Progress in research on preparation and application of oxygen nanobubbles in agriculture
-
摘要: 为系统了解氧纳米气泡及其在农业领域的应用研究进展与发展趋势, 本文就近15年来氧纳米气泡的研究进展与成果, 总结了氧纳米气泡的研究概况; 对氧纳米气泡的制备方法与性质进行了探讨; 重点综述了氧纳米气泡在农业生产领域与农业环境治理领域的应用。农业生产领域的应用包括促进种子发育与作物生长、提高水产养殖产量与经济效益等, 农业环境治理领域的应用, 包括促进稻田甲烷减排、去除土壤中的重金属等污染物质、治理农业面源污染等。展望了氧纳米气泡技术今后的研究重点与对策建议, 包括深入研究氧纳米气泡的增氧机理及作用机制, 进一步开发农业领域氧纳米气泡的制备技术, 拓展氧纳米气泡技术在农业生产及环境修复中的适用性, 开展氧纳米气泡的规模化应用研究等。研究成果可为氧纳米气泡的基础研究和在农业领域的应用研究提供思路与方法。Abstract: To systematically understand the research progress and development trend involving oxygen nanobubbles and their applications in agriculture, this study summarized such researches through a analysis of publications, research strength, and research content with the research achievements of oxygen nanobubbles reported over the past 15 years in the first section. Second, the preparation methods and properties of oxygen nanobubbles were discussed, after which applications encompassing oxygen nanobubbles in the fields of agricultural production and agricultural environmental governance were emphatically reviewed, including promoting seed germination and crop growth, improving aquaculture production and economic benefits, reducing methane emissions in paddy fields, removing heavy metal pollutants and non-point source organic pollutants from soil. Finally, research emphasis and countermeasure suggestions regarding future oxygen nanobubble technology were prospected, including a detailed investigation of the oxygen-enhancing and action mechanisms of oxygen nanobubbles, which is beneficial for deeper application research, further development of preparative techniques for oxygen nanobubbles in the agriculture to reduce preparation costs and energy consumption, expansion of the applicability of oxygen nanobubble technology in agricultural production and environmental remediation, such as in different types of soil and crops, and largescale application research of oxygen nanobubbles. This study provides ideas and methods for both future basic and practical research surrounding oxygen nanobubble in agriculture-related fields.
-
纳米气泡是指存在于固体或液体中的纳米级别的气泡, 氧气、氢气和氮气等在特定条件下都可以形成纳米气泡[1]。根据气泡存在位置及状态, 纳米气泡分为界面纳米气泡和体相纳米气泡。界面纳米气泡附着于固体表面, 高度1~100 nm, 横向半径50~500 nm[2]; 体相纳米气泡存在于溶液或固体中, 直径一般<1 μm。纳米气泡可以在水中停留数小时至数周[3], 为普通气泡(直径为100 μm~10 mm)的6倍[4]。氧纳米气泡具有Zeta电位高[5]、稳定性强[6]、传质效率高[7]、极易产生羟基自由基[8]等性质, 在农业生产和农业环境污染修复领域具有极大的应用潜力[9-11]。因此, 系统、全面地了解氧纳米气泡的发展历程、制备方法、形成和稳定机制及作用效果, 对丰富其理论体系并拓展其应用领域具有非常重要的意义。本文就近15年来氧纳米气泡的主要研究进展及成果进行综述, 就存在的问题和未来的发展方向进行探讨, 以期为氧纳米气泡的基础研究和应用研究提供参考, 并对农业领域今后的研究方向提供思路。
1. 氧纳米气泡的研究概况
1998年1月1日至2022年10月30日, 在Web of Science 核心合集中以“纳米气泡”与“氧纳米气泡”为主题的文献分别有1166篇和144篇, 其中2006—2022年纳米气泡发文处于爆发增长期(图1)。
关于氧纳米气泡的研究, 全面覆盖了从氧纳米气泡形成与稳定性机制的基础研究到氧纳米气泡在水体、土壤修复领域的应用研究。其中Liu等[12]主要关注氧纳米气泡产生的活性氧对作物生长的影响; Mo等[13]、惠飞等[14]主要着眼于不同形成条件(比如超声波、电解)对氧纳米气泡的生长过程与稳定性的影响; 还有很多研究集中于界面氧纳米气泡, 系统揭示了界面氧纳米气泡的形成、作用机制及其对环境的修复效果[15-17]。
为了更好地概述氧纳米气泡研究的前沿和进展, 总结归纳重要的研究成果, 笔者通过VOSviewer对氧纳米气泡的研究热点进行统计发现(图2), 目前国内外研究主要聚焦于氧纳米气泡制备、表征和作用机制; 氧纳米气泡的应用研究已初步涉及农业种植、养殖、农业环境修复、肿瘤治疗等多个领域, 下文将对相关进展进行详细、系统评述。
图 2 2002—2022年氧纳米气泡主题研究热点分布圆圈的大小代表关键词出现的频次, 出现频次越高, 圆圈越大。不同颜色代表不同的聚类, 图2中共有5个聚类, 连线代表两者间相互联系。The size of the circle represents the frequency of keywords. The higher the frequency, the larger the circle. Different colors represent different clusters. There are 5 clusters in Figure 2, and the connecting lines represent the relationship between them.Figure 2. Hot spots distribution of oxygen nanobubble theme research from 2002 to 20222. 氧纳米气泡的性质及制备方法
