有机物料在果园生态系统中的应用及其环境效应: 研究现状与展望

马啸驰, 韩烽, 白亚涛, 吴双, 吴景贵, 马艳

马啸驰, 韩烽, 白亚涛, 吴双, 吴景贵, 马艳. 有机物料在果园生态系统中的应用及其环境效应: 研究现状与展望[J]. 中国生态农业学报 (中英文), 2023, 31(8): 1240−1255. DOI: 10.12357/cjea.20230207
引用本文: 马啸驰, 韩烽, 白亚涛, 吴双, 吴景贵, 马艳. 有机物料在果园生态系统中的应用及其环境效应: 研究现状与展望[J]. 中国生态农业学报 (中英文), 2023, 31(8): 1240−1255. DOI: 10.12357/cjea.20230207
MA X C, HAN F, BAI Y T, WU S, WU J G, MA Y. Application and environmental effects of organic materials in orchard ecosystem: research status and prospects[J]. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1240−1255. DOI: 10.12357/cjea.20230207
Citation: MA X C, HAN F, BAI Y T, WU S, WU J G, MA Y. Application and environmental effects of organic materials in orchard ecosystem: research status and prospects[J]. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1240−1255. DOI: 10.12357/cjea.20230207
马啸驰, 韩烽, 白亚涛, 吴双, 吴景贵, 马艳. 有机物料在果园生态系统中的应用及其环境效应: 研究现状与展望[J]. 中国生态农业学报 (中英文), 2023, 31(8): 1240−1255. CSTR: 32371.14.cjea.20230207
引用本文: 马啸驰, 韩烽, 白亚涛, 吴双, 吴景贵, 马艳. 有机物料在果园生态系统中的应用及其环境效应: 研究现状与展望[J]. 中国生态农业学报 (中英文), 2023, 31(8): 1240−1255. CSTR: 32371.14.cjea.20230207
MA X C, HAN F, BAI Y T, WU S, WU J G, MA Y. Application and environmental effects of organic materials in orchard ecosystem: research status and prospects[J]. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1240−1255. CSTR: 32371.14.cjea.20230207
Citation: MA X C, HAN F, BAI Y T, WU S, WU J G, MA Y. Application and environmental effects of organic materials in orchard ecosystem: research status and prospects[J]. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1240−1255. CSTR: 32371.14.cjea.20230207

有机物料在果园生态系统中的应用及其环境效应: 研究现状与展望

基金项目: 国家重点研发计划项目(2021YFD1700804-01)、江苏省农业科技自主创新资金项目(CX(21)2024)、江苏现代农业(葡萄)产业技术体系建设项目(JATS[2022]446)、吉林省科技厅重点研发项目(20220202045NC)和江苏省农业科学院基本科研业务专项(ZX(23)3005)资助
详细信息
    作者简介:

    马啸驰, 主要研究方向为农业生态与养分管理。E-mail: xiaochima@jaas.ac.cn

    通讯作者:

    马艳, 主要研究方向为土壤改良与功能肥料研制。E-mail: myjaas@sina.com

  • 中图分类号: X71; S154.1

Application and environmental effects of organic materials in orchard ecosystem: research status and prospects

Funds: This research was funded by the National Key Research and Development Program of China (2021YFD1700804-01), the Jiangsu Agriculture Science and Technology Innovation Fund (CX(21)2024), the Earmarked Fund for Jiangsu Agricultural Industry Technology System (JATS[2022]446), the Jilin Scientific and Technological Development Program (20220202045NC) and the Special Project for Basic Research of Jiangsu Academy of Agricultural Sciences (ZX(23)3005).
More Information
  • 摘要: 外源有机物料添加已成为改善果园土壤结构、提升土壤肥力和果实品质的重要途径。有机物料来源广泛且成分复杂, 类型、用量及施用方式的改变显著影响其在果园生态系统中的应用效果及伴随的环境效应特征。本文系统总结了有机物料的来源与性质及其对果树生长发育、土壤物理结构、土壤养分循环及生物学性状的影响, 重点关注了有机物料添加下果园温室气体排放、重金属及新型污染物(持久性有机污染物、抗生素及微塑料)积累与转化特征。有机物料施用对果园生态系统产生的主要影响为: 1)有机物料的合理施用能有效改善土壤物理结构、理化性质及生物活性, 增强土壤保肥供肥能力, 为果树生长发育创造良好条件, 提高产量和果实品质; 2)有机物料类型、用量及施用方式显著影响果园土壤碳氮底物浓度、相关酶及微生物活性, 进而改变土壤养分元素循环及N2O排放特征; 3)有机物料自身成分与结构组成、土壤性质及功能微生物共同影响果园土壤重金属与新型污染物的积累、迁移与转化。有机物料施用产生的环境效应存在不确定性, 其关联的果园土壤复合污染物的形成及影响机制复杂, 值得深入关注, 同时果园有机物料添加与环境效应变化过程的内在关联与作用机制仍需进一步研究。本文最后展望了未来果园生态系统中有机物料添加与环境效应关系研究的重要方向。
    Abstract: The addition of exogenous organic materials is important for ameliorating soil structure, improving soil fertility, and enhancing fruit quality in orchards. Organic materials originate from diverse sources and exhibit complex compositions. The effects of alterations to the type, quantity, and method of application on their effectiveness and concomitant environmental implications in orchard ecosystems are noteworthy. This study systematically summarized the sources and properties of organic materials and their effects on fruit tree growth and development, soil physical structure, soil nutrient cycling, and biological properties. Emphasis was placed on greenhouse gas emissions and the accumulation and transformation characteristics of heavy metals and new pollutants (persistent organic pollutants, antibiotics, and microplastics) in orchards with the addition of organic materials. The main effects of organic material application on orchard ecosystems are as follows: 1) the rational application of organic materials can efficiently improve the physical structure, physicochemical properties, and biological activity of orchard soil; enhance its ability to maintain and supply nutrients; create favorable conditions for the growth and development of fruit trees; and improve yield and fruit quality. 2) The type, quantity, and application method of organic materials notably affect the concentration of carbon and nitrogen substrates and related enzymatic and microbial activities in orchard soil, which alter the characteristics of soil nutrient cycling and N2O emissions. 3) The composition and structure of organic materials, soil properties, and functional microorganisms concurrently influence such accumulation. However, the potential environmental impact of organic materials remains uncertain. In addition, the formation and influencing mechanisms of associated composite pollutants in orchard soil are complex and deserve comprehensive attention. Further studies are required concerning the internal connections between the addition of organic materials and environmental change processes in orchards, the mechanisms of which also need to be elucidated. Finally, important directions for research regarding the relationship between the application of organic materials and environmental effects in orchard ecosystems are proposed.
  • 图  1   有机物料在果园生态系统中的应用及其环境效应

    Figure  1.   Application and associated environmental effects of organic materials in orchard ecosystem

    表  1   有机物料施用对果园土壤N2O排放的影响

    Table  1   Effects of organic material application on greenhouse gas emissions in orchards

    有机物料
    Organic material
    效应
    Effect
    说明
    Description
    参考文献
    Reference
    畜禽粪便
    Livestock manure
    +为氮循环相关微生物提供充足碳源, 增加土壤微生物活性
    Provide sufficient carbon source and enhance soil microbial activity
    [50-51]
    商品有机肥
    Commercial organic fertilizer
    +显著增加硝化与反硝化作用所需底物浓度, 提高土壤微生物活性
    Significantly increase substrate concentration and soil microbial activity for nitrification and denitrification
    [58]
    有机肥的有机态氮矿化速率较慢, 分解过程中消耗O2, 产生厌氧区, 降低了反硝化和硝化速率
    Low mineralization rate of organic nitrogen and anaerobic area decrease rates of nitrification and denitrification
    [59]
    生物炭
    Biochar
    +增加土壤氨氧化细菌活性, 提高土壤孔隙度, 为N2O扩散提供有利条件
    Increase activity of ammonia oxidizing bacteria and soil porosity for N2O diffusion
    [60-61]
    表施减少氮肥与土壤的接触面积, 降低硝化与反硝化过程所需底物浓度; 增加氨挥发或促进对氨的吸附
    Surface application reduces contact area and substrate concentration for nitrification and denitrification; increases ammonia volatilization and promotes absorption of ammonia
    [52]
    绿肥
    Green manure
    +在土壤中被微生物分解利用, 刺激土壤呼吸, 提供丰富氮源
    Being decomposed and utilized by soil microbes, stimulate soil respiration, and provide sufficient nitrogen source
    [62]
    提供了较多的氮源, 但也消耗了大量O2, 形成缺氧环境, 促使反硝化中间产物更易还原为N2
    Provide sufficient nitrogen source while consuming lots of O2 which creates hypoxic environment, accelerating the conversion from denitrification intermediates to N2
    [63]
    生物有机肥
    Bioorganic fertilizer
    +降低土壤C/N, 增加氨氧化细菌代谢活性, 促进硝化作用
    Reduce soil C/N, increase activity of ammonia oxidizing bacteria for promoting nitrification
    [64]
    显著提高nosZ丰度, 促进N2还原
    Significantly enhance the abundance of nosZ, accelerate N2 reduction
    [65]
      +: 促进效应; −: 抑制效应。+: enhancing effect; −: inhibiting effect.
    下载: 导出CSV

