溉水利用效率及降水生产效率有同样的积极作用。由于这仅为一年的试验结果, 还需更长时间的试验验证其可靠性。

    1)在本试验条件下, 春小麦茬氮肥处理显著提高了后茬油菜产量, 其中常规施氮处理油菜产量达5937~6641 kg·hm−2; 同时常规施氮提高了油菜残留氮肥利用率, 但减氮处理提高了春小麦-油菜复种体系的累积氮素利用率。

    2)油菜水分利用效率与灌溉水利用效率随春小麦茬氮肥施用量增加而提高, 后茬油菜灌溉水利用效率提高1.07~1.80 kg·hm−2; 水分利用效率提高0.22~1.36 kg·hm−2, 降水生产效率提高8.5~37.9 kg·mm−1。春小麦茬节水20%处理提高了油菜灌溉水利用效率与水分利用效率及降水生产效率。

    3)复种油菜减少了施氮处理上层土壤矿质氮残留, 收获后常规施氮处理0~40 cm土层土壤矿质氮累积量较播前下降18%~42%; 而油菜翻压还田经过冬季冻融后显著提高了上层土壤矿质氮累积量, 且矿质氮累积量的增幅与小麦茬施氮量呈正比。

  • 图  1   2021年研究区月降水量

    Figure  1.   Monthly precipitation in the study area in 2021

    图  2   春小麦茬不同施氮量和灌溉定额处理下油菜的产量

    *和**分别代表影响在P<0.05和P<0.01水平显著, ns代表未达到显著水平。N为施氮量, W为灌溉定额。不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。* and ** indicate significant effects at P<0.05 and P<0.01 levels, respectively; “ns” indicates no significant effect. N is the nitrogen application level, W is the irrigation quota. Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application treatments (NC, NJ, N0) at the same irrigation quota (P<0.05).

    Figure  2.   Yield of succession oilseed rape under different treatments of nitrogen application and irrigation of spring wheat

    图  3   春小麦茬不同施氮量和灌溉定额处理下油菜的氮素吸收量

    *和**分别代表影响在P<0.05和P<0.01水平显著, ns代表未达到显著水平。N为施氮量, W为灌溉定额。不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。* and ** indicate significant effects at P<0.05 and P<0.01 levels, respectively; “ns” indicates no significant effect. N is the nitrogen application level, W is the irrigation quota. Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application treatments (NC, NJ, N0) at the same irrigation quota (P<0.05).

    Figure  3.   Nitrogen uptake of succession oilseed rape under different treatments of nitrogen application and irrigation of spring wheat

    图  4   春小麦茬不同施氮量和灌溉定额处理下油菜的0~100 cm土层土壤水分分布(a、b、c分别为油菜播前、油菜收获和下一季春小麦播前)

    Figure  4.   Soil water distribution in 0−100 cm soil layer of succession oilseed rape under different treatments of nitrogen application and irrigation of spring wheat (a, b and c are before oilseed rape sowing, oilseed rape harvest and before the next spring wheat sowing, respectively)

    图  5   春小麦茬不同施氮量和灌溉定额处理下油菜的0~100 cm土层土壤矿质氮分布(a、b、c分别为油菜播前、油菜收获和下一季春小麦播前)

    Figure  5.   Soil mineral nitrogen distribution in 0−100 cm soil layer of succession oilseed rape under different treatments of nitrogen application and irrigation of spring wheat (a, b and c are before oilseed rape sowing, oilseed rape harvest and before the next spring wheat sowing, respectively)

    表  1   供试土壤0~100 cm基本理化性状

    Table  1   Basic physical and chemical properties in 0−100 cm layer of the tested soil

