Effects of layered soil on the accumulation and leaching of nitrate-nitrogen in shallow groundwater regions
-
摘要: 农业过量施肥造成包气带硝态氮(NO3−-N)累积与地下水NO3−-N污染加剧, 明确非均质层状土壤结构对NO3−-N迁移过程的影响对防止地下水硝酸盐污染具有重要意义。华北低平原区非均质层状土壤结构分布广泛, 地下水埋藏浅, NO3−-N淋滤路径短, 是地下水污染的敏感区域。本研究选择位于河北省沧州市南皮县的3个非均质层状土壤结构剖面(P1: 含多个薄黏壤土夹层的无施肥草地; P2: 含多个薄黏壤土夹层的农田; P3: 含140 cm厚黏壤土夹层的农田)和1个对照剖面(P4: 相对均质的粉壤土农田), 研究层状土壤结构以及农业施肥对包气带NO3−-N累积与淋失规律的影响。结果表明, NO3−-N累积分布层位与黏壤土层深度和厚度相关, 3个非均质层状土壤剖面NO3−-N含量均高于相对均质粉壤土剖面, 且非均质农田中P3剖面NO3−-N含量峰值(238 mg∙L−1)和累积层厚度(100~250 cm)均最大。2018年雨季8—9月含黏壤土夹层剖面NO3−-N淋失量: P3 (319.2 kg∙hm−2) <P1 (383.9 kg∙hm−2)<P2 (554.7 kg∙hm−2), 说明在雨季含厚黏壤土夹层剖面对包气带NO3−-N淋失的阻控效果显著优于含多个薄黏壤土夹层的剖面(P<0.05)。受层状沉积结构和地下水浅埋深的影响, P2浅层地下水NO3−-N浓度的超标率与平均增长速率(93%和2.14 mg∙L−1∙d−1)显著高于P4 (21%和0.53 mg∙ L−1∙d−1) (P<0.05)。研究明确了层状土壤剖面对NO3−-N运移具有阻滞作用且黏壤土夹层越厚阻滞作用越强, 地下水NO3−-N浓度受包气带层状土壤结构和地下水埋深二者的综合控制。研究结果可为地下水浅埋区地下水硝酸盐污染防治提供科学依据。Abstract: Excessive nitrogen application in agriculture causes the accumulation of nitrate-nitrogen (NO3−-N ) in the vadose zone and intensifies nitrate pollution in groundwater. Heterogeneous layered soil is relatively common in nature and plays an important role in controlling pollutants entering groundwater from the surface. Heterogeneous layered soil exists in the low plain area of North China which is sensitive to groundwater pollution owing to its shallow groundwater burial and short nitrate leaching path. Thus, it is important to clarify the influence of the heterogeneous layered soil structure on the NO3−-N migration process to prevent nitrate pollution in groundwater. In this study, four typical soil profiles, heterogeneous and relatively homogeneous, and two land use types were selected in Nanpi County, Hebei Province. The four typical soil profiles included three heterogeneous layered soils (P1, P2, P3), one relatively homogeneous profile (P4), and two land uses, which were unfertilized grassland with multiple 30 cm thin clay soil interlayers (P1), fertilizing farmland with multiple 30 cm thin clay soil interlayers (P2), fertilizing farmland with 140 cm thick clay soil interlayers (P3), and fertilizing farmland with relatively homogeneous silty loam (P4). The effect of layered soil on the accumulation and leaching of NO3−-N was studied by analyzing the relationship between the physical and chemical properties of different