氧纳米气泡具有稳定性强、比表面积大、传质效率高且能够吸附较多的悬浮物颗粒等特性。Ushikubo 等[5]研究发现氧纳米气泡的Zeta电位高达−45~−34 mV (空气纳米气泡的2倍), 气泡之间斥力随着Zeta电位升高而增大, 气泡不易聚结, 稳定性强。氧纳米气泡由于体积小, 受表面张力压缩的影响更大, 气泡内部压力不断增大, 在这个过程中氧气不断穿过气液界面溶解到液体中, 因而传质效率高[18]。Nirmalkar等[19]研究证实氧纳米气泡在水中形成的气液界面带有负电荷, 可以吸附介质中的反离子; 氧纳米气泡表面高密度电荷的存在使其在爆破时能够产生OH自由基或活性氧, 从而产生强氧化能力[20]。Pyrgiotakis等[21]用电子顺磁共振(EPR)证明了由氧纳米气泡塌陷时产生的·OH和O2−的存在。Liu等[22-23]也用荧光探针证实了氧纳米气泡生成的·OH及其强氧化能力[24]。
氧纳米气泡的形成主要与液体环境、气体含量、压强等条件有关。依据不同的应用场景与方式可以选择不同的制备方法, 目前主要分为两类, 分别为形成氧纳米气泡水与制备氧纳米气泡改性材料。对于形成氧纳米气泡水, 主要有加压溶气[25]、引气制造气泡[26]。加压溶气通过改变压力来改变气体溶解度; 引气制造气泡又可分为压缩空气通过扩散板法、机械力高速剪切空气法与引射流分散空气法, 主要是通过切割作用形成纳米气泡。对于氧纳米气泡改性材料的制备, 主要采用溶液替换法[27]与真空变压吸附法[28-29]。溶液替换法基于不同溶液中气体溶解度不同的原理, 在两种溶液替换时, 界面附近的气体分子过饱和而释放; 真空变压吸附法通过“真空脱附-氧气吸附”循环, 改性多孔材料, 比如载氧沸石、载氧活性炭等。此外, Koshoridze等[30]发现在三相边界曲线的小直径和相当高的过饱和度下, 界面氧纳米气泡会自发形成。同时, 目前我们已经可以通过现代化技术和设备对氧纳米气泡的性质进行定性或定量的表征(表1), 不同方法都具有相应的优势和弊端。通过动态光散射技术、纳米颗粒追踪技术、电子显微镜技术和共振质量测量等方法可以测定体相氧纳米气泡的性质, 比如氧纳米气泡的尺寸、质量, 但是无法给出所测纳米气泡的具体化学信息; 原子力显微镜、光学显微镜、电子显微镜、同步辐射X射线等可以对界面氧纳米气泡进行成像并表征其性质, 比如氧纳米气泡的尺寸、形貌和分布, 记录氧纳米气泡的成核与生长过程, 但是也存在成像难度大、群体气泡观测难度大等缺陷, 可能需要通过多技术手段联用进行改善。此外, Winkler反应也能够测定氧纳米气泡的相对含量[39], 通过氧化还原反应测量氧气浓度, 在氧纳米气泡的定量检测中具有简易、快捷等特点。根据氧纳米气泡种类和应用需求选择合理的表征方法能够为试验提供更准确、更全面的信息支撑。
表 1 氧纳米气泡性质检测方法及特点Table 1. Characteristics of different methods for detecting the properties of oxygen nanobubble检测方法
Test method特点
Characteristic文献
Literature动态光散射技术
Dynamic light scattering用于测量体相氧纳米气泡尺寸和粒径分布, 但由于测的是平均值, 所以数据重复性较差
It is used to measure the size and particle size distribution of bulk oxygen nanobubbles, but the data repeatability is poor due to its measurement of the average value[31] 纳米颗粒追踪技术
Nanoparticle tracking analysis改善了动态光散射技术的缺陷, 对体相氧纳米气泡的粒径分布进行更精准的分析, 但无法给出化学信息, 因此往往需要设计对照试验来提高准确性
It improves the defect of dynamic light scattering technology and makes more accurate analysis on the particle size distribution of bulk oxygen nanobubbles, but the chemical information is not available, which needs contrast tests to improve the accuracy[32] 共振质量测量法
Resonant mass measurement用于测量体相纳米气泡的质量, 同时可以区分纳米颗粒与体相纳米气泡
It is used to measure the mass of bulk nanobubbles and distinguish between nanoparticles and bulk nanobubbles[33] 原子力显微镜
Atomic force microscope可以定量观察高度、样貌分布与界面氧纳米气泡在扰动下的变化, 但无法提供气泡化学信息
It can quantitatively observe nanobubbles’ height, appearance distribution, and the changes of interface oxygen nanobubbles under disturbance, but can not provide bubble’s chemical information[34] 光学显微镜
Optical microscope种类丰富, 下属的荧光显微镜常被用于观测界面氧纳米气泡
It has a wide variety of types, of which fluorescence microscope is often used to observe interface oxygen nanobubbles[35] 电子显微镜
Electron microscope相比光学显微镜分辨率更高, 但对真空度等要求较高, 成像难度大, 体相氧纳米气泡与界面氧纳米气泡的检测均可应用
Compared to optical microscope, it has higher resolution, but higher requirements for vacuum degree, which increases the imaging difficulty. It can be applied in the detection of both bulk oxygen nanobubbles and interface oxygen nanobubbles[36] 电化学方法
Electrochemical method追踪气泡形态变化较灵敏, 将电化学信号与经典成核理论相结合, 可计算电极表面氧纳米气泡的成核临界尺寸、接触角等, 但群体气泡不好观察
It is sensitive in tracking changes in bubble morphology. Combining the electrochemical signal with the classical nucleation theory can calculate the nucleation critical size and contact angle of oxygen nanobubbles on the electrode surface, but it doesn’t suit for the observation of group bubbles[37] 同步辐射X射线