    土层
    Soil layer
    (cm)
    容重
    Bulk density
    (g·cm−3)
    有机质
    Organic matter
    (g·kg−1)
    全氮
    Total nitrogen
    (g·kg−1)
    矿质态氮
    Mineral nitrogen
    (mg·kg−1)
    全磷
    Total phosphorus
    (g·kg−1)
    速效磷
    Available phosphorus
    (mg·kg−1)
    速效钾
    Available potassium
    (mg·kg−1)
    pH
    0~201.1816.300.5932.010.5724.69143.017.83
    20~401.2114.820.4127.570.4322.70135.257.50
    40~601.1913.080.4223.560.3815.84126.907.32
    60~801.2313.620.3421.790.3016.31122.727.31
    80~1001.2311.600.2217.220.267.89128.697.31
    下载: 导出CSV

    表  2   不同处理小麦季试验施氮量和灌溉定额

    Table  2   Nitrogen application levels and irrigation regimes of different treatments for spring wheat

    处理
    Treatment
    施氮水平
    Nitrogen
    level
    灌溉定额
    Irrigation
    regime
    施氮量
    Nitrogen
    application rate
    (kg·hm−2)
    灌溉定额
    Irrigation quota
    (mm)
    NCWCNCWC270400
    NCW1NCW1270320
    NCW2NCW2270240
    NJWCNJWC202.5400
    NJW1NJW1202.5320
    NJW2NJW2202.5240
    N0WCN0WC0400
    N0W1N0W10320
    N0W2N0W20240
    下载: 导出CSV

    表  3   不同施氮量和灌溉定额处理下春小麦收获后0~100 cm土壤矿质氮残留量

    Table  3   Residual mineral nitrogen contents in 0−100 cm soil layer after spring wheat harvesting with different treatments of nitrogen application and irrigation

    kg·hm−2 
    处理
    Treatment
    土层深度 Soil depth (cm)
    0~2020~4040~6060~8080~1000~100
    NCWC81.07±7.76Aa67.77±8.75Aa51.51±5.21Aa42.03±4.80Aa35.68±6.10Aa278.07±26.70Aa
    NCW166.31±0.71Ba52.74±5.39Aa41.84±4.01Aa36.55±1.51ABa29.81±0.35Aa227.26±9.27Aa
    NCW260.78±3.35Ba54.63±8.33Aa45.28±9.75Aa34.32±0.66Bab35.18±6.96Aa230.19±27.16Aa
    NJWC51.45±10.26Ab52.01±2.75Ab48.83±12.90Aab39.31±11.92Aa31.56±4.65Aab223.16±13.85Ab
    NJW150.32±2.32Ab49.19±6.78ABa35.93±1.37Aab31.43±2.77Aa29.82±2.67Aa196.69±9.01Ab
    NJW248.08±4.60Aab40.15±2.12Ba33.00±2.19Aa39.49±5.98Aa32.64±2.36Aa193.35±11.85Ab
    N0WC38.18±3.17Ab33.35±1.50Ac30.02±2.07Ab26.25±2.26Aa20.48±4.97Ab148.28±7.56Ac
    N0W140.13±9.64Ab39.75±5.69Aa32.22±3.52Ab28.65±3.48Ab24.27±6.68Aa165.02±15.77Ac
    N0W236.85±12.60Ab37.32±8.68Aa36.66±18.46Aa26.44±4.67Ab22.90±10.51Aa160.17±19.59Ac
      不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application treatments (NC, NJ, N0) at the same irrigation quota (P<0.05).
    下载: 导出CSV

    表  4   春小麦茬不同施氮量和灌溉定额处理对油菜水分利用效率的影响

    Table  4   Effects of different treatments of nitrogen application and irrigation of spring wheat on water use efficiency of the succession oilseed rape