    表  2   不同有机物料的重金属含量

    Table  2   Heavy metal contents in different organic materials mg·kg−1 

    有机物料
    Organic material
    CuZnCrAsHgCdPb参考文献
    Reference
    畜禽粪便
    Livestock manure
    猪粪
    Pig manure
    0.6~2300.9 4.6~5720.0 0.2~187.0 0.2~200.0 0~4.3 0.1~56.4 0.2~232.0 [73-75]
    鸡粪
    Chicken manure
    8.5~1098.2 70.9~2377.0 0.2~133.0 0.2~49.3 0~2.2 0.1~45.8 0.6~41.7
    羊粪
    Sheep dung
    6.9~149.7 25.3~518.3 4.8~46.6 0.1~9.5 0.1~1.7 0.1~4.0 4.6~32.5
    牛粪
    Cow dung
    4.2~941.0 36.4~2230.0 3.7~105.8 0.2~24.2 0~21.0 0.1~3.3 3.2~39.4
    植物源有机物料
    Organic materials of plant origin
    4.3~8.9 65.5~131.0 1.6~22.6 0.4~3.9 0.1~0.5 0.2~0.7 2.3~19.3 [74, 76-77]
    作物秸秆
    Crop straw
    2.6~38.0 18.7~53.0 3.1~9.3 <0.1~1.4 0 <0.1~1.5 2.3~6.3 [78-80]
    生物炭
    Biochar
    0~1998.5 61.7~2230.2 11.1~55.6 <0.1~12.5 0~278.8 0~305.7 [79, 81-82]
    生物有机肥
    Bioorganic fertilizer
    3.0~68.7 0.7~9.8 0.2~0.6 0.2~3.5 1.9~60.9 [74, 83]
    商品有机肥
    Commercial organic fertilizer
    0.8~1187.9 0.5~1769.0 2.7~4260.9 0~24.0 0~2.8 0~5.3 1.6~1265.3 [84-85]
    有机废弃物
    Organic waste
    22.7~498.8 32.2~771.0 3.8~269.2 0.2~110.6 0~1.0 0.2~1.4 7.4~47.2 [84]
    下载: 导出CSV
  • [1]

    Food and Agriculture Organization of the United Nations (FAO). FAOSTAT database collections[DB/OL]. FAO. [2023-04-13]. https://www.fao.org/faostat/en/#data/QCL.

    [2] 王海波, 周泽宇, 杨振锋, 等. 我国果业高质量发展的战略思考与建议[J]. 中国果树, 2023(4): 7−15 doi: 10.16626/j.cnki.issn1000-8047.2023.04.002

    WANG H B, ZHOU Z Y, YANG Z F, et al. Strategic thinking and suggestions for the high-quality development of Chinese fruit industry[J]. China Fruits, 2023(4): 7−15 doi: 10.16626/j.cnki.issn1000-8047.2023.04.002

    [3] 马啸驰, 黑若楠, 姚怡, 等. 苏北典型葡萄种植集聚区土壤肥力特征与施肥对策——以灌南县为例[J/OL]. 农业资源与环境学报: 1–13 [2023-04-15]. https://doi.org/10.13254/j.jare.2022.0517

    MA X C, HEI R N, YAO Y, et al. Soil fertility characteristics and strategy of fertilization for the typical grape-growing district in northern Jiangsu Province: A case study of Guannan County[J/OL]. Journal of Agricultural Resources and Environment: 1–13 [2023-04-15]. https://doi.org/10.13254/j.jare.2022.0517

    [4] 谢凯柳, 商庆银, 王小慧, 等. 赣南脐橙园种植区和背景区不同土层养分丰缺状况[J]. 果树学报, 2021, 38(9): 1503−1514

    XIE K L, SHANG Q Y, WANG X H, et al. Analysis and evaluation of nutrient contents of different layers of virginal and cultivated soils in navel orange orchards of Southern Jiangxi Province[J]. Journal of Fruit Science, 2021, 38(9): 1503−1514

    [5] 宁川川, 王建武, 蔡昆争. 有机肥对土壤肥力和土壤环境质量的影响研究进展[J]. 生态环境学报, 2016, 25(1): 175−181

    NING C C, WANG J W, CAI K Z. The effects of organic fertilizers on soil fertility and soil environmental quality: a review[J]. Ecology and Environmental Sciences, 2016, 25(1): 175−181

    [6] 陆景陵. 植物营养学-上册[M]. 2版. 北京: 中国农业大学出版社, 2003

    LU J L. Plant Nutrition-VolumeⅠ[M]. 2nd ed. Beijing: China Agricultural University Press, 2003

    [7]

    WANG J L, WANG S Z. Preparation, modification and environmental application of biochar: A review[J]. Journal of Cleaner Production, 2019, 227: 1002−1022 doi: 10.1016/j.jclepro.2019.04.282

    [8]

    ISSAKA E, FAPOHUNDA F O, AMU-DARKO J N O, et al. Biochar-based composites for remediation of polluted wastewater and soil environments: Challenges and prospects[J]. Chemosphere, 2022, 297: 134163 doi: 10.1016/j.chemosphere.2022.134163

    [9] 汪晓谦, 邵竹松, 周家一, 等. 有机物料对梨园土壤养分及根系发育的影响[J]. 中国果树, 2021(10): 40−44

    WANG X Q, SHAO Z S, ZHOU J Y, et al. Effects of organic materials on soil nutrients and root development in pear orchard[J]. China Fruits, 2021(10): 40−44

    [10]

    FENG H D, CHEN H Y, DANG Z G, et al. Soil properties, leaf nutrients and fruit quality response to substituting chemical fertilizer with organic manure in a mango orchard[J]. Applied Ecology and Environmental Research, 2020, 18(3): 4025−4033 doi: 10.15666/aeer/1803_40254033

    [11]

    WANG Z H, YANG H, MA Y W, et al. WGCNA analysis revealing molecular mechanism that bio-organic fertilizer improves pear fruit quality by increasing sucrose accumulation and reducing citric acid metabolism[J]. Frontiers in Plant Science, 2022, 13: 1039671 doi: 10.3389/fpls.2022.1039671

    [12] 宋影, 郭素娟, 孙慧娟, 等. 有机物料深施对板栗园褐土物理性状及果实产量的影响[J]. 干旱地区农业研究, 2018, 36(6): 137−144 doi: 10.7606/j.issn.1000-7601.2018.06.21

    SONG Y, GUO S J, SUN H J, et al. Effect of deep application of organic materials on physical properties and yield of Chinese chestnut in cinnamon soil[J]. Agricultural Research in the Arid Areas, 2018, 36(6): 137−144 doi: 10.7606/j.issn.1000-7601.2018.06.21

    [13]

    GAIOTTI F, MARCUZZO P, BELFIORE N, et al. Influence of compost addition on soil properties, root growth and vine performances of Vitis vinifera cv Cabernet sauvignon[J]. Scientia Horticulturae, 2017, 225: 88−95 doi: 10.1016/j.scienta.2017.06.052

    [14]

    WAN L J, TIAN Y, HE M, et al. Effects of chemical fertilizer combined with organic fertilizer application on soil properties, Citrus growth physiology, and yield[J]. Agriculture, 2021, 11(12): 1207 doi: 10.3390/agriculture11121207

    [15]

    WANG L, LI J, YANG F, et al. Application of bioorganic fertilizer significantly increased apple yields and shaped bacterial community structure in orchard soil[J]. Microbial Ecology, 2017, 73(2): 404−416 doi: 10.1007/s00248-016-0849-y