Synchrotron radiation X-ray可获取单个界面氧纳米气泡的化学组成信息与内部气体密度
It can obtain the chemical composition information and internal gas density of single interface oxygen nanobubble[38] 3. 氧纳米气泡在农业领域中的应用
氧纳米气泡具有较高稳定性和持久性, 可以高效增氧并释放自由基, 是改善厌氧环境的优良选择, 因此在农业领域的应用前景广阔, 比如植物根系呼吸环境的改善、氧气驱动条件下元素地球化学循环对污染物的降解等, 主要包括农业生产领域与农业环境治理领域。农业生产领域主要为作物栽培与水产养殖, 农业环境治理包括农田温室气体减排、土壤重金属污染防治、农业面源污染治理等方面(图3)。
3.1 氧纳米气泡在农业生产领域中的应用
3.1.1 氧纳米气泡与作物栽培
氧是植物呼吸的重要元素, 氧气在维持作物正常的生理活动中起关键作用。近年来, 许多研究表明氧纳米气泡对种子萌发和作物生长具有促进作用。氧纳米气泡可以促进作物种子内部超氧自由基的积累, 提高种子生理活性[40], 加速种子萌发[41], 发芽率可以提升10%~20%[42]。氧纳米气泡可以通过增加土壤氧含量进而促进作物的生长, 施用后土壤中溶解氧含量增加近3倍[43]。在比较湿润的农作区, 主要的利用方式为通过纳米气泡发生装置对水体曝气形成富氧水后进行灌溉; 在生态干旱区, 氧纳米气泡与地下滴灌装置结合进行加气灌溉[44]。地上灌溉的土壤氧含量增加幅度大于地下灌溉, 地上滴灌组别使土壤氧浓度从15.6%提升至19.7%, 大于地下滴灌组别从18.2%提升至19.2%的幅度[43]。相比于翻耕等增强土壤通气性的措施, 氧纳米气泡的施用可以根据作物根系在不同生长期对氧气的需求情况进行, 且所涉及的机械耗能较低。氧纳米气泡的影响主要涉及根系分泌物、土壤酶、土壤微生物这几个部分(图4)。具体来说, 一方面, 氧纳米气泡可以提高土壤通气性[45], 促进植物根系生长新陈代谢[46-47], 植物根系分泌物随之增加。另一方面, 氧纳米气泡为土壤提供了一个富氧环境, 促进好氧微生物的生长增殖[48], 改善土壤微生物群落多样性与结构[49], 微生物介导的土壤养分释放增强, 促进了土壤有机组分的矿质化过程[50]。根系分泌物与微生物共同促进土壤酶含量增加、活性提高[51], 比如土壤蛋白酶通过参与氮素转化过程影响作物品质[52]、过氧化氢酶保护作物免受过氧化氢积累产生的毒害作用[53], 从而间接促进了作物的生长。氧纳米气泡施用后还可以减少肥料施加量, 从而减少农资投入。有研究表明, 在肥料减量25%的情况下, 氧纳米气泡施用组的水稻(Oryza sativa)产量与对照组相同, 其原因在于氧纳米气泡提高了作物对营养元素的利用效率[54-56]。氧纳米气泡对处在不同生长阶段的作物的作用效果存在差异, 研究表明, 相比于番茄(Solanum lycopersicum)和黄瓜(Cucumis sativus)的播种开花期, 在结果期施用氧纳米气泡对于提升作物产量与品质的效果更好, 额外提升干物质量近10%[57]。此外, 氧纳米气泡还能通过缓解土壤秸秆连续还田造成的厌氧环境与作物根部缺氧[58], 减少土壤中还原性物质的产生, 使得作物的生长不受土壤中Fe2+、Mn2+过度积累的影响[59], 保证作物的生长状况良好。
溶解氧浓度是影响氧纳米气泡促生效果的最直接因素, 在一定范围内, 溶解氧浓度往往与促进效果呈正相关关系, 但其产生正相关效应的阈值同时也会受土壤条件和灌溉方式的影响。曝气所用水也对氧纳米气泡的作用效果有影响, 使用再生水[60]以及盐度合适的水[61]会提高氧纳米气泡的作用效果。施用肥料的性质[62]也会影响氧纳米气泡的作用效果, 研究表明氧纳米气泡与未腐熟底肥同时施用会导致好氧微生物的丰度过大, 底肥分解过多, 全盐量过分积累, 引发作物缺水, 抑制养分吸收[63], 不利于根系生长[64]。除上述因素外, 灌溉频次[62,65]也对氧纳米气泡的作用效果有一定程度的影响。因此, 针对氧纳米气泡作用效果及应用条件需开展更深入的研究。
在水培中, 氧纳米气泡能够在水中长时间悬浮存在, 可以通过增加营养液中的溶解氧浓度保证水培作物根系对氧的需求, 并促进根系的生长发育。张慧娟等[66]研究测定, 施用氧纳米气泡组的紫叶生菜(Lactuca sativa var. ramosa)单株根长、根质量相比于对照组分别有20%~40%的提升。同时, 氧纳米气泡还缓解了营养液中微生物分解活动与根系争氧的矛盾, 保证微生物好氧分解效率, 有利于水培作物根系脱落物及时被分解, 维持水质稳定。相比于目前已有的提高水体溶氧量的循环增氧、曝气增氧等技术[67], 氧纳米气泡减少了设施投入, 降低成本的同时也保证了水培叶菜、花卉品质[44]。
3.1.2 氧纳米气泡与水产养殖
溶解氧对养殖水体中鱼类的生存、健康及水生生态系统的平衡至关重要。目前水产养殖中主要利用水生植物光合作用、增氧机和氧气泵等机械增氧、过氧化氢化学增氧和换水增氧等手段来增加水环境中的溶解氧。氧纳米气泡在水产养殖中的应用能够显著影响养殖产量和经济效益, 其增氧效率达传统增氧技术的25倍[68], 同时还可以净化水质, 成为替代上述高能耗技术的备选方案。利用氧纳米气泡可以稳定长效地提升水中溶解氧浓度[69], 增加鱼群放养密度, 提高鱼类的摄食强度[70], 进而促进养殖单产量[71-72], 其技术优势在水生生物的高密度养殖方面尤为突出。氧纳米气泡具有降低疏水颗粒分散性的特点[73], 通过改变颗粒与颗粒、颗粒与气泡之间的作用力来影响颗粒凝聚与共凝聚, 因此常作为难溶性药物输送系统, 使得难溶性药物云芝糖肽在水中的分散度提高近60倍[73], 减少药物沉积导致的药效低的问题, 有效控制鱼类疾病[71]。氧纳米气泡可以使氧气浓度快速达到超饱和状态, 可使水体溶氧值达饱和溶氧值的4倍[70]。这是缘于氧纳米气泡比表面积大、气泡内部压力大于液体压力, 促进气液之间的反应速度, 加速气泡中氧气溶解; 同时溶解氧衰减速度较慢, 使得养殖空窗期水中氧气浓度也能保持在一定水平, 有效防止厌氧微生物大量繁殖, 进而造成养殖水体与底泥中的微生物结构失衡。利用多孔材料如沸石、活性炭、生物炭进行载氧并在养殖水体中应用后, 能够形成体相和界面两种氧纳米气泡, 分别作用上覆水体和水-土界面。不同材料的比表面积与疏水性具有差异, 因此载氧能力也不同, Wang等[74]研究测定载氧能力为活性炭>沸石>生物炭>硅藻土>煤灰>黏土。形成的界面氧纳米气泡可以改变底泥表面的氧化还原状态, 使沉积表面的抗生素、饲料和排泄物等充分氧化分解, 减轻淤泥形成, 改善水体环境, 也能够实现养殖尾水的达标排放[75] 。
3.2 氧纳米气泡在农业环境治理中的应用
3.2.1 氧纳米气泡与农田温室气体减排