layered soil profiles and NO3−-N content in soil profiles and groundwater. The results showed that the vertical distribution of NO3−-N was affected by the depth and thickness of the clay loam soil layer. The NO3−-N contents in the three heterogeneous layered soil profiles were higher than that in the homogeneous profile with silt loam. In the three heterogeneous layered soil profiles, P3 with a 140-cm clay soil interlayer, its’ peak content of NO3−-N (238 mg·L–1) and the accumulation layer thickness (100–250 cm) were the highest. In the rainy season of 2018 (from August to September), the leaching amounts of NO3−-N in the heterogeneous profiles were P3 (319.2 kg·hm–2) < P1 (383.9 kg·hm–2) < P2 (554.7 kg·hm–2), which indicated that the control effect of the layered soil profile with a thick clay loam interlayer on NO3−-N leaching was significantly better than that with multiple thin clay loam interlayers (P<0.05). NO3−-N in shallow groundwater was affected by the soil deposition structure of the aquifer. The over-limit ratio and average increasing rate under a heterogeneous deposition profile with clay loam interlayers (P2, 93% and 2.14 mg·L–1·d–1) were significantly higher than those of the homogeneous deposition profile with silt loam (P4, 21% and 0.53 mg·L–1·d–1). This study verified that layered soil profiles have a blocking effect on soil water and NO3−-N migration; and thicker the clay loam interlayer, the stronger is the blocking effect of soil water and NO3−-N migration. The interaction of soil water and solution between the vadose zone and groundwater is frequent in shallow groundwater regions; thus, the NO3−-N concentration in groundwater is controlled by the structure of the layered soil in the vadose zone and the depth of groundwater. These results provide a scientific basis for the prevention and control of nitrate pollution in shallow groundwater regions.
-
-
-
[1] 陈肖如, 李晓欣, 胡春胜, 等. 华北平原农田关键带硝态氮存储与淋失量研究[J]. 中国生态农业学报(中英文), 2021, 29(9): 1546−1557 CHEN X R, LI X X, HU C S, et al. Nitrate storage and leaching in the critical zone of farmland in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1546−1557 [2] PADILLA F M, GALLARDO M, MANZANO-AGUGLIARO F. Global trends in nitrate leaching research in the 1960−2017 period[J]. The Science of the Total Environment, 2018, 643: 400−413 doi: 10.1016/j.scitotenv.2018.06.215
