稻虾共作模式碳足迹评价的敏感性和不确定性分析

蒋榕, 徐强, 李京咏, 戴林秀, 敖弟彩, 窦志, 高辉

蒋榕, 徐强, 李京咏, 戴林秀, 敖弟彩, 窦志, 高辉. 稻虾共作模式碳足迹评价的敏感性和不确定性分析[J]. 中国生态农业学报 (中英文), 2022, 30(10): 1577−1587. DOI: 10.12357/cjea.20220188
引用本文: 蒋榕, 徐强, 李京咏, 戴林秀, 敖弟彩, 窦志, 高辉. 稻虾共作模式碳足迹评价的敏感性和不确定性分析[J]. 中国生态农业学报 (中英文), 2022, 30(10): 1577−1587. DOI: 10.12357/cjea.20220188
JIANG R, XU Q, LI J Y, DAI L X, AO D C, DOU Z, GAO H. Sensitivity and uncertainty analysis of carbon footprint evaluation: A case study of rice-crayfish coculture in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1577−1587. DOI: 10.12357/cjea.20220188
Citation: JIANG R, XU Q, LI J Y, DAI L X, AO D C, DOU Z, GAO H. Sensitivity and uncertainty analysis of carbon footprint evaluation: A case study of rice-crayfish coculture in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1577−1587. DOI: 10.12357/cjea.20220188
蒋榕, 徐强, 李京咏, 戴林秀, 敖弟彩, 窦志, 高辉. 稻虾共作模式碳足迹评价的敏感性和不确定性分析[J]. 中国生态农业学报 (中英文), 2022, 30(10): 1577−1587. CSTR: 32371.14.cjea.20220188
引用本文: 蒋榕, 徐强, 李京咏, 戴林秀, 敖弟彩, 窦志, 高辉. 稻虾共作模式碳足迹评价的敏感性和不确定性分析[J]. 中国生态农业学报 (中英文), 2022, 30(10): 1577−1587. CSTR: 32371.14.cjea.20220188
JIANG R, XU Q, LI J Y, DAI L X, AO D C, DOU Z, GAO H. Sensitivity and uncertainty analysis of carbon footprint evaluation: A case study of rice-crayfish coculture in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1577−1587. CSTR: 32371.14.cjea.20220188
Citation: JIANG R, XU Q, LI J Y, DAI L X, AO D C, DOU Z, GAO H. Sensitivity and uncertainty analysis of carbon footprint evaluation: A case study of rice-crayfish coculture in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1577−1587. CSTR: 32371.14.cjea.20220188

稻虾共作模式碳足迹评价的敏感性和不确定性分析

基金项目: 江苏省自然科学基金项目(BK20210791)、中国工程院战略研究与咨询项目(2021-XZ-30)、扬州大学大学生科技创新基金项目(X20220604)和江苏高校优势学科建设工程项目(PAPD)资助
详细信息
    作者简介:

    蒋榕, 主要研究方向为农业碳减排技术。E-mail: 2655469029@qq.com

    通讯作者:

    徐强, 主要研究方向为稻田生态与生理、稻田综合种养绿色高效生产技术。E-mail: qiangxu@yzu.edu.cn

  • 中图分类号: F326.1; F326.4; X24; X82

Sensitivity and uncertainty analysis of carbon footprint evaluation: A case study of rice-crayfish coculture in China