我国稻田甲烷(CH4)总排放量占全球稻田总排放量的20%以上[76], 控制稻田甲烷排放是实现我国“双碳”目标的必经之路。稻田土壤淹水后氧化还原电位的下降为甲烷产生提供了有利条件, 通过曝气增氧灌溉或施用氧纳米气泡改性材料, 氧纳米气泡形成的长效稳定的有氧环境将有效扭转这种局面。氧纳米气泡能够通过改变稻田土壤环境而影响专性好氧甲烷氧化菌与厌氧产甲烷菌的群落结构, 进而减缓甲烷的产生并加速甲烷的氧化消耗进程(图5)。氧纳米气泡可以改善土壤通气状况, 提高稻田土壤氧化还原电位, 研究表明除移栽期与齐穗期之外的其他5个生育时期内, 微纳米气泡水增氧灌溉的稻田土壤 Eh 均高于淹水灌溉[77]。90%以上未被氧化的甲烷通过水稻通气组织向外运输, 水稻根际增氧能够降低根系孔隙度, 通气组织减少20%~60%的水稻被发现可以降低27%~36%甲烷排放[78]。Minamikawa等[79]研究发现, 与对照相比, 利用富氧纳米气泡水灌溉的稻田甲烷排放量减少20%~28%。目前对于稻田甲烷减排措施有改变施肥结构、调整农作模式等[80], 氧纳米气泡相比于上述措施受不同地区生态环境差异的限制更小。相比于施用生物炭(20 000 kg∙hm−2)可以减轻约8%的甲烷排放[81], 氧纳米气泡的甲烷减排效率更高, 同时成本也更低。但目前对甲烷产生、氧化和排放具体过程中的影响机制仍需要进一步探索。
氧化亚氮(N2O)是农田生态系统排放的主要温室气体之一。增氧能够促进作物根系呼吸, 提高养分吸收利用效率, 同时抑制反硝化过程并促进硝化过程的进程, 进而影响氧化亚氮的产生。张露等[52]研究表明, 增氧灌溉组的水稻硝化作用强度降低近30%, 反硝化强度增强近30%。但两个过程在不同的通气条件下主导性不同, 有研究发现氧纳米气泡水增氧灌溉条件下土壤氧化亚氮排放通量增加[82-83], 因此增氧对稻田土壤氧化亚氮的减排效果存在不确定性。
3.2.2 氧纳米气泡与土壤重金属污染防治
工业三废排放、污水灌溉、农药和肥料的不合理施用给我国大面积土地带来了重金属污染问题。通过技术手段调控土壤中重金属的生物有效性, 从而阻控作物对重金属的吸收, 是降低人类重金属暴露风险的关键。相对于化学手段或材料修复, 氧纳米气泡的施用不会影响作物正常生长, 也不会对土壤环境造成二次污染, 是一种更为安全与环保的技术。氧纳米气泡体积小, 比表面积大, Zeta电位高, 因此具有很强的阳离子吸附能力[84]。氧纳米气泡可以使得活性炭吸附Pb2+的过程加速366%[85]。此外, 氧纳米气泡爆破时产生的羟基自由基或活性氧能够产生强氧化作用, 降低重金属在介质中的迁移效率和生物毒性。Tang等[86]研究发现氧纳米气泡组的As(Ⅴ)占总溶解As通量的比例约为80%, 远高于对照组的20%, 氧纳米气泡通过改善根际氧化还原电位(Eh)和溶解氧(DO), 促进As(Ⅲ)生物氧化和非生物氧化, 抑制As(Ⅴ)还原, 最终促进As(Ⅴ)的形成和钝化。对于湿地植物而言, 根际增氧能够促进根系铁膜形成, 铁膜对于铬、铅和镉等元素均有吸附、络合作用, 能够阻碍重金属在植物体内的转运[87](图5)。尽管目前很多研究都证明了氧纳米气泡在土壤-作物系统重金属迁移和转运过程中的多重阻隔效果, 但不同重金属的钝化机制和调控条件仍值得我们进行深入的探究。
3.2.3 氧纳米气泡与农业面源污染治理
随着工业进程加快、农业生产方式的变化进程加速, 农业面源污染类型也向多元化、复杂化方向发展, 除化肥、农药等传统污染物之外, 持久性有机污染物、微塑料等新兴污染物也成为影响水体环境的重要因素。针对规模化污染水体, 可以采用纳米气泡曝气装置; 对于小面积的污染水体, 常使用成本更低的氧纳米气泡改性材料, 如氧纳米气泡改性沸石。氧纳米气泡也可以避免传统深水曝气方法面临的沉积物再悬浮问题[88]。氧纳米气泡传质效率高, 携带氧气, 同时可以产生羟基自由基, 因此具有强氧化能力(图6)。Ji 等[89]研究表明, 氧纳米气泡可以使不稳定的有机物被氧化, 富营养化水体的上覆水中和表层沉积物中的有机碳含量分别减少57%和37%, 有效促进有机污染物的去除。氧纳米气泡携带氧气, 溶解氧浓度增加, 会对水体中的微生物结构与活性产生影响。研究发现施用氧纳米气泡组的甲基汞占比与浓度仅为对照组的50%~75%, 界面氧纳米气泡能够通过抑制厌氧菌汞甲基化细菌的生长繁殖, 使得汞微生物甲基化物减少, 从而减缓汞污染的富营养化水体上覆水和表面沉积物中甲基汞的产生[90]。同时, 氧气的增加改变了氧化还原电位, 将Fe2+转化为Fe3+, 生成Fe(OH)3胶体, 对于上覆水中游离态磷具有较强的吸附能力。Fe3+与磷酸根形成难溶性磷酸铁, 抑制底泥中磷的释放, 有研究表明好氧条件下底泥磷的释放速率仅为厌氧条件下的7.3%[91]。氧纳米气泡吸附能力强, 停留时间长, 与其他修复技术结合后可以显著提高使用效果。Jenkins等[92]将微生物修复技术与纳米气泡修复技术结合用于二甲苯污染土壤的原位曝气修复, 将混合假单胞菌的氧纳米气泡注入土壤柱间隙空间, 氧纳米气泡在修复区的停留时间达45 min, 微生物菌株对氧的利用率高达71%~82%, 有效缓解二甲苯污染的同时, 还促进了微生物生长。氧纳米气泡与多种菌种混合后菌种间的互作机制及调控条件仍需进一步探索。
4. 展望
在过去的10年间, 伴随着纳米技术、学科交叉和国际合作的飞速发展, 氧纳米气泡机制研究取得了长足的进步, 技术应用领域也在不断拓展。在我国发展绿色生态农业、建设美丽乡村的政策背景驱动下, 氧纳米气泡技术在农业领域方兴未艾。针对目前氧纳米气泡技术遇到的问题和瓶颈, 未来进一步开展其相关研究对促进我国农业生产及农业环境修复具有重要意义。
1)深入探索氧纳米气泡的增氧机理及作用机制。从已有的氧纳米气泡产生及作用机制研究来看, 氧纳米气泡的稳定性和活性氧自由基的产生是学者们关注的主要方面, 针对氧纳米气泡生长溃灭变化过程以及具体反应机制探究较少; 界面纳米气泡性质和固体颗粒孔隙中纳米气泡的释放条件还需要摸索。氧纳米气泡具有促进作物生长及提高品质, 治理水体富营养化, 减少温室气体排放等作用, 但其作用机制仍然需要进一步探究。
2)进一步开发农业领域氧纳米气泡的制备技术。目前纳米气泡制造设备主要包括溶气析出、引气制造等方式, 设备成本高、制造难度大, 运行过程能耗大、维护费用高, 在农业领域的广泛应用尚存质疑。采用多孔材料如生物炭、沸石等负载氧气制备载氧材料, 能够实现其在农业领域低成本制备、规模化应用; 在应用过程中, 也具有能耗低、效率高和生态安全等特点。此外, 以土壤改良材料或肥料为载体、探索氧纳米气泡与土壤益生微生物共负载技术, 也将为氧纳米气泡技术在农业领域开拓新的方向。
3)拓展氧纳米气泡技术在农业生产及环境修复中的适用性。我国农业作物种类多样, 不同作物在不同生长阶段根系呼吸特征不同, 对氧的需求也不统一, 针对不同作物根系生长阶段对氧的需求精准调控氧纳米气泡的释放速度和释放量对作物根系呼吸及生长具有重要意义。同时, 我国土壤类型丰富, 绿色革命后集约化农业生产也给土壤带来了很多突出的问题: 如重金属污染、有机污染、土壤酸化、盐碱化、潜育化等。氧纳米气泡能够保持在介质中缓慢、持续地释放并产生具有氧化能力的自由基, 对农业土壤中有机污染物的去除、重金属的钝化具有很好的效果, 氧纳米气泡在酸化、盐碱化和潜育化土壤中的改良作用也值得尝试。
4)开展氧纳米气泡的规模化应用研究。目前农业领域大部分氧纳米气泡的试验都局限在水培、盆栽或者小区域进行, 尤其是载氧材料尚未开展田间应用。针对不同农业环境需求、不同农业生产场景选择不同的氧纳米气泡和负载材料, 并制定相应的使用方法和规程, 进而规模化应用将为农业绿色现代化发展提供助力。
-
图 2 2002—2022年氧纳米气泡主题研究热点分布
圆圈的大小代表关键词出现的频次, 出现频次越高, 圆圈越大。不同颜色代表不同的聚类, 图2中共有5个聚类, 连线代表两者间相互联系。The size of the circle represents the frequency of keywords. The higher the frequency, the larger the circle. Different colors represent different clusters. There are 5 clusters in Figure 2, and the connecting lines represent the relationship between them.