    处理
    Treatment
    耗水量
    Water consumption
    (mm)
    灌溉水利用效率
    Utilization rate of irrigation water
    (kg·m−3)
    水分利用效率
    Water use efficiency
    (kg·m−3)
    降水生产效率
    Precipitation productivity
    (kg·mm−1)
    NCWC 181.81±5.17Aa 5.32±0.37Ba 3.27±0.33Ca 111.64±7.46Aa
    NCW1 184.57±8.66Aa 5.95±0.29Aa 3.61±0.33Ba 124.87±5.83Aa
    NCW2 145.96±9.72Ba 5.33±0.13Ba 4.10±0.33Aa 111.89±2.56Aa
    NJWC 163.34±9.06Ab 5.20±0.42ABa 3.58±0.49Ba 109.06±8.57Aa
    NJW1 156.57±12.92Ab 5.33±0.13Ab 3.82±0.30ABa 111.74±2.70Ab
    NJW2 126.99±5.67Bb 4.55±0.12Bb 4.01±0.26Aa 97.97±2.65Ab
    N0WC 161.55±7.37Ab 4.06±0.13Ab 2.81±0.06Ab 85.19±2.59Ab
    N0W1 158.50±3.23Aa 4.15±0.15Ac 2.46±0.13Bb 87.01±3.06Ac
    N0W2 122.52±1.81Bb 4.26±0.06Ac 2.88±0.10Ab 89.43±1.15Ac
    N ** ** ** **
    W ** * ** *
    N×W * * ns ns
      不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。*和**分别代表影响在P<0.05和P<0.01水平显著, ns代表未达到显著水平。N为施氮量, W为灌溉定额。Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application levels (NC, NJ, N0) at the same irrigation quota (P<0.05). * and ** indicate significant effects at P<0.05 and P<0.01 levels, respectively; “ns” indicates no significant effect. N is the nitrogen application level, W is the irrigation quota.
    下载: 导出CSV

    表  5   春小麦茬不同施氮量和灌溉定额处理对后茬油菜土壤氮素平衡的影响

    Table  5   Effects of different treatments of nitrogen application and irrigation of spring wheat on soil nitrogen balance of the succession oilseed rape

    kg·hm−2 
    处理
    Treatment
    氮输入 Nitrogen input氮输出 Nitrogen output
    矿化氮
    Mineral nitrogen
    油菜起始矿质氮
    Initial mineral nitrogn for rape season
    油菜吸收量
    Nitrogen uptake of rape
    残留氮
    Residual nitrogen
    氮素表观损失量
    Apparent nitrogen loss
    NCWC −70.43±11.45 278.07±26.70 25.68±0.94Aa 181.96±15.84Ba 70.43±11.45
    NCW1 −49.03±12.12 227.26±9.27 23.41±0.23Ba 154.82±12.58Cc 49.03±12.12
    NCW2 −9.15±17.66 230.20±27.16 23.30±0.69Ba 197.75±9.43Aa 9.15±17.66
    NJWC −31.16±6.82 223.17±13.85 22.37±1.19Ab 169.64±13.38Bb 31.16±6.82
    NJW1 1.74±4.84 196.70±9.01 20.59±0.60Bb 177.85±8.94ABa 0
    NJW2 16.51±5.27 193.35±11.85 20.70±0.46Bb 189.16±11.10Aa 0
    N0WC 35.57±5.36 148.29±7.56 16.17±0.80Ac 167.69±8.33Ab 0
    N0W1 18.48±9.31 165.02±15.77 15.25±0.43ABc 168.25±13.01Aab 0
    N0W2 22.65±6.00 160.17±19.59 14.31±0.23Bc 168.51±13.50Ab 0
      不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application levels (NC, NJ, N0) at the same irrigation level (P<0.05).
    下载: 导出CSV

    表  6   春小麦茬不同施氮量和灌溉定额处理对氮肥利用率及残留氮利用率的影响

    Table  6   Effects of different treatments of nitrogen application and irrigation of spring wheat on nitrogen utilization and residual nitrogen utilization of the succession oilseed rape