    [16] 林瑞, 任海英, 安笑笑, 等. 生物有机肥对杨梅凋萎病防控及其树势恢复的影响[J]. 浙江农业学报, 2019, 31(7): 1096−1104 doi: 10.3969/j.issn.1004-1524.2019.07.09

    LIN R, REN H Y, AN X X, et al. Effects of bio-organic fertilizer on twig blight disease control and recovery of tree vigor in bayberry[J]. Acta Agriculturae Zhejiangensis, 2019, 31(7): 1096−1104 doi: 10.3969/j.issn.1004-1524.2019.07.09

    [17] 王亚雄, 常少刚, 王锐, 等. 不同有机肥对宁夏枸杞生长、产量及品质的影响[J]. 中国土壤与肥料, 2019(5): 91−95 doi: 10.11838/sfsc.1673-6257.18391

    WANG Y X, CHANG S G, WANG R, et al. Effects of different organic fertilizers on growth, yield and quality of Lycium barbarum L.[J]. Soil and Fertilizer Sciences in China, 2019(5): 91−95 doi: 10.11838/sfsc.1673-6257.18391

    [18] 黄粤林, 彭建伟, 张玉平, 等. 有机肥替代部分化肥对“阳光玫瑰”葡萄产量、品质及氮肥利用率的影响[J/OL]. 中国南方果树: 1–10 [2023-04-14]. http://kns.cnki.net/kcms/detail/50.1112.s.20230328.1138.002.html

    HUANG Y L, PENG J W, ZHANG Y P, et al. Effect of organic fertilizer replacing part of fertilizer on the yield, quality, and nitrogen utilization efficiency of ‘Shine-Muscat’ grape[J/OL]. South China Fruits: 1–10 [2023-04-14]. http://kns.cnki.net/kcms/detail/50.1112.s.20230328.1138.002.html

    [19] 孙万春, 周家昊, 俞巧钢, 等. 豆渣、猪粪有机肥施用水平对梨产量品质及土壤肥力的影响[J]. 果树学报, 2022, 39(9): 1628−1638 doi: 10.13925/j.cnki.gsxb.20220156

    SUN W C, ZHOU J H, YU Q G, et al. Effects of different application rates of organic fertilizers derived from soybean residue and pig manure on yield, quality of pear and soil fertility[J]. Journal of Fruit Science, 2022, 39(9): 1628−1638 doi: 10.13925/j.cnki.gsxb.20220156

    [20] 刘立娟, 吴甜甜, 刘慧, 等. 不同有机肥用量对京郊设施西瓜产量及土壤硝态氮含量累积的影响[J]. 中国果菜, 2020, 40(3): 47−53, 76

    LIU L J, WU T T, LIU H, et al. Effects of different organic fertilizer application on yield of greenhouse watermelon and soil nitrate accumulation in suburban of Beijing[J]. China Fruit Vegetable, 2020, 40(3): 47−53, 76

    [21] 马永康, 王振华, 宗霞, 等. 增温滴灌下有机肥配施对骏枣产量品质的影响[J]. 干旱区资源与环境, 2022, 36(9): 186−193 doi: 10.13448/j.cnki.jalre.2022.243

    MA Y K, WANG Z H, ZONG X, et al. Effects of organic fertilizer combining with warming drip irrigation on yield and quality of Jun jujube[J]. Journal of Arid Land Resources and Environment, 2022, 36(9): 186−193 doi: 10.13448/j.cnki.jalre.2022.243

    [22]

    BALDI E, CAVANI L, MARGON A, et al. Effect of compost application on the dynamics of carbon in a nectarine orchard ecosystem[J]. Science of the Total Environment, 2018, 637/638: 918−925 doi: 10.1016/j.scitotenv.2018.05.093

    [23] 张秀志, 郭甜丽, 焦学艺, 等. 商品有机肥配施对果园土壤肥力和“蜜脆”苹果果实品质的影响[J]. 西南大学学报(自然科学版), 2022, 44(1): 65−74 doi: 10.13718/j.cnki.xdzk.2022.01.007

    ZHANG X Z, GUO T L, JIAO X Y, et al. Effects of combined application of commercial organic fertilizer on soil fertility and fruit quality of ‘Honeycrisp’ apple[J]. Journal of Southwest University (Natural Science), 2022, 44(1): 65−74 doi: 10.13718/j.cnki.xdzk.2022.01.007

    [24] 安艳, 姬强, 赵世翔, 等. 生物质炭对果园土壤团聚体分布及保水性的影响[J]. 环境科学, 2016, 37(1): 293−300

    AN Y, JI Q, ZHAO S X, et al. Effect of biochar application on soil aggregates distribution and moisture retention in orchard soil[J]. Environmental Science, 2016, 37(1): 293−300

    [25]

    SAFAEI KHORRAM M, ZHANG G, FATEM’I A, et al. Impact of biochar and compost amendment on soil quality, growth and yield of a replanted apple orchard in a 4-year field study[J]. Journal of the Science of Food and Agriculture, 2019, 99(4): 1862−1869 doi: 10.1002/jsfa.9380

    [26] 温明霞, 王鹏, 吴韶辉, 等. 有机肥培肥方式对‘红美人’柑橘园生态效应的影响[J]. 中国农学通报, 2021, 37(31): 86−90

    WEN M X, WANG P, WU S H, et al. The ecological effects of organic fertilization methods on ‘ongmeiren’ citrus orchard[J]. Chinese Agricultural Science Bulletin, 2021, 37(31): 86−90

    [27]

    VILLA Y B, KHALSA S D S, RYALS R, et al. Organic matter amendments improve soil fertility in almond orchards of contrasting soil texture[J]. Nutrient Cycling in Agroecosystems, 2021, 120(3): 343−361 doi: 10.1007/s10705-021-10154-5

    [28] 刘丽媛, 徐艳, 朱书豪, 等. 有机肥配施对中国农田土壤容重影响的整合分析[J]. 农业资源与环境学报, 2021, 38(5): 867−873

    LIU L Y, XU Y, ZHU S H, et al. Meta-analysis on the responses of soil bulk density to supplementation of organic fertilizers in croplands in China[J]. Journal of Agricultural Resources and Environment, 2021, 38(5): 867−873

    [29]

    HU J, WU J G, QU X J, et al. Effects of organic wastes on structural characterizations of humic acid in semiarid soil under plastic mulched drip irrigation[J]. Chemosphere, 2018, 200: 313−321 doi: 10.1016/j.chemosphere.2018.02.128

    [30]

    CAO Y, MA Y, GUO D J, et al. Chemical properties and microbial responses to biochar and compost amendments in the soil under continuous watermelon cropping[J]. Plant, Soil and Environment, 2017, 63(1): 1−7 doi: 10.17221/141/2016-PSE

    [31] 郭新送, 张娟, 巩有才, 等. 生草不同条件还田对桃园土壤微生物、酶活性及养分供应的影响[J]. 水土保持学报, 2021, 35(4): 307−312, 320

    GUO X S, ZHANG J, GONG Y C, et al. Effect of grass return under different conditions on soil microorganism, enzyme activities and nutrients supply in peach orchard[J]. Journal of Soil and Water Conservation, 2021, 35(4): 307−312, 320

    [32] 卢志红, 魏宗强, 杨敏琪, 等. 有机物料添加磷素释放动态与土壤磷组分响应[J]. 江西农业大学学报, 2022, 44(6): 1582−1591 doi: 10.13836/j.jjau.2022155

    LU Z H, WEI Z Q, YANG M Q, et al. Phosphorus release dynamics of organic amendments and soil phosphorus fractions response[J]. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 2022, 44(6): 1582−1591 doi: 10.13836/j.jjau.2022155

    [33]

    SCAVO A, RESTUCCIA A, ABBATE C, et al. Trifolium subterraneum cover cropping enhances soil fertility and weed seedbank dynamics in a Mediterranean apricot orchard[J]. Agronomy for Sustainable Development, 2021, 41(6): 1−16

    [34]

    RILLIG M C, RYO M, LEHMANN A, et al. The role of multiple global change factors in driving soil functions and microbial biodiversity[J]. Science, 2019, 366(6467): 886−890 doi: 10.1126/science.aay2832

    [35] 钱九盛, 谢文逸, 何中华, 等. 施用生物质炭对桃园土壤肥力及黄桃产量和品质的影响[J]. 农业资源与环境学报, 2023(3): 680−688 doi: 10.13254/j.jare.2022.0416