Figure 2. Hot spots distribution of oxygen nanobubble theme research from 2002 to 2022
表 1 氧纳米气泡性质检测方法及特点
Table 1 Characteristics of different methods for detecting the properties of oxygen nanobubble
检测方法
Test method特点
Characteristic文献
Literature动态光散射技术
Dynamic light scattering用于测量体相氧纳米气泡尺寸和粒径分布, 但由于测的是平均值, 所以数据重复性较差
It is used to measure the size and particle size distribution of bulk oxygen nanobubbles, but the data repeatability is poor due to its measurement of the average value[31] 纳米颗粒追踪技术
Nanoparticle tracking analysis改善了动态光散射技术的缺陷, 对体相氧纳米气泡的粒径分布进行更精准的分析, 但无法给出化学信息, 因此往往需要设计对照试验来提高准确性
It improves the defect of dynamic light scattering technology and makes more accurate analysis on the particle size distribution of bulk oxygen nanobubbles, but the chemical information is not available, which needs contrast tests to improve the accuracy[32] 共振质量测量法
Resonant mass measurement用于测量体相纳米气泡的质量, 同时可以区分纳米颗粒与体相纳米气泡
It is used to measure the mass of bulk nanobubbles and distinguish between nanoparticles and bulk nanobubbles[33] 原子力显微镜
Atomic force microscope可以定量观察高度、样貌分布与界面氧纳米气泡在扰动下的变化, 但无法提供气泡化学信息
It can quantitatively observe nanobubbles’ height, appearance distribution, and the changes of interface oxygen nanobubbles under disturbance, but can not provide bubble’s chemical information[34] 光学显微镜
Optical microscope种类丰富, 下属的荧光显微镜常被用于观测界面氧纳米气泡
It has a wide variety of types, of which fluorescence microscope is often used to observe interface oxygen nanobubbles[35] 电子显微镜
Electron microscope相比光学显微镜分辨率更高, 但对真空度等要求较高, 成像难度大, 体相氧纳米气泡与界面氧纳米气泡的检测均可应用
Compared to optical microscope, it has higher resolution, but higher requirements for vacuum degree, which increases the imaging difficulty. It can be applied in the detection of both bulk oxygen nanobubbles and interface oxygen nanobubbles[36] 电化学方法
Electrochemical method追踪气泡形态变化较灵敏, 将电化学信号与经典成核理论相结合, 可计算电极表面氧纳米气泡的成核临界尺寸、接触角等, 但群体气泡不好观察
It is sensitive in tracking changes in bubble morphology. Combining the electrochemical signal with the classical nucleation theory can calculate the nucleation critical size and contact angle of oxygen nanobubbles on the electrode surface, but it doesn’t suit for the observation of group bubbles[37] 同步辐射X射线
Synchrotron radiation X-ray可获取单个界面氧纳米气泡的化学组成信息与内部气体密度
It can obtain the chemical composition information and internal gas density of single interface oxygen nanobubble[38] -
[1] PARKER J L, CLAESSON P M, ATTARD P. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces[J]. The Journal of Physical Chemistry, 1994, 98(34): 8468−8480 doi: 10.1021/j100085a029
[2] 王宗旭, 李紫欣, 白璐, 等. 固/液界面纳米气泡形成及稳定性研究进展[J]. 化工学报, 2021, 72(7): 3466−3477 doi: 10.11949/0438-1157.20210062 WANG Z X, LI Z X, BAI L, et al. Formation and stability of nanobubble at solid/liquid interface[J]. CIESC Journal, 2021, 72(7): 3466−3477 doi: 10.11949/0438-1157.20210062
[3] CHEN C S, LI J, ZHANG X R. The existence and stability of bulk nanobubbles: a long-standing dispute on the experimentally observed mesoscopic inhomogeneities in aqueous solutions[J]. Communications in Theoretical Physics, 2020, 72(3): 037601 doi: 10.1088/1572-9494/ab6183
[4] XIAO W T, XU G R, LI G B. Effect of nanobubble application on performance and structural characteristics of microbial aggregates[J]. Science of the Total Environment, 2021, 765: 142725 doi: 10.1016/j.scitotenv.2020.142725
[5] USHIKUBO F Y, FURUKAWA T, NAKAGAWA R, et al. Evidence of the existence and the stability of nano-bubbles in water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361(1/2/3): 31−37
[6] ETCHEPARE R, OLIVEIRA H, NICKNIG M, et al. Nanobubbles: generation using a multiphase pump, properties and features in flotation[J]. Minerals Engineering, 2017, 112: 19−26 doi: 10.1016/j.mineng.2017.06.020
[7] TEMESGEN T, BUI T T, HAN M, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review[J]. Advances in Colloid and Interface Science, 2017, 246: 40−51 doi: 10.1016/j.cis.2017.06.011
[8] TAKAHASHI M, CHIBA K, LI P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. The Journal of Physical Chemistry B, 2007, 111(6): 1343−1347 doi: 10.1021/jp0669254
[9] PAN X Y, WANG H, OUYANG Z, et al. Scientometric analysis on rice research under drought, waterlogging or abrupt drought-flood alternation stress[J]. Agriculture, 2022, 12(9): 1509 doi: 10.3390/agriculture12091509
[10] 荣英男, 郭俊超, 李建, 等. 国际转化医学研究热点与前沿文献计量分析[J]. 基础医学与临床, 2018, 38(6): 868−873 RONG Y N, GUO J C, LI J, et al. Bibliometric analysis of hotspots and frontiers in international translational medicine research[J]. Basic & Clinical Medicine, 2018, 38(6): 868−873 [11] 张甫, 刘媛, 王睿, 等. 2009—2018年我国污水处理研究现状及发展趋势分析−基于环境科学领域中文核心期刊的文献计量分析[J]. 安全与环境学报, 2019, 19(4): 1329−1340 doi: 10.13637/j.issn.1009-6094.2019.04.032 ZHANG F, LIU Y, WANG R, et al. Current situation and development trend of sewage treating technology research from 2009 to 2018 — Bibliometric analysis based on the field of environmental science from Chinese core periodicals[J]. Journal of Safety and Environment, 2019, 19(4): 1329−1340 doi: 10.13637/j.issn.1009-6094.2019.04.032
[12] LIU S, OSHITA S, KAWABATA S, et al. Identification of ROS produced by nanobubbles and their positive and negative effects on vegetable seed germination[J]. Langmuir, 2016, 32(43): 11295–11302
[13] MO C R, WANG J, FANG Z, et al. Formation and stability of ultrasonic generated bulk nanobubbles[J]. Chinese Physics B, 2018, 27(11): 381–385
[14] 惠飞, 李宾, 何品刚, 等. 电化学控制产生纳米氧气气泡及其对电化学聚合吡咯形貌的影响[J]. 化学学报, 2009, 67(6): 488−492 HUI F, LI B, HE P G, et al. Electrochemically controlled formation and growth of oxygen nanobubbles and their effect on morphology of polypyrrole[J]. Acta Chimica Sinica, 2009, 67(6): 488−492
[15] PAN G, YANG B. Effect of surface hydrophobicity on the formation and stability of oxygen nanobubbles[J]. Chemphyschem, 2012, 13(8): 2205−2212
[16] WANG L, MIAO X J, ALI J, et al. Quantification of oxygen nanobubbles in particulate matters and potential applications in remediation of anaerobic environment[J]. ACS Omega, 2018, 3(9): 10624−10630