    % 
    处理
    Treatment
    氮肥利用率
    Nitrogen recovery efficiency
    残留氮利用率
    Residual nitrogen efficiency
    累积氮利用率
    Accumulative nitrogen efficiency
    NCWC40.25±2.40B3.40±0.16A43.65B
    NCW153.19±1.96A3.02±0.14A56.21A
    NCW235.42±2.46C3.30±0.19A38.72C
    NJWC56.73±1.51B3.07±0.17A59.80B
    NJW187.18±3.05A2.64±0.07A89.82A
    NJW246.41±5.79C3.16±0.27A49.57C
      不同大写字母表示相同施氮量下不同灌溉量(WC、W1、W2)处理间差异显著(P<0.05), 不同小写字母表示相同灌溉量下不同施氮量(NC、NJ、N0)处理间差异显著(P<0.05)。Different capital letters indicate significant differences among different irrigation quotas (WC, W1, W2) at the same nitrogen application level (P<0.05). Different lowercase letters indicate significant differences among different nitrogen application levels (NC, NJ, N0) at the same irrigation level (P<0.05).
    下载: 导出CSV
  • [1] 赵营, 郭鑫年, 赵护兵, 等. 宁夏引黄灌区春小麦施肥现状与评价[J]. 麦类作物学报, 2014, 34(9): 1274−1280 doi: 10.7606/j.issn.1009-1041.2014.09.017

    ZHAO Y, GUO X N, ZHAO H B, et al. Evaluation on present situation of fertilization in spring wheat in the Yellow River Irrigation Region of Ningxia[J]. Journal of Triticeae Crops, 2014, 34(9): 1274−1280 doi: 10.7606/j.issn.1009-1041.2014.09.017

    [2] 张学军, 王海廷, 赵营, 等. 不同水肥调控对宁夏优势特色作物氮淋失及产量的影响[J]. 宁夏农林科技, 2020, 61(7): 6−11 doi: 10.3969/j.issn.1002-204x.2020.07.002

    ZHANG X J, WANG H T, ZHAO Y, et al. Effect of different water and fertilizer regulation on nitrogen leaching loss and yield of dominant and characteristic crops in Ningxia[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2020, 61(7): 6−11 doi: 10.3969/j.issn.1002-204x.2020.07.002

    [3] 王朝辉, 李生秀, 王西娜, 等. 旱地土壤硝态氮残留淋溶及影响因素研究[J]. 土壤, 2006, 38(6): 676−681 doi: 10.3321/j.issn:0253-9829.2006.06.002

    WANG Z H, LI S X, WANG X N, et al. Nitrate nitrogen residue and leaching in dryland soil and influence factors[J]. Soils, 2006, 38(6): 676−681 doi: 10.3321/j.issn:0253-9829.2006.06.002

    [4]

    SEBILO M, MAYER B, NICOLARDOT B, et al. Long-term fate of nitrate fertilizer in agricultural soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(45): 18185−18189

    [5] 王俊, 薄晶晶, 付鑫. 填闲种植及其在黄土高原旱作农业区的可行性分析[J]. 生态学报, 2018, 38(14): 5244−5254

    WANG J, BO J J, FU X. Research progress in cover cropping and its feasibility in the dryland farming systems on the Loess Plateau[J]. Acta Ecologica Sinica, 2018, 38(14): 5244−5254

    [6]

    GARBA I I, BELL L W, WILLIAMS A. Cover crop legacy impacts on soil water and nitrogen dynamics, and on subsequent crop yields in drylands: a meta-analysis[J]. Agronomy for Sustainable Development, 2022, 42(3): 1−21

    [7]

    MIN J, SHI W M, XING G X, et al. Effects of a catch crop and reduced nitrogen fertilization on nitrogen leaching in greenhouse vegetable production systems[J]. Nutrient Cycling in Agroecosystems, 2011, 91(1): 31−39 doi: 10.1007/s10705-011-9441-5

    [8]

    POEPLAU C, DON A. Carbon sequestration in agricultural soils via cultivation of cover crops— A meta-analysis[J]. Agriculture, Ecosystems & Environment, 2015, 200: 33−41

    [9]

    FRASER P M, CURTIN D, HARRISON-KIRK T, et al. Winter nitrate leaching under different tillage and winter cover crop management practices[J]. Soil Science Society of America Journal, 2013, 77(4): 1391−1401 doi: 10.2136/sssaj2012.0256