[3] HANSEN B, THORLING L, SCHULLEHNER J, et al. Groundwater nitrate response to sustainable nitrogen management[J]. Scientific Reports, 2017, 7(1): 8566 doi: 10.1038/s41598-017-07147-2
[4] WU H Y, SONG X D, LIU F, et al. Regolith property controls on nitrate accumulation in a typical vadose zone in subtropical China[J]. CATENA, 2020, 192: 104589 doi: 10.1016/j.catena.2020.104589
[5] 牛新胜, 张翀, 巨晓棠. 华北潮土冬小麦-夏玉米轮作包气带氮素淋溶机制[J]. 中国生态农业学报(中英文), 2021, 29(1): 53−65 NIU X S, ZHANG C, JU X T. Mechanism of nitrogen leaching in fluvo-aquic soil and deep vadose zone in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2021, 29(1): 53−65 [6] JU X T, XING G X, CHEN X P. Correction for Ju et al., Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(19): 8077 doi: 10.1073/pnas.0902655106
[7] 刘宏斌, 李志宏, 张云贵, 等. 北京市农田土壤硝态氮的分布与累积特征[J]. 中国农业科学, 2004, 37(5): 692−698 LIU H B, LI Z H, ZHANG Y G, et al. Characteristics of nitrate distribution and accumulation in soil profiles under main agro-land use types in Beijing[J]. Scientia Agricultura Sinica, 2004, 37(5): 692−698 doi: 10.3321/j.issn:0578-1752.2004.05.012 [8] 姜慧敏, 张建峰, 杨俊诚, 等. 施氮模式对番茄氮素吸收利用及土壤硝态氮累积的影响[J]. 农业环境科学学报, 2009, 28(12): 2623−2630 JIANG H M, ZHANG J F, YANG J C, et al. Effects of models of N application on greenhouse tomato N uptake, utilization and soil NO3−-N accumulation[J]. Journal of Agro-Environment Science, 2009, 28(12): 2623−2630 doi: 10.3321/j.issn:1672-2043.2009.12.029 [9] 赵其国, 滕应. 国际土壤科学研究的新进展[J]. 土壤, 2013, 45(1): 1−7 ZHAO Q G, TENG Y. New advances in international soil science[J]. Soils, 2013, 45(1): 1−7 doi: 10.3969/j.issn.0253-9829.2013.01.001 [10] 王全九, 邵明安, 郑纪勇. 土壤中水分运动与溶质迁移[M]. 北京: 中国水利水电出版社, 2007 WANG Q J, SHAO M A, ZHENG J Y. Soil Water Movement and Solute Migration[M]. Beijing: China Water Power Press, 2007
[11] 涂安国. 层状土壤水分入渗与溶质运移研究进展[J]. 江西农业大学学报, 2017, 39(4): 818−825 TU A G. Advances in water infiltration and solute transport in layered soil[J]. Acta Agriculturae Universitatis Jiangxiensis, 2017, 39(4): 818−825 doi: 10.13836/j.jjau.2017106 [12] CHEN S, MAO X M, BARRY D A, et al. Model of crop growth, water flow, and solute transport in layered soil[J]. Agricultural Water Management, 2019, 221: 160−174 doi: 10.1016/j.agwat.2019.04.031