Funds: This work was supported by the Natural Science Foundation of Jiangsu Province (BK20210791), the Strategic Research and Consulting Project of Chinese Academy of Engineering (2021-XZ-30), the Science and Technology Innovation Fund for Undergraduate of Yangzhou University (X20220604), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
More Information
  • 摘要: 客观全面地评价稻虾共作模式的碳足迹对于稻田综合种养产业的低碳绿色发展具有重要意义。对碳足迹进行敏感性和不确定性分析有助于增加评价结果的稳健性, 并为未来进一步优化参数和降低评价结果的不确定性提供借鉴。本研究基于大田试验和生命周期评价方法(LCA), 以单位面积、单位产值和单位营养密度单元(NDU)为功能单位对水稻单作和稻虾共作模式进行较为全面的碳足迹评价。结果表明, 水稻单作和稻虾共作模式的单位面积碳足迹分别为14 126 kg(CO2-eq)∙hm–2和13 140 kg(CO2-eq)∙hm–2。由于稻虾共作有更高的经济产值和营养密度输出, 该模式的单位产值碳足迹[0.11 kg(CO2-eq)∙¥–1]和单位NDU碳足迹[3.05 kg(CO2-eq)∙NDU–1]分别比水稻单作降低81.4%和49.3%, 而该模式的净生态系统经济预算(85 745 ¥∙hm–2)比水稻单作增加511.5%。热点分析表明, CH4排放(59.8%)、电力消耗(13.8%)和饲料投入(12.3%)对稻虾共作模式的碳足迹构成贡献较大, 这几个参数比其他输入参数对评价结果的影响程度也更大。不确定性分析表明, 在95%的置信区间下, 稻虾共作模式的单位面积碳足迹为11 179~15 613 kg(CO2-eq)∙hm–2。本研究结果突显了稻虾共作模式丰富的营养产出功能, 并从改善居民饮食结构的角度剖析了传统农业向生态农业转型的迫切性和必要性。本研究所使用的方法可为具有多功能产出的农业生产系统进行更全面的碳足迹评价提供技术支撑。
    Abstract: Rice-crayfish coculture has recently been developed owing to its high economic benefits. In 2020, the area used for rice-crayfish coculture in China reached 1.26×106 hm2. The objective and comprehensive evaluation of the carbon footprint of rice-crayfish coculture is crucial for low-carbon green development of the integrated farming industry of rice and aquaculture animals. Sensitivity and uncertainty analyses of carbon footprint can help to increase the robustness of the evaluation results and provide a reference to further optimize parameters and reduce the uncertainty of evaluation results in the future. Based on a field experiment and life cycle assessment (LCA), a comprehensive carbon footprint evaluation of rice monoculture and rice-crayfish coculture was carried out using 1 hm2 (area), 1 ¥ (output value), and 1 NDU (nutrient density unit) as the functional units (FU). The results showed that the carbon footprint per hectare (CFA) of rice monoculture and rice-crayfish coculture was 14 126 kg(CO2-eq)·hm–2 and 13 140 kg(CO2-eq)·hm–2, respectively; the latter was 7.0% lower than the former. Compared with rice monoculture, rice-crayfish coculture had higher economic output value and nutrition density delivery. Thus, the carbon footprint per output value [0.11 kg(CO2-eq)·¥–1] and carbon footprint per NDU [3.05 kg(CO2-eq)·NDU–1] of rice-crayfish coculture was 49.3%–81.4% lower than those of rice monoculture, whereas the net ecosystem economic budget (NEEB) of rice-crayfish coculture (85 745 ¥·hm–2) was 511.5% higher than that of rice monoculture. Hotspot analysis showed that CH4 emissions, electricity consumption, and feed input contributed greatly to carbon footprint, accounting for 59.8%, 13.8%, and 12.3%, respectively. The application of urea, compound fertilizer, and organic fertilizer contributed 4.7%, 3.8%, and 1.5% to carbon footprint, respectively; and N2O emissions, diesel consumption, and rice seeds contributed even less (3.3%, 0.3%, and 0.4%, respectively). Sensitivity analysis showed that the carbon footprint was most sensitive to CH4 emissions. When CH4 emissions varied by ±40%, the carbon footprint varied between 9994 and 16 283 kg(CO2-eq)·hm–2. Carbon footprint was also sensitive to electricity consumption and feed input. When these two parameters were varied by ±40%, the carbon footprint varied from 12 413 to 13 864 kg(CO2-eq)·hm–2 and 12 491 to 13 787 kg(CO2-eq)·hm–2, respectively. Other parameters (i.e., diesel consumption, organic fertilizer, and rice seed inputs) had a weaker impact on the carbon footprint. The results of uncertainty analysis showed that the mean value of the carbon footprint of rice-crayfish coculture was 13 302±1166 kg(CO2-eq)∙hm–2, and the median and coefficient of variation were 13 250 kg(CO2-eq)·hm–2 and 8.76%, respectively, indicating a weak variation. Under 95% confidence interval, the CFA of rice-crayfish coculture varied between 11 179 and 15 613 kg(CO2-eq)·hm–2. The results of this study highlighted the rich nutritional output function of rice-crayfish coculture and analyzed the urgency and necessity of transforming traditional agriculture to ecological agriculture from the perspective of improving the dietary structure of residents. The methods used in this study can provide technical support for a more comprehensive carbon footprint evaluation of agricultural production systems with multi-functional outputs.
  • 图  3   不同稻作模式单位面积碳足迹热点分析