[17] ZHANG H G, CHEN J, HAN M L, et al. Anoxia remediation and internal loading modulation in eutrophic lakes using geoengineering method based on oxygen nanobubbles[J]. Science of the Total Environment, 2020, 714(C): 136766
[18] AGARWAL A, NG W J, LIU Y. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere, 2011, 84(9): 1175−1180 doi: 10.1016/j.chemosphere.2011.05.054
[19] NIRMALKAR N, PACEK A W, BARIGOU M. Interpreting the interfacial and colloidal stability of bulk nanobubbles[J]. Soft Matter, 2018, 14(47): 9643−9656 doi: 10.1039/C8SM01949E
[20] YASUI K, TUZIUTI T, KANEMATSU W. Mysteries of bulk nanobubbles (ultrafine bubbles); stability and radical formation[J]. Ultrasonics Sonochemistry, 2018, 48: 259−266 doi: 10.1016/j.ultsonch.2018.05.038
[21] PYRGIOTAKIS G, VEDANTAM P, CIRENZA C, et al. Optimization of a nanotechnology based antimicrobial platform for food safety applications using Engineered Water Nanostructures (EWNS)[J]. Scientific Reports, 2016, 6: 21073 doi: 10.1038/srep21073
[22] LIU S, OSHITA S, KAWABATA S, et al. Identification of ROS produced by nanobubbles and their positive and negative effects on vegetable seed germination[J]. Langmuir, 2016, 32(43): 11295−11302 doi: 10.1021/acs.langmuir.6b01621
[23] LIU S, OSHITA S, MAKINO Y, et al. Oxidative capacity of nanobubbles and its effect on seed germination[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1347−1353
[24] GARCIA-SEGURA S, CENTELLAS F, BRILLAS E. Unprecedented electrochemiluminescence of luminol on a boron-doped diamond thin-film anode. enhancement by electrogenerated superoxide radical anion[J]. The Journal of Physical Chemistry C, 2012, 116(29): 15500−15504 doi: 10.1021/jp305493g
[25] EDZWALD J K. Fundamentals of dissolved air flotation[J]. Journal of the New England Water Works Association, 2007, 121(2): 89−112
[26] BOWONDER B, KUMAR R. Studies in bubble formation - Ⅳ: bubble formation at porous discs[J]. Chemical Engineering Science, 1970, 25(1): 25−32 doi: 10.1016/0009-2509(70)85018-7
[27] KARPITSCHKA S, DIETRICH E, SEDDON J R T, et al. Nonintrusive optical visualization of surface nanobubbles[J]. Physical Review Letters, 2012, 109(6): 066102 doi: 10.1103/PhysRevLett.109.066102
[28] FERREIRA D, BOAVENTURA M, BÁRCIA P, et al. Two-stage vacuum pressure swing adsorption using AgLiLSX zeolite for producing 99.5+% oxygen from air[J]. Industrial & Engineering Chemistry Research, 2016, 55(3): 722−736
[29] DING Z Y, HAN Z Y, FU Q, et al. Optimization and analysis of the VPSA process for industrial-scale oxygen production[J]. Adsorption, 2018, 24(5): 499−516 doi: 10.1007/s10450-018-9956-z
[30] KOSHORIDZE S I, LEVIN Y K. The influence of line tension on the formation of surface nanobubbles[J]. Russian Physics Journal, 2020, 63(7): 1277−1281 doi: 10.1007/s11182-020-02148-7
[31] DASARY S S R, SENAPATI D, SINGH A K, et al. Highly sensitive and selective dynamic light-scattering assay for TNT detection using p-ATP attached gold nanoparticle[J]. ACS Applied Materials & Interfaces, 2010, 2(12): 3455−3460
[32] 原恺薇, 王兴亚. 纳米气泡制备和检测方法研究进展[J]. 净水技术, 2021, 40(2): 53−66 doi: 10.15890/j.cnki.jsjs.2021.02.006 YUAN K W, WANG X Y. Research progress on the preparation and determination of nanobubbles[J]. Water Purification Technology, 2021, 40(2): 53−66 doi: 10.15890/j.cnki.jsjs.2021.02.006
[33] ALHESHIBRI M, CRAIG V S J. Generation of nanoparticles upon mixing ethanol and water; nanobubbles or not?[J]. Journal of Colloid and Interface Science, 2019, 542: 136−143 doi: 10.1016/j.jcis.2019.01.134
[34] 刘小虹, 颜肖慈, 罗明道, 等. 原子力显微镜及其应用[J]. 自然杂志, 2002, 24(1): 36−40 doi: 10.3969/j.issn.0253-9608.2002.01.007 LIU X H, YAN X C, LUO M D, et al. Atomic force microscope and its application[J]. Chinese Journal of Nature, 2002, 24(1): 36−40 doi: 10.3969/j.issn.0253-9608.2002.01.007
[35] XU W L, KONG J S, YEH Y T E, et al. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics[J]. Nature Materials, 2008, 7(12): 992−996 doi: 10.1038/nmat2319
[36] 贾志宏, 丁立鹏, 陈厚文. 高分辨扫描透射电子显微镜原理及其应用[J]. 物理, 2015, 44(7): 446−452 doi: 10.7693/wl20150704 JIA Z H, DING L P, CHEN H W. The principle and applications of high-resolution scanning electron microscopy[J]. Physics, 2015, 44(7): 446−452 doi: 10.7693/wl20150704
[37] GERMAN S R, EDWARDS M A, REN H, et al. Critical nuclei size, rate, and activation energy of H2 gas nucleation[J]. Journal of the American Chemical Society, 2018, 140(11): 4047−4053 doi: 10.1021/jacs.7b13457
[38] ZHOU L M, WANG X Y, SHIN H J, et al. Ultrahigh density of gas molecules confined in surface nanobubbles in ambient water[J]. Journal of the American Chemical Society, 2020, 142(12): 5583−5593 doi: 10.1021/jacs.9b11303
[39] KIKUCHI K, IOKA A, OKU T, et al. Concentration determination of oxygen nanobubbles in electrolyzed water[J]. Journal of Colloid and Interface Science, 2009, 329(2): 306−309 doi: 10.1016/j.jcis.2008.10.009
[40] BAILLY C, EL-MAAROUF-BOUTEAU H, CORBINEAU F. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology[J]. Comptes Rendus Biologies, 2008, 331(10): 806−814 doi: 10.1016/j.crvi.2008.07.022
[41] AHMED A K A, SHI X N, HUA L K, et al. Influences of air, oxygen, nitrogen, and carbon dioxide nanobubbles on seed germination and plant growth[J]. Journal of Agricultural and Food Chemistry, 2018, 66(20): 5117−5124 doi: 10.1021/acs.jafc.8b00333
[42] 蒋程瑶, 赵淑梅, 程燕飞, 等. 微/纳米气泡水中的氧环境对叶菜种子发芽的影响[J]. 北方园艺, 2013(2): 28−30 JIANG C Y, ZHAO S M, CHENG Y F, et al. Effect of oxygen condition in micro/nano-bubble water on leafy vegetables seed germination[J]. Northern Horticulture, 2013(2): 28−30
[43] BARAM S, EVANS J F, BEREZKIN A, et al. Irrigation with treated wastewater containing nanobubbles to aerate soils and reduce nitrous oxide emissions[J]. Journal of Cleaner Production, 2021, 280: 124509 doi: 10.1016/j.jclepro.2020.124509
[44] 蔡九茂, 翟国亮, 吕谋超, 等. 微纳米气泡在农业灌溉领域的应用展望[J]. 灌溉排水学报, 2016, 35(S1): 102−107 doi: 10.13522/j.cnki.ggps.2016.z1.026 CAI J M, ZHAI G L, LYU M C, et al. Application and prospect of micro-nano bubble in agriculture irrigation areas[J]. Journal of Irrigation and Drainage, 2016, 35(S1): 102−107 doi: 10.13522/j.cnki.ggps.2016.z1.026