[13] GROH J, STUMPP C, LÜCKE A, et al. Inverse estimation of soil hydraulic and transport parameters of layered soils from water stable isotope and lysimeter data[J]. Vadose Zone Journal, 2018, 17(1): 170168 doi: 10.2136/vzj2017.09.0168
[14] ORTIZ A C, JIN L X. Chemical and hydrological controls on salt accumulation in irrigated soils of southwestern US[J]. Geoderma, 2021, 391: 114976 doi: 10.1016/j.geoderma.2021.114976
[15] LU J, BAI Z H, VELTHOF G L, et al. Accumulation and leaching of nitrate in soils in wheat-maize production in China[J]. Agricultural Water Management, 2019, 212: 407−415 doi: 10.1016/j.agwat.2018.08.039
[16] 张学科, 白俊英, 严海霞. 灌水量与施氮量对不同类型土壤中硝酸盐运移的影响[J]. 节水灌溉, 2020(2): 83−87 ZHANG X K, BAI J Y, YAN H X. Effects of irrigation and nitrogen application on nitrate transport in different soils[J]. Water Saving Irrigation, 2020(2): 83−87 doi: 10.3969/j.issn.1007-4929.2020.02.016 [17] 李久生, 杨风艳, 栗岩峰. 层状土壤质地对地下滴灌水氮分布的影响[J]. 农业工程学报, 2009, 25(7): 25−31 LI J S, YANG F Y, LI Y F. Water and nitrogen distribution under subsurface drip fertigation as affected by layered-textural soils[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(7): 25−31 doi: 10.3969/j.issn.1002-6819.2009.07.005 [18] ARAUZO M, VALLADOLID M. Drainage and N-leaching in alluvial soils under agricultural land uses: implications for the implementation of the EU Nitrates Directive[J]. Agriculture, Ecosystems & Environment, 2013, 179: 94−107
[19] LIU B X, WANG S Q, KONG X L, et al. Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain[J]. Agricultural Water Management, 2019, 211: 98−110 doi: 10.1016/j.agwat.2018.09.030
[20] 黄金廷, 宋歌, 蒲芳, 等. 层状包气带“三氮”污染物迁移转化原位实验研究[J]. 生态环境学报, 2022, 31(6): 1208−1214 HUANG J T, SONG G, PU F, et al. Migration and transformation of “three nitrogen” pollutants in multilayer unsaturated zone: an in situ experiment[J]. Ecology and Environmental Sciences, 2022, 31(6): 1208−1214 doi: 10.16258/j.cnki.1674-5906.2022.06.017 [21] 田路遥, 王仕琴, 魏守才, 等. 层状包气带黏土层厚度对硝态氮迁移的影响[J]. 农业工程学报, 2020, 36(14): 55−62 TIAN L Y, WANG S Q, WEI S C, et al. Effect of the thickness of clay layer in the layered vadose zone on nitrate nitrogen migration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(14): 55−62 doi: 10.11975/j.issn.1002-6819.2020.14.007 [22] HUANG M B, BARBOUR S L, ELSHORBAGY A, et al. Infiltration and drainage processes in multi-layered coarse soils[J]. Canadian Journal of Soil Science, 2015, 91(2): 185–197