    Figure  3.   Hotspots analysis of carbon footprint of different rice farming modes

    图  1   2018年和2019年水稻生长季的日平均温度、日照时数和降雨量

    Figure  1.   Daily mean temperature, sunshine hours, and precipitation during the growing seasons of rice in 2018 and 2019

    图  2   不同稻作模式碳足迹及净生态系统经济预算[A: 单位面积碳足迹(CFA); B: 单位产值碳足迹(CFV); C: 单位营养密度碳足迹(CFNDU); D: 净生态系统经济预算(NEEB)]

    Figure  2.   Carbon footprint and net ecosystem economic budget of different rice farming modes. (A: carbon footprint per hectare, CFA; B: carbon footprint per unit output, CFV; C: carbon footprint per nutrient density unit, CFNDU; D: net ecosystem economic budget, NEEB; RM: rice monoculture; RCC: rice-crayfish coculture)

    图  4   稻虾共作模式单位面积碳足迹敏感性分析

    Figure  4.   Sensitivity analysis of carbon footprint per hectare of rice-crayfish coculture mode

    图  5   基于蒙特卡洛模拟的稻虾共作模式单位面积碳足迹频率直方图(95%置信区间)

    Figure  5.   Histogram of carbon footprint per hectare of rice-crayfish coculture mode based on Monte Carlo Simulation (95% confidence interval)

    表  1   稻谷和小龙虾的可食部分、营养成分(100 g可食部)和营养密度单元

    Table  1   Edible portion, nutrient contents per 100 g edible portion, and nutrient density unit (NDU) of rice and crayfish

    项目 Item单位 Unit稻谷 Rice小龙虾 Crayfish
    可食部 Edible portion%6446
    能量 EnergykJ1448389
    蛋白质 Proteing7.914.8
    膳食纤维 Dietary fiberg0.60
    必需脂肪酸 Essential fatty acidsg0.100.16
    食品 NDU0.23681.0212
    下载: 导出CSV

    表  2   水稻单作和稻虾共作不同农资投入的碳排放系数

    Table  2   Carbon emission factors of different materials inputs for rice monoculture and rice-crayfish coculture