    [10]

    NOURI A, LUKAS S, SINGH S, et al. When do cover crops reduce nitrate leaching? A global meta-analysis[J]. Global Change Biology, 2022, 28(15): 4736−4749 doi: 10.1111/gcb.16269

    [11] 冒辛平, 陈晓群, 罗健航, 等. 宁夏引黄灌区设施菜田填闲作物种植试验初报[J]. 宁夏农林科技, 2015(9): 1−4 doi: 10.3969/j.issn.1002-204X.2015.09.001

    MAO X P, CHEN X Q, LUO J H, et al. A preliminary study of catch crop growing in greenhouse in Yellow River Irrigation Area of Ningxia[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2015(9): 1−4 doi: 10.3969/j.issn.1002-204X.2015.09.001

    [12] 张树兰, Lars Lovdahl, 同延安. 渭北旱塬不同田间管理措施下冬小麦产量及水分利用效率[J]. 农业工程学报, 2005, 21(4): 20−24 doi: 10.3321/j.issn:1002-6819.2005.04.005

    ZHANG S L, LOVDAHL L, TONG Y A. Effects of different field management practices on winter wheat yield and water utilization efficiency in Weibei Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(4): 20−24 doi: 10.3321/j.issn:1002-6819.2005.04.005

    [13] 仇化民, 李怀德, 李桂芳. 陇东黄土高原麦茬绿肥保水增肥效应的研究[J]. 资源科学, 1988, 10(3): 87–89

    QIU H M, LI H D, LI G F. Study on water retention and fertilization effect of stubble green fertilizer in Longdong Loess Plateau[J]. Resources Science, 1988, 10(3): 87–89

    [14] 邰通桥, 杭朝平, 杨胜俊. 果园套种绿肥对果园土壤改良的效果[J]. 贵州农业科学, 1999, 27(1): 35−37 doi: 10.3969/j.issn.1001-3601.1999.01.010

    TAI T Q, HANG C P, YANG S J. Effect of interplanting green manure crop in orchard for improving soil[J]. Guizhou Agricultural Sciences, 1999, 27(1): 35−37 doi: 10.3969/j.issn.1001-3601.1999.01.010

    [15] 陈姣, 张池, 陈玉佩, 等. 不同绿肥和覆膜措施对渭北旱塬冬小麦产量和土壤水分动态的影响[J]. 植物营养与肥料学报, 2021, 27(12): 2136−2148 doi: 10.11674/zwyf.2021251

    CHEN J, ZHANG C, CHEN Y P, et al. Effects of different green manure crops and mulching approaches on wheat yield and soil moisture dynamics in the dryland region[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2136−2148 doi: 10.11674/zwyf.2021251

    [16] 马致慧, 李惠霞, 何文寿. 不同施肥量对麦后复种饲料油菜养分吸收及产量的影响 −以宁夏引黄灌区为例[J]. 湖南农业科学, 2020(5): 26−30, 36

    MA Z H, LI H X, HE W S. Effects of different fertilizer amounts on nutrient uptake and yield of post-wheat forage rape — Taking the Yellow River irrigation district of Ningxia as an example[J]. Hunan Agricultural Sciences, 2020(5): 26−30, 36

    [17] 韦春雨, 贾彪, 何文寿. 氮磷配施对麦后复种饲料油菜农艺性状及产量的影响[J]. 湖北农业科学, 2018, 57(20): 40−43

    WEI C Y, JIA B, HE W S. Effects of nitrogen phosphorus combined application on agronomic characters and yield of Brassica napus of multiple cropping after wheat[J]. Hubei Agricultural Sciences, 2018, 57(20): 40−43

    [18] 马永鑫, 王西娜, 韦广源, 等. 减氮节水对宁夏引黄灌区春小麦光合特性与产量的影响[J]. 农业工程学报, 2022, 38(10): 75−84 doi: 10.11975/j.issn.1002-6819.2022.10.010