[23] 王电龙, 张光辉. 不同气候条件下华北粮食主产区地下水保障能力时空特征与机制[J]. 地球学报, 2017, 38(S1): 47−50 WANG D L, ZHANG G H. Groundwater ensure capacity spatial-temporal characteristics and mechanism in main grain producing areas of North China Plain under different climatic conditions[J]. Acta Geoscientica Sinica, 2017, 38(S1): 47−50 doi: 10.3975/cagsb.2017.s1.13 [24] 夏梦洁, 陈竹君, 刘占军, 等. 黄土高原旱地夏季休闲期15N标记硝态氮的去向[J]. 土壤学报, 2017, 54(5): 1230−1239 XIA M J, CHEN Z J, LIU Z J, et al. Fate of 15N labeled nitrate in dryland under summer fallow on the Loess Plateau[J]. Acta Pedologica Sinica, 2017, 54(5): 1230−1239 [25] LU B Q, LIU X T, DONG P Y, et al. Quantifying fate and transport of nitrate in saturated soil systems using fractional derivative model[J]. Applied Mathematical Modelling, 2020, 81: 279−295 doi: 10.1016/j.apm.2019.12.005
[26] BAI Z H, LU J, ZHAO H, et al. Designing vulnerable zones of nitrogen and phosphorus transfers to control water pollution in China[J]. Environmental Science & Technology, 2018, 52(16): 8987−8988
[27] 王仕琴, 郑文波, 孔晓乐. 华北农区浅层地下水硝酸盐分布特征及其空间差异性[J]. 中国生态农业学报, 2018, 26(10): 1476−1482 WANG S Q, ZHENG W B, KONG X L. Spatial distribution characteristics of nitrate in shallow groundwater of the agricultural area of the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1476−1482 [28] 周在明. 环渤海低平原土壤盐分空间变异性及影响机制研究[D]. 北京: 中国地质科学院, 2012 ZHOU Z M. Spatial variability and its effect mechanism of soil salinity in the low plain around the Bohai Sea[D]. Beijing: Chinese Academy of Geological Sciences, 2012
[29] 孙宏勇, 刘小京, 邵立威, 等. 不同种植模式对河北低平原区域地下水平衡和水分经济利用效率等的影响[J]. 中国农学通报, 2014, 30(32): 214−220 SUN H Y, LIU X J, SHAO L W, et al. Effects of different cropping pattern on ground water and economic water use efficiency in the Hebei low plain[J]. Chinese Agricultural Science Bulletin, 2014, 30(32): 214−220 doi: 10.11924/j.issn.1000-6850.2014-0532 [30] ANGELOPOULOS K, SPOLIOPOULOS I C, MANDOULAKI A, et al. Groundwater nitrate pollution in northern part of Achaia Prefecture[J]. Desalination, 2009, 248(1–3): 852–858