[45] 王帘里, 翟国亮. 通气对土壤肥力质量影响的研究进展[J]. 中国农学通报, 2016, 32(5): 90−95 doi: 10.11924/j.issn.1000-6850.casb15090083 WANG L L, ZHAI G L. Research progress of aeration impact on soil fertility quality[J]. Chinese Agricultural Science Bulletin, 2016, 32(5): 90−95 doi: 10.11924/j.issn.1000-6850.casb15090083
[46] DREW M C. Soil aeration and plant root metabolism[J]. Soil Science, 1992, 154(4): 259−268 doi: 10.1097/00010694-199210000-00002
[47] DREW M C. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 223−250 doi: 10.1146/annurev.arplant.48.1.223
[48] OUYANG Z, TIAN J C, YAN X F, et al. Effects of different concentrations of dissolved oxygen on the growth, photosynthesis, yield and quality of greenhouse tomatoes and changes in soil microorganisms[J]. Agricultural Water Management, 2021, 245: 106579 doi: 10.1016/j.agwat.2020.106579
[49] CAO Y F, ZHANG C S, RONG H W, et al. The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR)[J]. Water Research, 2017, 108: 86−94 doi: 10.1016/j.watres.2016.10.063
[50] ZHOU Y P, BASTIDA F, LIU Y Z, et al. Impacts and mechanisms of nanobubbles level in drip irrigation system on soil fertility, water use efficiency and crop production: the perspective of soil microbial community[J]. Journal of Cleaner Production, 2022, 333: 130050 doi: 10.1016/j.jclepro.2021.130050
[51] 吕家珑, 张一平, 王旭东, 等. 农田生态对土壤肥力的保护效应[J]. 生态学报, 2001, 21(4): 613−616 doi: 10.3321/j.issn:1000-0933.2001.04.017 LYU J L, ZHANG Y P, WANG X D, et al. Protective effect of agri-land ecosystem for soil fertility[J]. Acta Ecologica Sinica, 2001, 21(4): 613−616 doi: 10.3321/j.issn:1000-0933.2001.04.017
[52] 张露, 吴龙龙, 黄晶, 等. 增氧处理对稻田土壤微生物量碳、氮和酶活性的影响[J]. 中国水稻科学, 2022, 36(4): 410−418 doi: 10.16819/j.1001-7216.2022.211107 ZHANG L, WU L L, HUANG J, et al. Effect of aeration treatment on soil microbial biomass carbon, nitrogen and enzyme activities in paddy field[J]. Chinese Journal of Rice Science, 2022, 36(4): 410−418 doi: 10.16819/j.1001-7216.2022.211107
[53] LIU G M, ZHANG X C, WANG X P, et al. Soil enzymes as indicators of saline soil fertility under various soil amendments[J]. Agriculture, Ecosystems & Environment, 2017, 237: 274−279
[54] WANG Y, WANG S, SUN J J, et al. Nanobubbles promote nutrient utilization and plant growth in rice by upregulating nutrient uptake genes and stimulating growth hormone production[J]. Science of the Total Environment, 2021, 800: 149627 doi: 10.1016/j.scitotenv.2021.149627
[55] DU Y D, ZHANG Q, CUI B J, et al. Aerated irrigation improves tomato yield and nitrogen use efficiency while reducing nitrogen application rate[J]. Agricultural Water Management, 2020, 235: 106152 doi: 10.1016/j.agwat.2020.106152
[56] 杨晓东, 陈鲁海, 张立娟, 等. 微纳气泡技术及在农业种植与养殖方面的应用[J]. 净水技术, 2021, 40(2): 118−126 doi: 10.15890/j.cnki.jsjs.2021.02.014 YANG X D, CHEN L H, ZHANG L J, et al. Application of micro-nano bubbles in agricultural planting and aquaculture[J]. Water Purification Technology, 2021, 40(2): 118−126 doi: 10.15890/j.cnki.jsjs.2021.02.014
[57] ZHOU Y P, ZHOU B, XU F P, et al. Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation[J]. Agricultural Water Management, 2019, 223: 105713 doi: 10.1016/j.agwat.2019.105713
[58] 朱艳, 蔡焕杰, 宋利兵, 等. 加气灌溉下气候因子和土壤参数对土壤呼吸的影响[J]. 农业机械学报, 2016, 47(12): 223−232 doi: 10.6041/j.issn.1000-1298.2016.12.027 ZHU Y, CAI H J, SONG L B, et al. Effects of climatic factors and soil parameters on soil respiration under oxygation conditions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 223−232 doi: 10.6041/j.issn.1000-1298.2016.12.027
[59] HAQUE S K M, EBERBACH P L, WESTON L A, et al. Variable impact of rice (Oryza sativa) on soil metal reduction and availability of pore water Fe2+ and Mn2+ throughout the growth period[J]. Chemistry and Ecology, 2016, 32(2): 182−200 doi: 10.1080/02757540.2015.1122000
[60] BOURAZANIS G, ROUSSOS P A, ARGYROKASTRITIS I, et al. Evaluation of the use of treated municipal waste water on the yield, oil quality, free fatty acids’ profile and nutrient levels in olive trees cv Koroneiki, in Greece[J]. Agricultural Water Management, 2016, 163: 1−8 doi: 10.1016/j.agwat.2015.08.023
[61] LI H Z, HU L M, XIA Z R. Impact of groundwater salinity on bioremediation enhanced by micro-nano bubbles[J]. Materials, 2013, 6(9): 3676−3687 doi: 10.3390/ma6093676
[62] 王逍遥, 王天泽, 周云鹏, 等. 微纳米气泡水滴灌对设施甜瓜产量、品质及灌溉水利用效率的影响[J]. 灌溉排水学报, 2021, 40(1): 38−46 doi: 10.13522/j.cnki.ggps.2020073 WANG X Y, WANG T Z, ZHOU Y P, et al. Effects of oxygation with micro-nano air bubbles on yield, fruit quality and irrigation-water use efficiency of muskmelon[J]. Journal of Irrigation and Drainage, 2021, 40(1): 38−46 doi: 10.13522/j.cnki.ggps.2020073
[63] 李波, 张吉旺, 靳立斌, 等. 施钾量对高产夏玉米产量和钾素利用的影响[J]. 植物营养与肥料学报, 2012, 18(4): 832−838 doi: 10.11674/zwyf.2012.12032 LI B, ZHANG J W, JIN L B, et al. Effects of K fertilization on yield, K use efficiency of summer maize under high yield conditions[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(4): 832−838 doi: 10.11674/zwyf.2012.12032
[64] KINRAIDE T B. Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects[J]. Journal of Experimental Botany, 1999, 50(338): 1495−1505 doi: 10.1093/jxb/50.338.1495
[65] LIU Y X, ZHOU Y P, WANG T Z, et al. Micro-nano bubble water oxygation: Synergistically improving irrigation water use efficiency, crop yield and quality[J]. Journal of Cleaner Production, 2019, 222: 835−843 doi: 10.1016/j.jclepro.2019.02.208
[66] 张慧娟, 薛晓莉, 林少航, 等. 微纳米气泡发生技术及其在水培增氧上的应用[J]. 蔬菜, 2019(1): 59−65 doi: 10.3969/j.issn.1001-8336.2019.01.014 ZHANG H J, XUE X L, LIN S H, et al. Micro-nano bubble generating technology and its application in hydroponics with aeration[J]. Vegetables, 2019(1): 59−65 doi: 10.3969/j.issn.1001-8336.2019.01.014
[67] 薛晓莉, 杨文华, 张天柱. 营养液微纳米气泡增氧消毒技术[J]. 农业工程技术, 2017, 37(1): 46−50 XUE X L, YANG W H, ZHANG T Z. Oxygen-increasing and disinfection technology of micro-nano bubbles in nutrient solution[J]. Applied Engineering Technology, 2017, 37(1): 46−50
[68] RICHARD M H. ADM Capital leads $5m round for Moleaer expecting boom in nanobubble tech for indoor ag. AFN, [2019−06−06]. https://agfundernews.com/adm-capital-invests-5m-in-moleaer.