    MA Y X, WANG X N, WEI G Y, et al. Effects of nitrogen reduction and water saving on the photosynthetic characteristics and yield of spring wheat in the Yellow River Irrigation Areas of Ningxia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(10): 75−84 doi: 10.11975/j.issn.1002-6819.2022.10.010

    [19] 卜容燕, 任涛, 鲁剑巍, 等. 水稻-油菜轮作条件下氮肥效应及其后效[J]. 中国农业科学, 2012, 45(24): 5049−5056 doi: 10.3864/j.issn.0578-1752.2012.24.010

    BU R Y, REN T, LU J W, et al. Study on N fertilizer efficiency and the residual effect under rice-oilseed rape rotation system[J]. Scientia Agricultura Sinica, 2012, 45(24): 5049−5056 doi: 10.3864/j.issn.0578-1752.2012.24.010

    [20] 雒文鹤, 师祖姣, 王旭敏, 等. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924−936 doi: 10.3724/SP.J.1006.2020.91060

    LUO W H, SHI Z J, WANG X M, et al. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat[J]. Acta Agronomica Sinica, 2020, 46(6): 924−936 doi: 10.3724/SP.J.1006.2020.91060

    [21] 马兴华, 王东, 于振文, 等. 不同施氮量下灌水量对小麦耗水特性和氮素分配的影响[J]. 生态学报, 2010, 30(8): 1955−1965

    MA X H, WANG D, YU Z W, et al. Effect of irrigation regimes on water consumption characteristics and nitrogen distribution in wheat at different nitrogen applications[J]. Acta Ecologica Sinica, 2010, 30(8): 1955−1965

    [22] 孙敏, 温斐斐, 高志强, 等. 不同降水年型旱地小麦休闲期耕作的蓄水增产效应[J]. 作物学报, 2014, 40(8): 1459−1469 doi: 10.3724/SP.J.1006.2014.01459

    SUN M, WEN F F, GAO Z Q, et al. Effects of farming practice during fallow period on soil water storage and yield of dryland wheat in different rainfall years[J]. Acta Agronomica Sinica, 2014, 40(8): 1459−1469 doi: 10.3724/SP.J.1006.2014.01459

    [23] 赵欢, 董宝娣, 乔匀周, 等. 灌溉畦田规格对张杂谷生长、产量及水分利用的影响[J]. 灌溉排水学报, 2017, 36(1): 16−21 doi: 10.13522/j.cnki.ggps.2017.01.003

    ZHAO H, DONG B D, QIAO Y Z, et al. Effect of different border dimensions irrigation on growth, yield and water use of hybrid millet[J]. Journal of Irrigation and Drainage, 2017, 36(1): 16−21 doi: 10.13522/j.cnki.ggps.2017.01.003

    [24] 马尚宇, 于振文, 张永丽, 等. 不同畦宽灌溉对小麦耗水特性和产量及水分利用效率的影响[J]. 中国农业科学, 2014(8): 1531−1540 doi: 10.3864/j.issn.0578-1752.2014.08.009

    MA S Y, YU Z W, ZHANG Y L, et al. Effect of field border width for irrigation on water consumption characteristics, yield and water use efficiency of wheat[J]. Scientia Agricultura Sinica, 2014(8): 1531−1540 doi: 10.3864/j.issn.0578-1752.2014.08.009

    [25] 刘宏斌, 李志宏, 张维理, 等. 露地栽培条件下大白菜氮肥利用率与硝态氮淋溶损失研究[J]. 植物营养与肥料学报, 2004, 10(3): 286−291 doi: 10.3321/j.issn:1008-505X.2004.03.013

    LIU H B, LI Z H, ZHANG W L, et al. Study on N use efficiency of Chinese cabbage and nitrate leaching under open field cultivation[J]. Journal of Plant Nutrition and Fertilizers, 2004, 10(3): 286−291 doi: 10.3321/j.issn:1008-505X.2004.03.013