[31] 商放泽, 杨培岭, 任树梅. 水氮量对层状包气带土壤氮素迁移累积的影响分析[J]. 农业机械学报, 2013(10): 117−126 SHANG F Z, YANG P L, REN S M. Effects of nitrogen fertilizer application and irrigation level on soil nitrogen leaching and accumulation in deep soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013(10): 117−126 doi: 10.6041/j.issn.1000-1298.2013.10.019 [32] 吉恒莹, 邵明安, 贾小旭. 水质对层状土壤入渗过程的影响[J]. 农业机械学报, 2016, 47(7): 183−188 JI H Y, SHAO M A, JIA X X, et al. Effects of water quality on infiltration of layered soils[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 183−188 doi: 10.6041/j.issn.1000-1298.2016.07.025 [33] 和玉璞, 张展羽, 徐俊增, 等. 控制地下水位减少节水灌溉稻田氮素淋失[J]. 农业工程学报, 2014, 30(23): 121−127 HE Y P, ZHANG Z Y, XU J Z, et al. Reducing nitrogen leaching losses from paddy field under water-saving irrigation by water table control[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(23): 121−127 doi: 10.3969/j.issn.1002-6819.2014.23.016 [34] ZHENG W B, WANG S Q, TAN K D, et al. Nitrate accumulation and leaching potential is controlled by land-use and extreme precipitation in a headwater catchment in the North China Plain[J]. Science of the Total Environment, 2019, 707(10): 136−168
[35] 赵宇龙, 李明思, 陈绍民, 等. 滴灌条件下层状土壤滞盐作用的试验研究[J]. 灌溉排水学报, 2015, 34(6): 29−34 ZHAO Y L, LI S M, CHEN M S, et al. Retardation effect of layered soil to salt transfer under drip irrigation[J]. Journal of Irrigation and Drainage, 2015, 34(6): 29−34 doi: 10.13522/j.cnki.ggps.2015.06.007 [36] 邹浔. 地下水位波动带氮素迁移转化研究[D]. 郑州: 华北水利水电大学, 2022 ZOU X. Study on nitrogen migration and transformation in groundwater fluctuation zone[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2022
[37] 苏永中, 杨荣, 杨晓, 等. 不同土壤条件下节水灌溉对棉花产量和灌溉水生产力的影响[J]. 土壤学报, 2014, 51(6): 1192−1201 SU Y Z, YANG R, YANG X, et al. Effects of water-saving irrigation on cotton yield and irrigation water productivity relative to soil conditions[J]. Acta Pedologica Sinica, 2014, 51(6): 1192−1201 [38] YONG L, JIRKA S, ZHANG Z T, et al. Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D[J]. Agricultural Water Management, 2015, 148(C): 213−222
[39] LIU Y Y, LIU C X, NELSON W C, et al. Effect of water chemistry and hydrodynamics on nitrogen transformation activity and microbial community functional potential in hyporheic zone sediment columns[J]. Environmental Science & Technology, 2017, 51(9): 4877−4886
-
期刊类型引用(56)
1. 刘晓红,刘咏良,刘志琴,蔡红明. 不同播期的小麦生长发育及其产量的研究. 基层农技推广. 2025(01): 25-30 . 百度学术
2. 陶媛,何亚玲,张倩,孙倩,刘永亮,李前荣. 调整播期对宁夏春小麦产量与品质性状的影响. 中国农学通报. 2025(06): 10-21 . 百度学术
3. 韩同进,郭灿,张修引,连少英,刘红杰,任德超,倪永静,牛吉山,史国礼. 不同播期对豫东地区小麦产量性状的影响. 陕西农业科学. 2024(05): 43-47 . 百度学术