    QIAN J S, XIE W Y, HE Z H, et al. Effect of biochar amendment on orchard soil fertility and yellow peach yield and quality[J]. Journal of Agricultural Resources and Environment, 2023(3): 680−688 doi: 10.13254/j.jare.2022.0416

    [36]

    ZHU Z L, BAI Y, LV M L, et al. Soil fertility, microbial biomass, and microbial functional diversity responses to four years fertilization in an apple orchard in North China[J]. Horticultural Plant Journal, 2020, 6(4): 223−230 doi: 10.1016/j.hpj.2020.06.003

    [37]

    WANG Y F, MA Z T, WANG X W, et al. Effects of biochar on the growth of apple seedlings, soil enzyme activities and fungal communities in replant disease soil[J]. Scientia Horticulturae, 2019, 256: 108641 doi: 10.1016/j.scienta.2019.108641

    [38] 袁银龙, 孙杰, 徐如玉, 等. 丛枝菌根真菌与有机肥配施对甜玉米根际土壤关键碳循环功能基因的影响[J]. 福建农业学报, 2020, 35(7): 753−763 doi: 10.19303/j.issn.1008-0384.2020.07.009

    YUAN Y L, SUN J, XU R Y, et al. Effects of arbuscular mycorrhizal fungi and organic fertilizer on key microbial carbon-cycle genes in rhizosphere soil at sweet corn field[J]. Fujian Journal of Agricultural Sciences, 2020, 35(7): 753−763 doi: 10.19303/j.issn.1008-0384.2020.07.009

    [39] 郭俊杰, 朱晨, 刘文波, 等. 不同施肥模式对土壤氮循环功能微生物的影响[J]. 植物营养与肥料学报, 2021, 27(5): 751−759 doi: 10.11674/zwyf.20504

    GUO J J, ZHU C, LIU W B, et al. Effects of different fertilization managements on functional microorganisms involved in nitrogen cycle[J]. Plant Nutrition and Fertilizer Science, 2021, 27(5): 751−759 doi: 10.11674/zwyf.20504

    [40] 王磊. 施用生物有机肥对苹果产量和果园土壤生物性状的影响[D]. 南京: 南京农业大学, 2017

    WANG L. Effect of bio-organic fertilization on apple yield and soil biological properties in apple orchard[D]. Nanjing: Nanjing Agricultural University, 2017

    [41] 吴景贵, 李建明, 邢向欣. 植物残体与土壤动物的互馈效应及其对玉米秸秆培肥研究的启示[J]. 吉林农业大学学报, 2022, 44(6): 639−646 doi: 10.13327/j.jjlau.2022.1911

    WU J G, LI J M, XING X X. Interaction between soil fauna and crop residues and its implications for the studies on maize straw fertilization[J]. Journal of Jilin Agricultural University, 2022, 44(6): 639−646 doi: 10.13327/j.jjlau.2022.1911

    [42] 李媛媛, 许子乾, 徐涵湄, 等. 施肥对陆地生态系统土壤动物影响的研究述评[J]. 南京林业大学学报(自然科学版), 2018, 42(5): 179−184

    LI Y Y, XU Z Q, XU H M, et al. Review of the effect of fertilizer application on the soil fauna in soil ecosystems[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(5): 179−184

    [43]

    SU L X, BAI T Y, QIN X W, et al. Organic manure induced soil food web of microbes and nematodes drive soil organic matter under jackfruit planting[J]. Applied Soil Ecology, 2021, 166: 103994 doi: 10.1016/j.apsoil.2021.103994

    [44]

    CASTRO J, BARREAL M E, BRIONES M J I, et al. Earthworm communities in conventional and organic fruit orchards under two different climates[J]. Applied Soil Ecology, 2019, 144: 83−91 doi: 10.1016/j.apsoil.2019.07.013

    [45] 王文东, 红梅, 刘鹏飞, 等. 施用有机肥对黑土区农田大型土壤动物群落的影响[J]. 中国农业大学学报, 2019, 24(5): 174−184 doi: 10.11841/j.issn.1007-4333.2019.05.20

    WANG W D, HONG M, LIU P F, et al. Effect of application of organic manure on soil macrofauna community in black soil area[J]. Journal of China Agricultural University, 2019, 24(5): 174−184 doi: 10.11841/j.issn.1007-4333.2019.05.20

    [46]

    ZHOU Z K, ZHANG S Y, JIANG N, et al. Effects of organic fertilizer incorporation practices on crops yield, soil quality, and soil fauna feeding activity in the wheat-maize rotation system[J]. Frontiers in Environmental Science, 2022, 10: 1058071 doi: 10.3389/fenvs.2022.1058071

    [47]

    GAO B, HUANG T, JU X T, et al. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration[J]. Global Change Biology, 2018, 24(12): 5590−5606 doi: 10.1111/gcb.14425

    [48]

    XU P S, LI Z T, WANG J Y, et al. Fertilizer-induced nitrous oxide emissions from global orchards and its estimate of China[J]. Agriculture, Ecosystems & Environment, 2022, 328: 107854

    [49]

    ZHAO C, GAO B, WANG L, et al. Spatial patterns of net greenhouse gas balance and intensity in Chinese orchard system[J]. Science of the Total Environment, 2021, 779: 146250 doi: 10.1016/j.scitotenv.2021.146250

    [50] 马艳婷, 赵志远, 冯天宇, 等. 有机无机肥配施对苹果园温室气体排放的影响[J]. 农业环境科学学报, 2021, 40(9): 2039−2048 doi: 10.11654/jaes.2020-1477

    MA Y T, ZHAO Z Y, FENG T Y, et al. Greenhouse gas emissions from an apple orchard with the mixed application of organic and chemical fertilizers[J]. Journal of Agro-Environment Science, 2021, 40(9): 2039−2048 doi: 10.11654/jaes.2020-1477

    [51]

    SOMPOUVISET T, MA Y T, ZHAO Z Y, et al. Combined application of organic and inorganic fertilizers effects on the global warming potential and greenhouse gas emission in apple orchard in loess plateau region of China[J]. Forests, 2023, 14(2): 337 doi: 10.3390/f14020337

    [52]

    OO A Z, SUDO S, WIN K T, et al. Influence of pruning waste biochar and oyster shell on N2O and CO2 emissions from Japanese pear orchard soil[J]. Heliyon, 2018, 4(3): e00568 doi: 10.1016/j.heliyon.2018.e00568

    [53] 袁雨婷, 高志岭, 贾树云, 等. 施用沼液对苹果园土壤N2O和NH3排放的影响[J]. 河北农业大学学报, 2019, 42(5): 57−64

    YUAN Y T, GAO Z L, JIA S Y, et al. Effects of digestate application on N2O and NH3 emissions of apple orchard soil[J]. Journal of Agricultural University of Hebei, 2019, 42(5): 57−64

    [54]

    FENTABIL M M, NICHOL C F, NEILSEN G H, et al. Effect of micro-irrigation type, N-source and mulching on nitrous oxide emissions in a semi-arid climate: An assessment across two years in a Merlot grape vineyard[J]. Agricultural Water Management, 2016, 171: 49−62 doi: 10.1016/j.agwat.2016.02.021

    [55] 顾江新, 郭艳杰, 张丽娟, 等. 果树种植土壤N2O排放研究: 认识与挑战[J]. 农业环境科学学报, 2020, 39(4): 726−731 doi: 10.11654/jaes.2020-0064

    GU J X, GUO Y J, ZHANG L J, et al. Soil N2O emissions from orchards: Current status and challenges[J]. Journal of Agro-Environment Science, 2020, 39(4): 726−731 doi: 10.11654/jaes.2020-0064

    [56]

    SHAABAN M, PENG Q, HU R G, et al. Dolomite application to acidic soils: a promising option for mitigating N2O emissions[J]. Environmental Science and Pollution Research, 2015, 22(24): 19961−19970 doi: 10.1007/s11356-015-5238-4

    [57]

    SENBAYRAM M, SAYGAN E P, CHEN R R, et al. Effect of biochar origin and soil type on the greenhouse gas emission and the bacterial community structure in N fertilised acidic sandy and alkaline clay soil[J]. Science of the Total Environment, 2019, 660: 69−79 doi: 10.1016/j.scitotenv.2018.12.300