    [26] 王西娜, 王朝辉, 李华, 等. 旱地土壤中残留肥料氮的动向及作物有效性[J]. 土壤学报, 2016, 53(5): 1202−1212

    WANG X N, WANG Z H, LI H, et al. Dynamics and availability to crops of residual fertilizer nitrogen in upland soil[J]. Acta Pedologica Sinica, 2016, 53(5): 1202−1212

    [27] 董娴娴, 刘新宇, 任翠莲, 等. 潮褐土冬小麦-夏玉米轮作体系氮肥后效及去向研究[J]. 中国农业科学, 2012, 45(11): 2209−2216 doi: 10.3864/j.issn.0578-1752.2012.11.009

    DONG X X, LIU X Y, REN C L, et al. Fate and residual effect of fertilizer nitrogen under winter wheat-summer maize rotation in North China Plain in meadow cinnamon soils[J]. Scientia Agricultura Sinica, 2012, 45(11): 2209−2216 doi: 10.3864/j.issn.0578-1752.2012.11.009

    [28] 王家顺, 李志友, 陆引罡. 烤烟-油菜轮作条件下的氮肥效应[J]. 江苏农业科学, 2017, 45(5): 70−73

    WANG J S, LI Z Y, LU Y G. Effect of nitrogen fertilizer on flue-cured tobacco-rape rotation[J]. Jiangsu Agricultural Sciences, 2017, 45(5): 70−73

    [29] 王盈盈, 夏龙龙, 蔡思源, 等. 长期不施氮肥下稻麦轮作农田残留化肥氮的后效及去向[J]. 土壤学报, 2022, 59(6): 1626−1639

    WANG Y Y, XIA L L, CAI S Y, et al. Effect and direction of residual fertilizer nitrogen in rice-wheat rotation without nitrogen fertilizer for a long time[J]. Journal of Soil, 2022, 59(6): 1626−1639

    [30]

    FRICK H, OBERSON A, CORMANN M, et al. Similar distribution of 15N labeled cattle slurry and mineral fertilizer in soil after one year[J]. Nutrient Cycling in Agroecosystems, 2023, 125(2): 153−169 doi: 10.1007/s10705-022-10205-5

    [31] 巨昇容, 闵炬, 董刚强, 等. 不同种类填闲作物阻控设施菜地氮磷淋溶效果及机制研究[J]. 土壤学报: 1–12 [2023-06-10]. http://kns.cnki.net/kcms/detail/32.1119.P.20220609.1832.008.html.

    JU S R, MIN J, DONG G Q, et al. Study on nitrogen and phosphorus leaching effect and mechanism of different kinds of idle crops in vegetable fields under control facilities[J]. Acta Pedologica Sinica: 1−12 [2023-06-10]. http://kns.cnki.net/kcms/detail/32.1119.P.20220609.1832.008.html.

    [32] 闵炬, 陆扣萍, 陆玉芳, 等. 太湖地区大棚菜地土壤养分与地下水水质调查[J]. 土壤, 2012, 44(2): 213−217 doi: 10.3969/j.issn.0253-9829.2012.02.007

    MIN J, LU K P, LU Y F, et al. Investigation of soil fertility and quality of ground water in greenhouse vegetable fields of Tai Lake region[J]. Soils, 2012, 44(2): 213−217 doi: 10.3969/j.issn.0253-9829.2012.02.007

    [33] 李富翠, 赵护兵, 王朝辉, 等. 渭北旱地夏闲期秸秆还田和种植绿肥对土壤水分、养分和冬小麦产量的影响[J]. 农业环境科学学报, 2011, 30(9): 1861−1871

    LI F C, ZHAO H B, WANG Z H, et al. Effects of straw mulching and planting green manure on soil water, nutrient and winter wheat yield on Weibei Plateau, China[J]. Journal of Agro-Environment Science, 2011, 30(9): 1861−1871

    [34]