4. 张建喜,李广,王钰煐,张武清. 青贮玉米光合特性及产量对全膜覆盖不同滴灌量的响应. 节水灌溉. 2024(07): 33-43+52 . 百度学术
5. 宋贤明,侯献飞,顾元国,苗昊翠,李强,郭美丽,曾幼玲,贾东海. 种植密度和行距对膜下滴灌红花生长发育及产量的影响. 新疆农业科学. 2024(04): 804-813 . 百度学术
6. 吕丽华,吴立勇,李谦,刘朝芳,姚艳荣,贾秀领. 播期对小麦产量形成及株型结构的影响. 华北农学报. 2024(S1): 53-62 . 百度学术
7. 张子豪,李想成,吴昊天,付鹏浩,高春保,张运波,邹娟. 江汉平原气候条件下小麦适宜播量研究. 中国农学通报. 2023(07): 1-9 . 百度学术
8. 耿强,张亮亮,王亮明,杨群慧,刘淑会,陈新宏,武军. 附加华山新麦草不同Ns染色体对小麦耐盐性的影响及其生理机制分析. 麦类作物学报. 2023(09): 1155-1164 . 百度学术
9. 张晶,赵超,张定一,党建友,裴雪霞,张慧芋. 春季追肥方式对不同苗情小麦生长发育、产量及品质的影响. 江苏农业科学. 2023(17): 75-80 . 百度学术
10. 赵凯,黄玲,冯维营,邵敏敏,王福玉,陈贵菊,张玉丹,杨本洲,孙雷明,闫璐,王霖. 播期和播量对冬小麦生长发育和产量的影响. 中国农学通报. 2023(32): 1-7 . 百度学术
11. 黄伟. 运东地区旱作小麦品种比较研究. 沧州师范学院学报. 2022(01): 115-118 . 百度学术
12. 张紫森,李建峰,王强,央吉,索拉,旦吉措姆,汤鹏程. 播量与灌水方式对拉萨河谷燕麦与箭筈豌豆混播产量的影响分析. 广东水利水电. 2022(06): 100-104 . 百度学术
13. 陈猛,梁雪齐,李玲,张丽,陈国栋,吴全忠,翟云龙. 种植密度对匀播冬小麦籽粒灌浆及产量的影响. 新疆农业科学. 2022(06): 1338-1346 . 百度学术
14. 苏在兴,王波,黄忠勤,丁震乾,徐家安,李小珊,常勇. 播期·密度和追施缓释肥对徐麦368产量及群体结构的影响. 安徽农业科学. 2022(15): 29-33+54 . 百度学术
15. 易媛,马红勃,王静,张会云,赵娜,朱雪成,张娜,刘东涛. 播期和播量对不同穗型小麦品种群体性状和产量的影响. 河南农业科学. 2022(07): 13-21 . 百度学术
16. 冯维营,杨本洲,张玉丹,孙雷明,王福玉,王霖. 不同播期和播量对济宁17号小麦品种产量的影响. 农业技术与装备. 2022(08): 24-25+28 . 百度学术
17. 易媛,张会云,刘东涛,马红勃,刘立伟,赵娜,冯国华. 不同播期下春季追肥方式对冬小麦产量及群体性状的影响. 中国土壤与肥料. 2022(08): 158-164 . 百度学术
18. 范家霖,张福彦,程仲杰,王嘉欢,齐红志,陈晓杰,张建伟,杨保安. 不同种植模式对小麦新品种豫丰11生长发育及产量的影响. 东北农业科学. 2022(06): 14-19 . 百度学术
19. 杨磊,孙敏,林文,任爱霞,丁鹏程,余少波,高志强. 群体结构对旱地小麦土壤耗水与物质生产形成的影响. 生态学杂志. 2021(05): 1356-1365 . 百度学术
20. 陈猛,梁雪齐,李玲,张丽,张锋,陈国栋,吴全忠,翟云龙. 种植密度对匀播冬小麦干物质积累、转运及产量的影响. 麦类作物学报. 2021(02): 238-244 . 百度学术
21. 牛海燕,刘元元,孔令强,吕鹏,刘树震,冯波. 适当晚播结合增加播量对小麦产量和抗倒性的影响. 山东农业科学. 2021(09): 19-26 . 百度学术
22. 白露,李乐,连延浩,王志强,辛泽毓,林同保,任永哲. 播期对不同基因型小麦生育期、产量和品质性状的影响. 生态学杂志. 2021(10): 3135-3146 . 百度学术
23. 王玉玲,李新华,乔红,欧行奇,何鸿举,郭景丽. 不同播期下小麦品种百农207越冬期生理生化特性. 海南师范大学学报(自然科学版). 2021(03): 308-314 . 百度学术
24. 张子豪,李想成,吴昊天,付鹏浩,张运波,高春保,邹娟. 湖北省弱筋小麦适宜播种量研究——以鄂麦580为例. 湖北农业科学. 2021(S2): 77-81 . 百度学术
25. 史晓芳,逯腊虎,张婷,张伟,袁凯,杨斌,仇松英. 播期和播量对冬小麦‘临远8号’产量形成的影响. 中国农学通报. 2020(12): 10-17 . 百度学术
26. 孔令英,赵俊晔,骆兰平,石玉,于振文. 宽幅播种条件下基本苗密度对小麦耗水特性和籽粒产量的影响. 山东农业科学. 2020(04): 27-31 . 百度学术
27. 刘为健,杨文稼,王盈盈,王仕稳,邓西平,殷俐娜. 2个小麦品种水分利用效率的差异及其与深层水分利用的关系. 水土保持学报. 2020(03): 245-251+258 . 百度学术
28. 李晓爽,党红凯,宋妮,申孝军,高阳,孙景生. 肥沙混施对盐碱地冬小麦耗水特性与生长的影响. 农业机械学报. 2020(05): 272-284 . 百度学术
29. 高倩,孙明清,刘强,李光,刘鑫翠,安浩军,常苑苑,梁玉峰,张广辉. 河北山前平原区冬小麦高产的适宜播量研究. 河北农业科学. 2020(02): 27-30 . 百度学术
30. 赵元凤,张瑛,孔祥英,秦吉洋,浦田惠子,张显兵. 江苏省仪征地区不同品种绿肥油菜播期试验. 天津农业科学. 2020(09): 64-68 . 百度学术