    [58] 陈雪双, 刘娟, 姜培坤, 等. 施肥对山核桃林地土壤N2O排放的影响[J]. 植物营养与肥料学报, 2014, 20(5): 1262−1270 doi: 10.11674/zwyf.2014.0523

    CHEN X S, LIU J, JIANG P K, et al. Effects of fertilization on soil N2O flux in Chinese Carya cathayensis stands[J]. Plant Nutrition and Fertilizer Science, 2014, 20(5): 1262−1270 doi: 10.11674/zwyf.2014.0523

    [59] 王文赞, 韩建, 倪玉雪, 等. 有机肥替代化肥氮对苹果产量、品质及温室气体排放的影响[J]. 植物营养与肥料学报, 2023, 29(3): 437−448 doi: 10.11674/zwyf.2022408

    WANG W Z, HAN J, NI Y X, et al. Effects of substituting chemical nitrogen fertilizer with organic fertilizer on apple yield, quality, and greenhouse gas emissions[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(3): 437−448 doi: 10.11674/zwyf.2022408

    [60]

    HAN J L, ZHANG A F, KANG Y H, et al. Biochar promotes soil organic carbon sequestration and reduces net global warming potential in apple orchard: A two-year study in the Loess Plateau of China[J]. Science of the Total Environment, 2022, 803: 150035 doi: 10.1016/j.scitotenv.2021.150035

    [61]

    SHARMA S, RANA V S, RANA N, et al. Biochar from fruit crops waste and its potential impact on fruit crops[J]. Scientia Horticulturae, 2022, 299: 111052 doi: 10.1016/j.scienta.2022.111052

    [62] 张学良, 张宇亭, 刘瑞, 等. 绿肥不同还田方式对土壤温室气体排放的影响[J]. 草业学报, 2021, 30(5): 25−33 doi: 10.11686/cyxb2020431

    ZHANG X L, ZHANG Y T, LIU R, et al. Effects of green manure return regimes on soil greenhouse gas emissions[J]. Acta Prataculturae Sinica, 2021, 30(5): 25−33 doi: 10.11686/cyxb2020431

    [63] 张鹏飞. 不同施肥处理下橘园土壤氧化亚氮排放特征[D]. 武汉: 华中农业大学, 2020

    ZHANG P F. Characteristics of nitrous oxide emissions from citrus orchard soil under different fertilization treatments[D]. Wuhan: Huazhong Agricultural University, 2020

    [64] 朱志军, 杨莉莉, 冯涛, 等. 渭北旱塬苹果园不同施肥处理N2O排放特征[J]. 干旱地区农业研究, 2020, 38(1): 59−65 doi: 10.7606/j.issn.1000-7601.2020.01.08

    ZHU Z J, YANG L L, FENG T, et al. Characteristics of N2O emissions from different fertilization treatments in Weibei dryland apple orchard[J]. Agricultural Research in the Arid Areas, 2020, 38(1): 59−65 doi: 10.7606/j.issn.1000-7601.2020.01.08

    [65]

    TAO R, WAKELIN S A, LIANG Y C, et al. Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers[J]. Science of the Total Environment, 2018, 612: 739−749 doi: 10.1016/j.scitotenv.2017.08.258

    [66] 周煜杰, 赵永华, 李宛莹. 秦岭北麓生态问题及土壤修复研究进展[J]. 生态学杂志, 2019, 38(7): 2218−2227 doi: 10.13292/j.1000-4890.201907.012

    ZHOU Y J, ZHAO Y H, LI W Y. A brief introduction to ecological problems and the research progress of soil remediation in the northern foot of Qinling Mountains[J]. Chinese Journal of Ecology, 2019, 38(7): 2218−2227 doi: 10.13292/j.1000-4890.201907.012

    [67]

    PANAGOS P, BALLABIO C, LUGATO E, et al. Potential sources of anthropogenic copper inputs to European agricultural soils[J]. Sustainability, 2018, 10(7): 2380 doi: 10.3390/su10072380

    [68]

    BALLABIO C, PANAGOS P, LUGATO E, et al. Copper distribution in European topsoils: An assessment based on LUCAS soil survey[J]. Science of the Total Environment, 2018, 636: 282−298 doi: 10.1016/j.scitotenv.2018.04.268

    [69]

    TAŞPINAR K, ATEŞ Ö, YALÇIN G, et al. Soil contamination and healthy risk assessment of peach orchards soil of Bilecik Province Turkey[J]. International Journal of Environmental Health Research, 2022, 32(9): 1915−1924 doi: 10.1080/09603123.2021.1926439

    [70] 黄莹, 景金泉, 毛久庚, 等. 南京市3种果园土壤重金属分布特征及污染评价[J]. 江西农业学报, 2018, 30(2): 117−122 doi: 10.19386/j.cnki.jxnyxb.2018.02.25

    HUANG Y, JING J Q, MAO J G, et al. Distribution characteristics and pollution evaluation of soil heavy metals in three orchards of Nanjing[J]. Acta Agriculturae Jiangxi, 2018, 30(2): 117−122 doi: 10.19386/j.cnki.jxnyxb.2018.02.25

    [71] 杨玉, 童雄才, 王仁才, 等. 湖南猕猴桃园土壤重金属含量分析及污染评价[J]. 农业现代化研究, 2017, 38(6): 1097−1105 doi: 10.13872/j.1000-0275.2017.0109

    YANG Y, TONG X C, WANG R C, et al. Analysis and safety evaluation of heavy metal contamination in kiwifruit orchard soils in Hunan Province[J]. Research of Agricultural Modernization, 2017, 38(6): 1097−1105 doi: 10.13872/j.1000-0275.2017.0109

    [72]

    JIAO H C, YIN Q, FAN C H, et al. Long-term effects of liquid swine manure land surface application in an apple orchard field on soil bacterial community and heavy metal contents in apple (Malus pumila Mill.)[J]. Environmental Science and Pollution Research, 2021, 28(36): 49613−49626 doi: 10.1007/s11356-021-14181-1

    [73] 黄绍文, 唐继伟, 李春花. 我国商品有机肥和有机废弃物中重金属、养分和盐分状况[J]. 植物营养与肥料学报, 2017, 23(1): 162−173 doi: 10.11674/zwyf.16191

    HUANG S W, TANG J W, LI C H. Status of heavy metals, nutrients, and total salts in commercial organic fertilizers and organic wastes in China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(1): 162−173 doi: 10.11674/zwyf.16191

    [74]

    QIAN M R, WU H Z, WANG J M, et al. Occurrence of trace elements and antibiotics in manure-based fertilizers from the Zhejiang Province of China[J]. Science of the Total Environment, 2016, 559: 174−181 doi: 10.1016/j.scitotenv.2016.03.123

    [75] 刘兰英, 何肖云, 黄薇, 等. 福建省有机肥中养分和重金属含量特征[J]. 福建农业学报, 2020, 35(6): 640−648 doi: 10.19303/j.issn.1008-0384.2020.06.010

    LIU L Y, HE X Y, HUANG W, et al. Nutrient and heavy metal contents in organic fertilizers produced in Fujian[J]. Fujian Journal of Agricultural Sciences, 2020, 35(6): 640−648 doi: 10.19303/j.issn.1008-0384.2020.06.010

    [76] 彭禧柱, 杨胜香, 李凤梅, 等. 3种工业有机废弃物对铅锌尾矿生物化学性质及植物生长的影响[J]. 环境科学, 2016, 37(1): 301−308 doi: 10.13227/j.hjkx.2016.01.039

    PENG X Z, YANG S X, LI F M, et al. Effects of three industrial organic wastes as amendments on plant growth and the biochemical properties of a Pb/Zn mine tailings[J]. Environmental Science, 2016, 37(1): 301−308 doi: 10.13227/j.hjkx.2016.01.039

    [77] 王璐, 杨胜香, 赵东波, 等. 不同有机废弃物对铅锌尾矿基质性质和植物生长的影响[J]. 农业环境科学学报, 2020, 39(9): 1946−1956 doi: 10.11654/jaes.2020-0283

    WANG L, YANG S X, ZHAO D B, et al. Effects of different organic wastes on plant growth and tailings properties of a Pb-Zn mine[J]. Journal of Agro-Environment Science, 2020, 39(9): 1946−1956 doi: 10.11654/jaes.2020-0283

    [78] 解雪峰, 徐梓晴, 田再洋, 等. 不同改良物质添加对滨海盐碱地土壤重金属及酶活性的影响[J/OL]. 环境科学: 1–11 [2023-04-15]. https://doi.org/10.13227/j.hjkx.202211164