    NIELSEN C B, GROFFMAN P M, HAMBURG S P, et al. Freezing effects on carbon and nitrogen cycling in northern hardwood forest soils[J]. Soil Science Society of America Journal, 2001, 65(6): 1723−1730 doi: 10.2136/sssaj2001.1723

    [35] 于贺, 谢洪宝, 陈一民, 等. 冻融作用对土壤氮转化影响的研究进展[J]. 中国农学通报, 2021, 37(26): 88−92 doi: 10.11924/j.issn.1000-6850.casb2021-0121

    YU H, XIE H B, CHEN Y M, et al. Effects of freeze-thaw on soil nitrogen conversion: research progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(26): 88−92 doi: 10.11924/j.issn.1000-6850.casb2021-0121

    [36] 刘学军, 巨晓棠, 潘家荣, 等. 冬小麦-夏玉米轮作中的氮素平衡与损失途径[J]. 土壤学报, 2002, 39(suppl.): 228−237

    LIU X J, JU X T, PAN J R, et al. Nitrogen balance and loss pathways in winter wheat-summer maize rotation[J]. Acta Pedologica Sinica, 2002, 39(suppl.): 228−237

    [37] 邓建强, 梁志婷, 刘渊博, 等. 陇东旱塬冬小麦复种饲草轮作系统产量和水分利用特征[J]. 草业学报, 2017, 26(2): 161−170 doi: 10.11686/cyxb2016131

    DENG J Q, LIANG Z T, LIU Y B, et al. Dry matter production and water use of winter wheat-forage catch crop rotation systems on the Longdong Loess Plateau[J]. Acta Prataculturae Sinica, 2017, 26(2): 161−170 doi: 10.11686/cyxb2016131

    [38] 赛力汗·赛, 张永强, 薛丽华, 等. 新疆滴灌冬小麦灌溉量对产量形成与水分利用的影响[J]. 中国农业大学学报, 2018, 23(8): 30−40 doi: 10.11841/j.issn.1007-4333.2018.08.04

    SAILIHNA·SAI, ZHANG Y Q, XUE L H, et al. Effects of different drip irrigation amount on yield formation and water use of winter wheat in Xinjiang[J]. Journal of China Agricultural University, 2018, 23(8): 30−40 doi: 10.11841/j.issn.1007-4333.2018.08.04

  • 期刊类型引用(5)

    1. 王腾飞,马霞,刘金龙,王斌,张译尹,李佳旺,马江萍,王小兵,兰剑. 引黄灌区复种饲用燕麦种植模式产量、品质及经济效益分析. 草业学报. 2025(04): 27-37 . 百度学术
    2. 陈志波,高山,张锐,罗立新,鲍蕊. 水氮耦合对饲用油菜干物质积累分配及产量的影响. 黑龙江农业科学. 2024(05): 70-76 . 百度学术
    3. 刘云鹏,杨正虎,马东海,张智,张邦彦,白小龙,张恩,张朝辉,武晋民,张震中,王彬. 灌水定额分配对耐盐碱水稻生育特征的影响. 灌溉排水学报. 2024(07): 66-76 . 百度学术
    4. 李禹,马建彬,代惠娟,白羽祥,王戈,王圣丰,刘波,谭宏祥,吴姝俊,沈永祥,王娜. 氮肥减施对烤烟生长及氮肥利用效率的影响. 广东农业科学. 2024(08): 92-103 . 百度学术
    5. 王平,来幸樑,刘继霞,王兆川. 播种后不同时间滴灌对麦后复种油葵农艺性状及产量的影响. 宁夏农林科技. 2024(11): 52-54+109 . 百度学术

    其他类型引用(2)

图(5)  /  表(6)
计量
  • 文章访问数:  818
  • HTML全文浏览量:  80
  • PDF下载量:  77
  • 被引次数: 7
出版历程
  • 收稿日期:  2023-04-20
  • 录用日期:  2023-06-05
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2023-11-09

目录

/

返回文章
返回