31. 毛海艳,冯国华,易媛,李振宏. 播期、播量对“徐麦33”等冬小麦产量和群体质量的影响. 上海农业科技. 2020(06): 70-73+76 . 百度学术
32. 司旭阳,贾哓玮,张洪艳,贾羊羊,田士军,张科,潘延云. 中国春小麦肌醇磷脂依赖的磷脂酶C基因的全基因组鉴定及表达分析. 中国农业科学. 2020(24): 4969-5036 . 百度学术
33. 刘开振,孙华林,李刘龙,杨蕊,卫茗梅,王小燕. 江汉平原气候条件下不同播期小麦产量及群体效应研究. 西南农业学报. 2020(11): 2448-2459 . 百度学术
34. 王玉玲,何鸿举,乔红,欧行奇. 小麦新品种百农207适宜播期播量组合研究. 河南科技学院学报(自然科学版). 2019(01): 6-10 . 百度学术
35. 孔德真,聂迎彬,徐红军,穆培源,崔凤娟,田笑明,桑伟. 播期对小麦生态型间杂种优势的影响. 生物技术通报. 2019(02): 23-28 . 百度学术
36. 王兰,王良,刘肖瑜,李学国,焦进宇,张豆豆,陈国庆. 不同年型下冬小麦适宜播期及密度研究. 山东农业科学. 2019(03): 29-35 . 百度学术
37. 刘添,王楠楠,李亚静,李翠平,徐东娜,张敏,蔡瑞国. 播期推迟对冀东地区强筋小麦产量构成和籽粒蛋白质质量分数的影响. 河北科技师范学院学报. 2019(01): 20-25 . 百度学术
38. 王亚凯,刘孟雨,董宝娣,乔匀周,张明明,杨红,靳乐乐. 干旱对太行山山前平原雨养农田产量影响的模拟研究. 干旱地区农业研究. 2019(02): 185-194 . 百度学术
39. 高德荣,王慧,刘巧,朱冬梅,张晓,吕国锋,张晓祥,江伟,李曼. 迟播早熟高产小麦新品种的培育. 中国农业科学. 2019(14): 2379-2390 . 百度学术
40. 尹璐,高志强,孙敏,任爱霞,林文,薛建福,曹碧芸. 膜际条播和播量对旱地冬小麦土壤水分及产量的影响. 山西农业大学学报(自然科学版). 2019(06): 19-25 . 百度学术
41. 李晓航,马华平. 不同播期和播量对冬小麦品种‘新麦29’产量形成的影响. 中国农学通报. 2019(29): 14-19 . 百度学术
42. 田欣,孙敏,高志强,张娟,林文,薛建福,杨珍平,莫非. 播期播量对旱地小麦土壤水分消耗和植株氮素运转的影响. 应用生态学报. 2019(10): 3443-3451 . 百度学术
43. 田昌玉,温延臣,李宝国,林治安. 山东小麦灌水和播期对高产节水的影响. 中国农学通报. 2019(36): 16-20 . 百度学术
44. 高燕,彭涛,成东梅,赵伟峰,于金林,陈坤. 不同播期和播量对济研麦7号小麦产量及产量结构的影响. 现代农业科技. 2019(23): 18+23 . 百度学术
45. 王慧,朱冬梅,陆成彬,高致富,高德荣,吴迪,吴宏亚. 不同小麦品种群体结构和产量形成对迟播的响应. 扬州大学学报(农业与生命科学版). 2019(06): 35-40 . 百度学术
46. 刘小丽,王凯,杨珍平,薛建福,杜天庆,宗毓铮,郝兴宇,孙敏,高志强. 播期与播种方式的不同配套对一年两作区旱地冬小麦农艺性状及产量的影响. 华北农学报. 2018(02): 232-238 . 百度学术
47. 邵庆勤,闫素辉,张从宇,任兰天,许峰,李文阳. 密度对沿淮晚播小麦产量形成及品质性状的影响. 中国生态农业学报. 2018(09): 1366-1377 . 百度学术
48. 苗崔钰,孙晓辉,刘翠玲,辛庆国,李林志,陈永娜,严美玲,于经川,姜鸿明. 鲁东地区冬小麦水分利用效率及品质的研究. 中国农学通报. 2018(15): 6-10 . 百度学术
49. 董秀春,韩伟,杨洪宾. 播量对冬小麦干物质积累、小穗结实性和产量的影响. 山东农业科学. 2018(09): 31-35 . 百度学术
50. 董宝娣,刘会灵,王亚凯,乔匀周,张明明,杨红,靳乐乐,刘孟雨. 作物高效用水生理生态调控机制研究. 中国生态农业学报. 2018(10): 1465-1475 . 百度学术
51. 高倩,孙明清,范存志,侯大山,张广辉,刘强,李娟茹,李月华,柴玉博,李志合. 冀中南冬小麦播量对产量及产量构成的影响. 安徽农学通报. 2018(21): 64-65 . 百度学术
52. 高培芳,金永贵,孙敏,梁艳妃. 休闲期深松及播期对旱地小麦干物质累积特性与产量的影响. 华北农学报. 2018(04): 160-166 . 百度学术
53. 方保停,李向东,邵运辉,王汉芳,张德奇,岳俊芹,杨程,秦峰. 播种期对小麦新品种郑麦379生理特性和产量的影响. 江苏农业科学. 2018(22): 60-63 . 百度学术
54. 胡敏,周江霞,李小坤,王振,游秋香,鲁剑巍. 施肥量对油菜绿肥生物量及养分累积的影响. 湖北农业科学. 2017(11): 2028-2030 . 百度学术
55. 薛玲珠,孙敏,高志强,任爱霞,雷妙妙,杨珍平. 播期播量对旱地小麦土壤水分、干物质积累及产量的影响. 山西农业大学学报(自然科学版). 2017(08): 547-552+556 . 百度学术
56. 薛玲珠,孙敏,高志强,王培如,任爱霞,雷妙妙,杨珍平. 深松蓄水增量播种对旱地小麦植株氮素吸收利用、产量及蛋白质含量的影响. 中国农业科学. 2017(13): 2451-2462 . 百度学术
其他类型引用(32)