    XIE X F, XU Z Q, TIAN Z Y, et al. Effects of supplement of different amendments on soil heavy metals and enzyme activities in coastal saline land[J/OL]. Environmental Science: 1–11 [2023-04-15]. https://doi.org/10.13227/j.hjkx.202211164

    [79] 倪中应, 邱志腾, 石一珺, 等. 不同种类有机物对污染农田土壤重金属活性的影响[J]. 农业资源与环境学报, 2017, 34(6): 517−524 doi: 10.13254/j.jare.2017.0146

    NI Z Y, QIU Z T, SHI Y J, et al. Effects of different organic amendments on the activity of heavy metals in contaminated soils[J]. Journal of Agricultural Resources and Environment, 2017, 34(6): 517−524 doi: 10.13254/j.jare.2017.0146

    [80]

    RATHNAYAKE N, PATEL S, HAKEEM I G, et al. Co-pyrolysis of biosolids with lignocellulosic biomass: Effect of feedstock on product yield and composition[J]. Process Safety and Environmental Protection, 2023, 173: 75−87 doi: 10.1016/j.psep.2023.02.087

    [81] 杨铁鑫. 生物炭中重金属稳定性初步研究[D]. 沈阳: 沈阳农业大学, 2017

    YANG T X. Preliminary study on stability of heavy metals in biochar[D]. Shenyang: Shenyang Agricultural University, 2017

    [82]

    KIM M, JEONG C, KIM M, et al. Evaluation of the impact of activated biochar-manure compost pellet fertilizer on volatile organic compound emissions and heavy metal saturation[J]. International Journal of Environmental Research and Public Health, 2022, 19(19): 12405 doi: 10.3390/ijerph191912405

    [83] 江南, 平令文, 季晓慧, 等. 典型北方菜田常用肥料中重金属含量分析及污染风险评价[J]. 农业环境科学学报, 2020, 39(3): 521−529 doi: 10.11654/jaes.2019-1154

    JIANG N, PING L W, JI X H, et al. Content analysis and pollution risk assessment of heavy metal in common fertilizers in typical north vegetable fields[J]. Journal of Agro-Environment Science, 2020, 39(3): 521−529 doi: 10.11654/jaes.2019-1154

    [84]

    BALDI E, MARCOLINI G, QUARTIERI M, et al. Organic fertilization in nectarine (Prunus persica var. nucipersica) orchard combines nutrient management and pollution impact[J]. Nutrient Cycling in Agroecosystems, 2016, 105(1): 39−50 doi: 10.1007/s10705-016-9772-3

    [85]

    GONG Q, CHEN P Z, SHI R G, et al. Health assessment of trace metal concentrations in organic fertilizer in northern China[J]. International Journal of Environmental Research and Public Health, 2019, 16(6): 1031 doi: 10.3390/ijerph16061031

    [86] 张宁, 王延华, 邱雨, 等. 苏州市农田-畜禽-家庭系统废弃物氮的量化及其环境影响[J]. 土壤, 2017, 49(5): 926−934 doi: 10.13758/j.cnki.tr.2017.05.011

    ZHANG N, WANG Y H, QIU Y, et al. Quantification and environmental effects of waste nitrogen in crop-livestock-household system of Suzhou City[J]. Soils, 2017, 49(5): 926−934 doi: 10.13758/j.cnki.tr.2017.05.011

    [87] 倪中应, 姚玉才, 章明奎. 短期施用不同粪源堆肥对果园土壤肥力与重金属积累的影响[J]. 中国农学通报, 2017, 33(33): 100−106 doi: 10.11924/j.issn.1000-6850.casb16090135

    NI Z Y, YAO Y C, ZHANG M K. Soil fertility and heavy metal accumulation in orchard system: under short-term application of compost with different manure sources[J]. Chinese Agricultural Science Bulletin, 2017, 33(33): 100−106 doi: 10.11924/j.issn.1000-6850.casb16090135

    [88]

    YU X, CHEN G Z, ZHANG X X, et al. Migration and accumulation of heavy metals in a chicken manure-compost-soil-apple system[J]. Polish Journal of Environmental Studies, 2021, 30(4): 3877−3883 doi: 10.15244/pjoes/131254

    [89]

    BALDI E, CAVANI L, MAZZON M, et al. Fourteen years of compost application in a commercial nectarine orchard: effect on microelements and potential harmful elements in soil and plants[J]. Science of the Total Environment, 2021, 752: 141894 doi: 10.1016/j.scitotenv.2020.141894

    [90]

    MENG X F, GUO J M, ZHENG G D, et al. Combination of low-accumulation kumquat cultivars and amendments to reduce Cd and Pb accumulation in kumquat grown in contaminated soil[J]. Journal of Cleaner Production, 2022, 365: 132660 doi: 10.1016/j.jclepro.2022.132660

    [91] 栾润宇, 徐应明, 高珊, 等. 不同发酵方式对鸡粪重金属及有机质影响[J]. 中国环境科学, 2020, 40(8): 3486−3494 doi: 10.3969/j.issn.1000-6923.2020.08.028

    LUAN R Y, XU Y M, GAO S, et al. Heavy metal and organic matters in the chicken manure under different types of composting[J]. China Environmental Science, 2020, 40(8): 3486−3494 doi: 10.3969/j.issn.1000-6923.2020.08.028

    [92] 商和平, 李洋, 张涛, 等. 畜禽粪便有机肥中Cu、Zn在不同农田土壤中的形态归趋和有效性动态变化[J]. 环境科学, 2015, 36(1): 314−324 doi: 10.13227/j.hjkx.2015.01.042

    SHANG H P, LI Y, ZHANG T, et al. Form tendency and bio-availability dynamics of Cu and Zn in different farm soils after application of organic fertilizer of livestock and poultry manures[J]. Environmental Science, 2015, 36(1): 314−324 doi: 10.13227/j.hjkx.2015.01.042

    [93]

    ZHANG Y, PENG Z, DONG Z M, et al. Twenty years of achievements in China’s implementation of the Stockholm Convention[J]. Frontiers of Environmental Science & Engineering, 2022, 16(12): 152

    [94]

    LI Q F, LU Y L, WANG P, et al. Distribution, source, and risk of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in urban and rural soils around the Yellow and Bohai Seas, China[J]. Environmental Pollution, 2018, 239: 233−241 doi: 10.1016/j.envpol.2018.03.055

    [95] 胡宗达, 王明全, 李育华, 等. 泸沽湖大草海湖滨带表层土壤的多环芳烃污染状况及其生态风险评价[J]. 湿地科学, 2020, 18(1): 62−70 doi: 10.13248/j.cnki.wetlandsci.2020.01.009

    HU Z D, WANG M Q, LI Y H, et al. Pollution status and ecological risk assessment of polycyclic aromatic hydrocarbons in surface soils in the lakeshore of Dacaohai of Lugu Lake, Sichuan Province[J]. Wetland Science, 2020, 18(1): 62−70 doi: 10.13248/j.cnki.wetlandsci.2020.01.009

    [96] 张雨蒙. 意大利南部卡塞塔地区土壤中有机氯农药污染特征[D]. 西安: 西北大学, 2021

    ZHANG Y M. Pollution characteristics of organochlorine pesticides in soil in Casetta, Southern Italy[D]. Xi’an: Northwest University, 2021

    [97]

    PREDA M, TANASE V, VRINCEANU N O. Occurrence of pesticides in agricultural fields and orchards[J]. Journal of Environmental Protection and Ecology, 2019, 20(1): 83−90

    [98]

    YUN S M, YOON J K, KIM J I, et al. Evaluation of residual level and distribution characteristics of organochlorine pesticides in agricultural soils in the Republic of Korea[J]. Environmental Science and Pollution Research, 2022, 29(30): 46003−46017 doi: 10.1007/s11356-022-18858-z

    [99]

    ANAE J, AHMAD N, KUMAR V, et al. Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives[J]. Science of the Total Environment, 2021, 767: 144351 doi: 10.1016/j.scitotenv.2020.144351

    [100]

    OLESZCZUK P, GODLEWSKA P, REIBLE D D, et al. Bioaccessibility of polycyclic aromatic hydrocarbons in activated carbon or biochar amended vegetated (Salix viminalis) soil[J]. Environmental Pollution, 2017, 227: 406−413 doi: 10.1016/j.envpol.2017.04.064

