环境规制视角下农业基础设施对粮食生态全要素生产率的影响

Impacts of agricultural infrastructure on ecology total factor productivity of grain from the perspective of environmental regulation

  • 摘要: 保护生态环境前提下实现粮食增产是保障我国粮食安全可持续发展的重要前提。为探寻提升我国粮食生态全要素生产率的有效策略, 本研究在考虑粮食种植生态价值基础上, 运用Global-Malmquist-Luenberger (GML)指数测算出粮食生态全要素生产率, 以农业基础设施为切入点实证探究粮食生态全要素生产率的提升路径。结果表明: 1)农业基础设施各维度都能有效提高粮食生态全要素生产率, 但存在时间上的滞后性; 其中, 农业水利设施对其的影响呈“倒U型”关系。2)与全样本回归结果不同的是, 分南北样本回归结果显示南方地区农业水利设施及其滞后项对粮食生态全要素生产率不具有显著影响, 且农业电力设施及滞后项对其具有抑制作用; 分产区样本回归结果显示粮食主产区农业交通设施及其滞后项不能显著影响粮食生态全要素生产率, 同时, 非粮食主产区农业电力设施及滞后项对其也不具有显著影响。3)从调节作用检验结果看, 环境规制在农田水利设施对粮食生态全要素生产率的影响中具有正向调节作用。进一步研究发现, 分组调节回归结果中相对于粮食生态全要素生产率较高的区域, 在粮食生态全要素生产率较低区域内, 环境规制能够发挥更强的正向调节作用。据此, 建议政府应超前规划布局农业基础设施建设投资体系, 制定并宣传科学、合理、弹性的环境法规制度。

     

    Abstract: Increasing grain production while protecting the environment is an important prerequisite for ensuring sustainable development and food security of China. To explore effective strategies to improve the ecology total factor productivity of grain (ETFP) in China, this study used the Global-Malmquist-Luenberger (GML) index to measure the ETFP based on the ecological value of grain production. Based on the theory of public goods, we empirically explored the path to improve ETFP with agricultural infrastructure as the point of penetration. We found: (1) The ecological value of grain production per hectare in 30 provinces (cities, autonomous regions) of China increased from 1993 to 2019. The average ETFP during 1993–2019 generally showed a fluctuating upward trend. Among them, the ETFP of the Middle and Lower Reaches of the Yangtze River and the Northeast China were higher than the national average in most years. (2) Agricultural water conservancy facilities, agricultural electric power facilities, and agricultural transportation facilities can effectively improve ETFP, but there was a lag in time. Among these factors, the impact of agricultural water conservancy facilities on ETFP showed an “inverted U” shape. This finding suggests that there is an optimum value for the provision of agricultural field water conservancy facilities in the process of ecological food production. (3) In contrast to the full-sample regression results, the regression results of samples of northern and southern regions showed that the agricultural water conservancy facilities and their lag terms had no significant impact on ETFP, and the agricultural electric power facilities and their lag terms had a reducing effect on ETFP in southern region. The results of the sample regression showed that agricultural electric facilities and their lag items in main grain-producing areas had no significant impact on ETFP, while agricultural electric power facilities and their lag items in non-main grain-producing areas had no significant impact on ETFP. (4) The results of the moderating effect test indicated that environmental regulation had a positive moderating effect on ETFP. Further study found that, in the grouping regulation regression results, environmental regulation could play a stronger positive regulatory role in the region with a lower ETFP than in the region with a higher ETFP. Therefore, on the basis of this research, we recommend that the government should plan and invest in agricultural infrastructure construction in advance and formulate and publicize scientific, reasonable, and flexible environmental laws and regulations. This study innovatively incorporates the ecological value of grain production into the measurement of ETFP. While broadening the research boundary of agricultural infrastructure construction planning, it provides a basis for improving the ETFP in China.

     

/

返回文章
返回