[69] MAHASRI G, SASKIA A, APANDI P S, et al. Development of an aquaculture system using nanobubble technology for the optimation of dissolved oxygen in culture media for Nile tilapia (Oreochromis niloticus)
[J]. IOP Conference Series: Earth and Environmental Science, 2018, 137: 012046 doi: 10.1088/1755-1315/137/1/012046 [70] 杨文华, 薛晓莉, 刘永好, 等. 浅析微纳米气泡曝气技术在水产养殖方面的应用[J]. 中国水产, 2020(3): 63−67 YANG W H, XUE X L, LIU Y H, et al. Application of micro-nano bubble aeration technology in aquaculture[J]. Aquarium, 2020(3): 63−67
[71] 鲍旭腾, 陈庆余, 徐志强, 等. 微纳米气泡技术在渔业水产行业的研究进展及应用综述[J]. 净水技术, 2016(4): 16−22, 51 doi: 10.3969/j.issn.1009-0177.2016.04.003 BAO X T, CHEN Q Y, XU Z Q, et al. Overview of research advances and application of micro-nano bubbles technology in fishery and aquaculture sector[J]. Water Purification Technology, 2016(4): 16−22, 51 doi: 10.3969/j.issn.1009-0177.2016.04.003
[72] EBINA K, SHI K, HIRAO M, et al. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice[J]. PLoS One, 2013, 8(6): e65339 doi: 10.1371/journal.pone.0065339
[73] 高莲花. 纳米气泡对疏水颗粒分散性影响的研究[D]. 上海: 上海师范大学, 2012 GAO L H. Study on the influence of nanobubbles on the dispersion of hydrophobic particles[D]. Shanghai: Shanghai Normal University, 2012
[74] WANG L, MIAO X J, ALI J, et al. Quantification of oxygen nanobubbles in particulate matters and potential applications in remediation of anaerobic environment[J]. ACS Omega, 2018, 3(9): 10624−10630 doi: 10.1021/acsomega.8b00784
[75] 薛晓莉, 张慧娟, 杨文华, 等. 微纳米气泡技术及其在农业领域的应用[J]. 农村科技, 2017(8): 65−68 doi: 10.3969/j.issn.1002-6193.2017.08.033 XUE X L, ZHANG H J, YANG W H, et al. Micro-nano bubble technology and its application in agriculture[J]. Rural Science & Technology, 2017(8): 65−68 doi: 10.3969/j.issn.1002-6193.2017.08.033
[76] FAO. FAOSTAT Emission Shares[DB/OL]. FAO. 2019. https://www.fao.org/faostat/zh/#data/EM
[77] 张露, 陈书融, 吴龙龙, 等. 减施氮肥和增氧灌溉对水稻氮代谢关键酶活性及氮素利用的影响[J]. 农业工程学报, 2022, 38(9): 81−90 doi: 10.11975/j.issn.1002-6819.2022.09.009 ZHANG L, CHEN S R, WU L L, et al. Effects of nitrogen fertilizer reduction and oxygen-enhancing irrigation on the key enzyme activities of nitrogen metabolism and nitrogen utilization in rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 81−90 doi: 10.11975/j.issn.1002-6819.2022.09.009
[78] IQBAL M F, LIU S H, ZHU J W, et al. Limited aerenchyma reduces oxygen diffusion and methane emission in paddy[J]. Journal of Environmental Management, 2021, 279: 111583 doi: 10.1016/j.jenvman.2020.111583
[79] MINAMIKAWA K, TAKAHASHI M, MAKINO T, et al. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy[J]. Environmental Research Letters, 2015, 10(8): 084012 doi: 10.1088/1748-9326/10/8/084012
[80] 葛会敏, 陈璐, 于一帆, 等. 稻田甲烷排放与减排的研究进展[J]. 中国农学通报, 2015, 31(3): 160−166 doi: 10.11924/j.issn.1000-6850.2014-1822 GE H M, CHEN L, YU Y F, et al. Advances in methane emission and emission reduction in rice field[J]. Chinese Agricultural Science Bulletin, 2015, 31(3): 160−166 doi: 10.11924/j.issn.1000-6850.2014-1822
[81] YANG S H, XIAO Y N, SUN X, et al. Biochar improved rice yield and mitigated CH4 and N2O emissions from paddy field under controlled irrigation in the Taihu Lake Region of China[J]. Atmospheric Environment, 2019, 200: 69−77 doi: 10.1016/j.atmosenv.2018.12.003
[82] 雷宏军, 王维一, 刘欢, 等. 增氧灌溉培养条件下土壤N2O及CO2排放规律研究[J]. 华北水利水电大学学报(自然科学版), 2020, 41(3): 84−90 LEI H J, WANG W Y, LIU H, et al. Research on the emission characteristics of N2O and CO2 from incubated soil under the condition of aerated irrigation[J]. Journal of North China University of Water Resources and Electric Power, 2020, 41(3): 84−90
[83] 刘欢. 曝气滴灌条件下设施菜地土壤N2O排放及影响因子研究[D]. 郑州: 华北水利水电大学, 2019 LIU H. Study on N2O emission and its influencing factors in greenhouse vegetable soil under the condition of aeration and drip irrigation[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019
[84] SATPUTE P A, EARTHMAN J C. Hydroxyl ion stabilization of bulk nanobubbles resulting from microbubble shrinkage[J]. Journal of Colloid and Interface Science, 2021, 584: 449−455 doi: 10.1016/j.jcis.2020.09.100
[85] KYZAS G Z, BOMIS G, KOSHELEVA R I, et al. Nanobubbles effect on heavy metal ions adsorption by activated carbon[J]. Chemical Engineering Journal, 2019, 356: 91−97 doi: 10.1016/j.cej.2018.09.019
[86] TANG Y, ZHANG M Y, ZHANG J, et al. Reducing arsenic toxicity using the interfacial oxygen nanobubble technology for sediment remediation[J]. Water Research, 2021, 205: 117657 doi: 10.1016/j.watres.2021.117657
[87] 李莹, 张洲, 杨高明, 等. 湿地植物根系泌氧能力和根表铁膜与根系吸收重金属的关系[J]. 生态环境学报, 2022, 31(8): 1657−1666 LI Y, ZHANG Z, YANG G M, et al. The relationship between the radial oxygen loss and the iron plaque on root surfaces to wetland plants absorb heavy metals[J]. Ecology and Environment Sciences, 2022, 31(8): 1657−1666
[88] ZHANG H G, LYU T, BI L, et al. Combating hypoxia/anoxia at sediment-water interfaces: a preliminary study of oxygen nanobubble modified clay materials[J]. Science of the Total Environment, 2018, 637/638: 550−560 doi: 10.1016/j.scitotenv.2018.04.284
[89] JI X N, LIU C B, PAN G. Interfacial oxygen nanobubbles reduce methylmercury production ability of sediments in eutrophic waters[J]. Ecotoxicology and Environmental Safety, 2020, 188: 109888 doi: 10.1016/j.ecoenv.2019.109888
[90] JI X N, LIU C B, ZHANG M Y, et al. Mitigation of methylmercury production in eutrophic waters by interfacial oxygen nanobubbles[J]. Water Research, 2020, 173: 115563 doi: 10.1016/j.watres.2020.115563
[91] 林建伟, 朱志良, 赵建夫. 曝气复氧对富营养化水体底泥氮磷释放的影响[J]. 生态环境, 2005, 14(6): 812−815 LIN J W, ZHU Z L, ZHAO J F. Effect of aeration on release of nitrogen and phosphorus from sediments in eutrophic waterbody[J]. Ecology and Environment, 2005, 14(6): 812−815
[92] JENKINS K B, MICHELSEN D L, NOVAK J T. Application of oxygen microbubbles for in situ biodegradation of p-xylene-contaminated groundwater in a soil column[J]. Biotechnology Progress, 1993, 9(4): 394−400 doi: 10.1021/bp00022a006
-
期刊类型引用(2)
1. 薛永基,薛艳金,张园圆. 加入合作社能否提高家庭农场绿色全要素生产率——基于苏赣陕892家种植类家庭农场的调查数据. 中国农村经济. 2024(02): 67-89 . 百度学术
2. 周梦晗. 加入合作社对家庭农场收入的影响——基于共生理论的研究. 河北农业大学学报(社会科学版). 2024(04): 104-116 . 百度学术
其他类型引用(11)