    [101]

    VALIZADEH S, LEE S S, BAEK K, et al. Bioremediation strategies with biochar for polychlorinated biphenyls (PCBs)-contaminated soils: A review[J]. Environmental Research, 2021, 200: 111757 doi: 10.1016/j.envres.2021.111757

    [102]

    CENTOFANTI T, MCCONNELL L L, CHANEY R L, et al. Organic amendments for risk mitigation of organochlorine pesticide residues in old orchard soils[J]. Environmental Pollution, 2016, 210: 182−191 doi: 10.1016/j.envpol.2015.11.039

    [103]

    ALI M, SONG X, DING D, et al. Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies[J]. Environmental Pollution, 2022, 295: 118686 doi: 10.1016/j.envpol.2021.118686

    [104]

    LU L, LIN Y, CHAI Q W, et al. Removal of acenaphthene by biochar and raw biomass with coexisting heavy metal and phenanthrene[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558: 103−109

    [105] 张长鹤, 王建龙, 李荭鑫, 等. 生物炭修复多环芳烃污染土壤研究进展[J]. 应用化工, 2023, 52(3): 892−897, 903 doi: 10.3969/j.issn.1671-3206.2023.03.047

    ZHANG C H, WANG J L, LI H X, et al. Research development of remediation of polycyclic aromatic hydrocarbons contaminated soil by biochar[J]. Applied Chemical Industry, 2023, 52(3): 892−897, 903 doi: 10.3969/j.issn.1671-3206.2023.03.047

    [106] 洪雅敏, 张亚平, 陈振焱, 等. 生物炭中多环芳烃的含量水平和应用风险研究综述[J]. 环境化学, 2021, 40(8): 2378−2387 doi: 10.7524/j.issn.0254-6108.2020042203

    HONG Y M, ZHANG Y P, CHEN Z Y, et al. Review of the research on content levels and application risk of polycyclic aromatic hydrocarbons in biochar[J]. Environmental Chemistry, 2021, 40(8): 2378−2387 doi: 10.7524/j.issn.0254-6108.2020042203

    [107]

    CHATURVEDI P, SHUKLA P, GIRI B S, et al. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: a review on emerging contaminants[J]. Environmental Research, 2021, 194: 110664 doi: 10.1016/j.envres.2020.110664

    [108]

    MENZ J, OLSSON O, KÜMMERER K. Antibiotic residues in livestock manure: does the EU risk assessment sufficiently protect against microbial toxicity and selection of resistant bacteria in the environment?[J]. Journal of Hazardous Materials, 2019, 379: 120807 doi: 10.1016/j.jhazmat.2019.120807

    [109]

    AWAD Y M, KIM S C, ABD EL-AZEEM S A M, et al. Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility[J]. Environmental Earth Sciences, 2014, 71(3): 1433−1440 doi: 10.1007/s12665-013-2548-z

    [110]

    WANG J H, WANG L J, ZHU L S, et al. Antibiotic resistance in agricultural soils: source, fate, mechanism and attenuation strategy[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(6): 847−889 doi: 10.1080/10643389.2020.1835438

    [111]

    LI M, YANG L, YEN H, et al. Occurrence, spatial distribution and ecological risks of antibiotics in soil in urban agglomeration[J]. Journal of Environmental Sciences, 2023, 125: 678−690 doi: 10.1016/j.jes.2022.03.029

    [112]

    CAO H, JIAO Q, CHENG L M, et al. Occurrence and prevalence of antibiotic resistance genes in apple orchard after continual application of anaerobic fermentation residues of pig manure[J]. Environmental Science and Pollution Research, 2023, 30(11): 29229−29242

    [113] 陈瑞, 程建华, 唐翔宇. 高垦殖丘陵区不同类型农用地土壤中抗生素抗性基因分布特征[J/OL]. 环境科学: 1–11 [2023-04-14]. https://doi.org/10.13227/j.hjkx.202210109

    CHEN R, CHENG J H, TANG X Y. Characteristics of antibiotic resistance genes distribution in different types of agricultural land soils in highly cultivated hilly areas[J/OL]. Environmental Science: 1–11 [2023-04-14]. https://doi.org/10.13227/j.hjkx.202210109

    [114]

    ZHANG W G, WEN T, LIU L Z, et al. Agricultural land-use change and rotation system exert considerable influences on the soil antibiotic resistome in Lake Tai Basin[J]. Science of the Total Environment, 2021, 771: 144848 doi: 10.1016/j.scitotenv.2020.144848

    [115] 邹韵, 张园, 陈明龙, 等. 我国畜禽粪肥还田对农田土壤ARGs积累的影响综述[J/OL]. 中国土壤与肥料: 1–13 [2023-04-14]. http://kns.cnki.net/kcms/detail/11.5498.s.20220927.1354.002.html

    ZHOU Y, ZHANG Y, CHEN M L, et al. Review on the effect of livestock and poultry manure returning to farmland on ARGs of farmland Soil in China[J/OL]. Soil and Fertilizer Sciences in China: 1–13 [2023-04-14]. http://kns.cnki.net/kcms/detail/11.5498.s.20220927.1354.002.html

    [116]

    DUAN M L, GU J, WANG X J, et al. Factors that affect the occurrence and distribution of antibiotic resistance genes in soils from livestock and poultry farms[J]. Ecotoxicology and Environmental Safety, 2019, 180: 114−122 doi: 10.1016/j.ecoenv.2019.05.005

    [117] 程建华, 唐翔宇, 刘琛. 紫色土丘陵区畜禽养殖场土壤中抗生素抗性基因分布特征[J]. 环境科学, 2019, 40(7): 3257−3262 doi: 10.13227/j.hjkx.201811086

    CHENG J H, TANG X Y, LIU C. Characteristics of antibiotic resistance genes in various livestock feedlot soils of the hilly purple soil region[J]. Environmental Science, 2019, 40(7): 3257−3262 doi: 10.13227/j.hjkx.201811086

    [118] 杨威, 狄彩霞, 李季, 等. 我国有机肥原料及商品有机肥中四环素类抗生素的检出率及含量[J]. 植物营养与肥料学报, 2021, 27(9): 1487−1495 doi: 10.11674/zwyf.2021061

    YANG W, DI C X, LI J, et al. Detection rate and concentration of tetracycline antibiotics in organic fertilizers raw materials and commercial products in China[J]. Plant Nutrition and Fertilizer Science, 2021, 27(9): 1487−1495 doi: 10.11674/zwyf.2021061

    [119] 张宁, 李淼, 刘翔. 土壤中抗生素抗性基因的分布及迁移转化[J]. 中国环境科学, 2018, 38(7): 2609−2617 doi: 10.3969/j.issn.1000-6923.2018.07.029

    ZHANG N, LI M, LIU X. Distribution and transformation of antibiotic resistance genes in soil[J]. China Environmental Science, 2018, 38(7): 2609−2617 doi: 10.3969/j.issn.1000-6923.2018.07.029

    [120]

    XU Y, LI H Y, TAN L, et al. What role does organic fertilizer actually play in the fate of antibiotic resistome and pathogenic bacteria in planting soil?[J]. Journal of Environmental Management, 2022, 317: 115382 doi: 10.1016/j.jenvman.2022.115382

    [121]

    ARYA S, WILLIAMS A, REINA S V, et al. Towards a general model for predicting minimal metal concentrations co-selecting for antibiotic resistance plasmids[J]. Environmental Pollution, 2021, 275: 116602 doi: 10.1016/j.envpol.2021.116602

    [122] 汤冬梅, 武俊梅, 黄永炳, 等. 生物炭添加对土壤中抗生素和抗性基因的环境行为影响研究进展[J]. 环境化学, 2022, 41(6): 1957−1966 doi: 10.7524/j.issn.0254-6108.2021022201

    TANG D M, WU J M, HUANG Y B, et al. Research advances in the effect of biochar amendment on environmental behaviors of antibiotics and antibiotic resistance genes in soils[J]. Environmental Chemistry, 2022, 41(6): 1957−1966 doi: 10.7524/j.issn.0254-6108.2021022201

    [123]

    ÁLVAREZ-ESMORÍS C, CONDE-CID M, FERREIRA-COELHO G, et al. Adsorption/desorption of sulfamethoxypyridazine and enrofloxacin in agricultural soils[J]. The Science of the Total Environment, 2020, 706: 136015 doi: 10.1016/j.scitotenv.2019.136015

    [124]

    WU J E, WANG J Y, LI Z T, et al. Antibiotics and antibiotic resistance genes in agricultural soils: a systematic analysis[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(7): 847−864 doi: 10.1080/10643389.2022.2094693

    [125] 张丹, 彭双, 王丹青, 等. 鸡粪和猪粪生物发酵过程中抗生素抗性基因的动态变化[J]. 环境科学, 2023, 44(3): 1780−1791 doi: 10.13227/j.hjkx.202204215

    ZHANG D, PENG S, WANG D Q, et al. Dynamic changes in antibiotic resistance genes during biological fermentation of chicken manure and pig manure[J]. Environmental Science, 2023, 44(3): 1780−1791 doi: 10.13227/j.hjkx.202204215

    [126]

    ZHOU X, QIAO M, SU J Q, et al. Turning pig manure into biochar can effectively mitigate antibiotic resistance genes as organic fertilizer[J]. Science of the Total Environment, 2019, 649: 902−908 doi: 10.1016/j.scitotenv.2018.08.368

    [127] 王金花, 李冰, 侯宇晴, 等. 农田土壤中微塑料的赋存、迁移及生态效应研究进展[J/OL]. 农业环境科学学报: 1–30 [2023-04-14]. http://kns.cnki.net/kcms/detail/12.1347.S.20221226.1441.002.html

    WANG J H, LI B, HOU Y Q, et al. Research process on the occurrence, migration, and ecological effects of microplastics in farmland soil[J/OL]. Journal of Agro-Environment Science: 1–30 [2023-04-14]. http://kns.cnki.net/kcms/detail/12.1347.S.20221226.1441.002.html

    [128] 骆永明, 施华宏, 涂晨, 等. 环境中微塑料研究进展与展望[J]. 科学通报, 2021, 66(13): 1544−1562 doi: 10.1360/TB-2021-0316

    LUO Y M, SHI H H, TU C, et al. Research progresses and prospects of microplastics in the environment[J]. Chinese Science Bulletin, 2021, 66(13): 1544−1562 doi: 10.1360/TB-2021-0316

    [129]

    ZHOU J, WEN Y, MARSHALL M R, et al. Microplastics as an emerging threat to plant and soil health in agroecosystems[J]. Science of the Total Environment, 2021, 787: 147444 doi: 10.1016/j.scitotenv.2021.147444

    [130]

    BÜKS F, SCHAIK N, KAUPENJOHANN M. What do we know about how the terrestrial multicellular soil fauna reacts to microplastic?[J]. SOIL, 2020, 6(2): 245−267 doi: 10.5194/soil-6-245-2020

    [131]

    ZHANG H X, HUANG Y M, AN S S, et al. Land-use patterns determine the distribution of soil microplastics in typical agricultural areas on the eastern Qinghai-Tibetan Plateau[J]. Journal of Hazardous Materials, 2022, 426: 127806 doi: 10.1016/j.jhazmat.2021.127806

    [132] 郝永丽, 胡亚鲜, 白晓雄, 等. 黄土高原土地利用方式对微塑料丰度和形态分布的影响[J]. 环境科学, 2022, 43(9): 4748−4755 doi: 10.13227/j.hjkx.202112199

    HAO Y L, HU Y X, BAI X X, et al. Abundances and morphology patterns of microplastics under different land use types on the Loess Plateau[J]. Environmental Science, 2022, 43(9): 4748−4755 doi: 10.13227/j.hjkx.202112199

    [133]

    ZHANG L S, XIE Y S, LIU J Y, et al. An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers[J]. Environmental Science & Technology, 2020, 54(7): 4248−4255

    [134]

    WU R T, CAI Y F, CHEN Y X, et al. Occurrence of microplastic in livestock and poultry manure in South China[J]. Environmental Pollution, 2021, 277: 116790 doi: 10.1016/j.envpol.2021.116790

    [135]

    ZHANG S W, LI Y X, CHEN X C, et al. Occurrence and distribution of microplastics in organic fertilizers in China[J]. Science of the Total Environment, 2022, 844: 157061 doi: 10.1016/j.scitotenv.2022.157061

    [136]

    TAN M Y, SUN Y, GUI J X, et al. Distribution characteristics of microplastics in typical organic solid wastes and their biologically treated products[J]. Science of the Total Environment, 2022, 852: 158440 doi: 10.1016/j.scitotenv.2022.158440

    [137]

    ZHOU Y T, SUN Y, LIU J L, et al. Effects of microplastics on humification and fungal community during cow manure composting[J]. Science of the Total Environment, 2022, 803: 150029 doi: 10.1016/j.scitotenv.2021.150029

    [138]

    WEITHMANN N, MÖLLER J N, LÖDER M G J, et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment[J]. Science Advances, 2018, 4(4): eaap8060 doi: 10.1126/sciadv.aap8060

    [139] 桂嘉烯. 微塑料在农村生活垃圾好氧堆肥中的分布变化及对堆肥效果的影响研究[D]. 杭州: 浙江大学, 2021

    GUI J X. Study on distribution change of microplastics in aerobic composting of rural domestic waste and its influence on composting effect[D]. Hangzhou: Zhejiang University, 2021

    [140]

    XI B B, WANG B, CHEN M, et al. Environmental behaviors and degradation methods of microplastics in different environmental media[J]. Chemosphere, 2022, 299: 134354 doi: 10.1016/j.chemosphere.2022.134354

    [141] 胡旭凯, 桑成琛, 曹萌萌, 等. 聚乙烯微塑料对土壤团聚体及其有机碳的影响[J]. 湖北民族大学学报(自然科学版), 2021(4): 476−480

    HU X K, SANG C C, CAO M M, et al. Effects of polyethylene microplastics on soil aggregate and its organic carbon[J]. Journal of Hubei Minzu University (Natural Science Edition), 2021(4): 476−480

    [142]

    YANG M, HUANG D Y, TIAN Y B, et al. Influences of different source microplastics with different particle sizes and application rates on soil properties and growth of Chinese cabbage (Brassica chinensis L.)[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112480 doi: 10.1016/j.ecoenv.2021.112480

    [143] 吕一涵, 周杰, 杨亚东, 等. 微塑料对农田生态系统的影响: 研究现状与展望[J]. 中国生态农业学报(中英文), 2022, 30(1): 1−14 doi: 10.12357/cjea.20210442

    LYU Y H, ZHOU J, YANG Y D, et al. Microplastics in agroecosystem: research status and future challenges[J]. Chinese Journal of Eco-Agriculture, 2022, 30(1): 1−14 doi: 10.12357/cjea.20210442

    [144]

    FAN P, TAN W B, YU H. Effects of different concentrations and types of microplastics on bacteria and fungi in alkaline soil[J]. Ecotoxicology and Environmental Safety, 2022, 229: 113045 doi: 10.1016/j.ecoenv.2021.113045

    [145]

    KONG X, JIN D C, JIN S L, et al. Responses of bacterial community to dibutyl phthalate pollution in a soil-vegetable ecosystem[J]. Journal of Hazardous Materials, 2018, 353: 142−150 doi: 10.1016/j.jhazmat.2018.04.015

    [146] 张秀玲. 微塑料输入对果园土壤碳氮排放及氮淋溶的影响[D]. 武汉: 华中农业大学, 2021

    ZHANG X L. Effects of microplastics input on carbon and nitrogen emission and nitrogen leaching in orchard soil[D]. Wuhan: Huazhong Agricultural University, 2021

    [147]

    ZETTLER E R, MINCER T J, AMARAL-ZETTLER L A. Life in the “plastisphere”: microbial communities on plastic marine debris[J]. Environmental Science & Technology, 2013, 47(13): 7137−7146

    [148]

    HUANG Y, ZHAO Y R, WANG J, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil[J]. Environmental Pollution, 2019, 254: 112983 doi: 10.1016/j.envpol.2019.112983

    [149]

    XIANG Y J, JIANG L, ZHOU Y Y, et al. Microplastics and environmental pollutants: key interaction and toxicology in aquatic and soil environments[J]. Journal of Hazardous Materials, 2022, 422: 126843 doi: 10.1016/j.jhazmat.2021.126843

图(1)  /  表(2)
计量
  • 文章访问数:  667
  • HTML全文浏览量:  134
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 录用日期:  2023-06-26
  • 网络出版日期:  2023-07-06
  • 刊出日期:  2023-08-09

目录

    /

    返回文章
    返回