    项目
    Item
    单位
    Unit
    排放系数
    Carbon emission
    factor
    参数来源
    Source
    尿素
    Urea
    kg(CO2-eq)∙kg–13.270CLCD v0.8
    复合肥
    NPK compound
    fertilizer
    kg(CO2-eq)∙kg–10.958CLCD v0.8
    有机肥
    Organic fertilizer
    kg(CO2-eq)∙kg–10.089CLCD v0.8
    饲料
    Forage
    kg(CO2-eq)∙kg–10.864Ecoinvent 2.2
    杀虫剂
    Pesticide
    kg(CO2-eq)∙kg–116.610Ecoinvent 2.2
    杀菌剂
    Fungicide
    kg(CO2-eq)∙kg–110.150Ecoinvent 2.2
    除草剂
    Herbicide
    kg(CO2-eq)∙kg–110.150Ecoinvent 2.2
    稻种
    Seed
    kg(CO2-eq)∙kg–11.880Ecoinvent 2.2
    电力
    Electricity
    kg(CO2-eq)∙kWh–11.270CLCD v0.8
    柴油
    Diesel
    kg(CO2-eq)∙kg–10.370CLCD v0.8
    CH4排放
    CH4 emission
    kg(CO2-eq)∙kg–134IPCC, 2013
    N2O排放
    N2O emission
    kg(CO2-eq)∙kg–1298IPCC, 2013
    下载: 导出CSV

    表  3   不同稻作模式的稻谷产量和营养密度单元(NDU)

    Table  3   Rice yield and nutrient density unit (NDU) of different rice farming modes

    模式 Mode产量 Yield (kg∙hm–2)营养密度单元 Nutrient density unit (NDU)
    稻谷 Rice小龙虾 Crayfish稻谷 Rice小龙虾 Crayfish系统 System
    水稻单作 Rice monoculture9920±457a2349a2349b
    稻虾共作 Rice-crayfish coculture9145±418b2100±2932166a21454310a
      同列中不同小写字母代表差异显著(P<0.05)。Different lowercase letters in the same column indicate significant differences at P<0.05.
    下载: 导出CSV

    表  4   不同稻作模式农资投入量及单位面积碳足迹

    Table  4   Amounts of agricultural inputs and carbon footprint per unit area of different rice farming modes

    项目 Item投入(排放)量
    Input (emission) amount
    单位面积碳足迹
    Carbon footprint [kg(CO2-eq)·hm−2]
    单位
    Unit
    水稻单作
    Rice monoculture
    稻虾共作
    Rice-crayfish coculture
    水稻单作
    Rice monoculture
    稻虾共作
    Rice-crayfish coculture
    尿素 Ureakg∙hm−23751881226.25613.13
    复合肥 Compound fertilizerkg∙hm−2600525574.80502.95
    有机肥 Organic fertilizerkg∙hm−2022500.00199.35
    饲料 Foragekg∙hm−2018750.001620.00
    杀虫剂 Pesticidekg∙hm−20.75012.460.00
    杀菌剂 Fungicidekg∙hm−20.7507.610.00
    除草剂 Herbicidekg∙hm−21.125011.420.00
    电力 ElectricitykW∙h∙hm−26021428764.541813.56
    柴油 Dieselkg∙hm−264.1108.323.7240.07
    稻种 Seedkg∙hm−2302756.4050.76
    CH4排放 CH4 emissionkg∙hm−2315.3231.210 720.207860.80
    N2O排放 N2O emissionkg∙hm−22.451.47728.77439.37
    总和 Total14 12613 140
    下载: 导出CSV

    表  5   不同文献稻虾共作模式碳足迹核算结果的比较

    Table  5   Comparison of carbon footprint per hectare of rice-crayfish coculture of different references

    研究区
    Study site
    碳足迹
    Carbon footprint
    文献
    Reference
    江苏省、湖北省
    Jiangsu Province,
    Hubei Province
    7916 kg (CO2-eq)·hm–2[33]
    0.11 kg (CO2-eq)·¥–1 a)
    0.27 kg (CO2-eq)·¥–1 b)
    湖北潜江
    Qianjiang City,
    Hubei Province
    12 368 kg (CO2-eq)·hm–2[32]
    湖北省
    Hubei Province
    18 797 kg (CO2-eq)·hm–2[31]
    0.84 kg (CO2-eq)·¥–1 a)
    江苏泰州
    Taizhou City,
    Jiangsu Province
    13 140 kg (CO2-eq)·hm–2本研究
    This study
    0.11 kg (CO2-eq)·¥–1 a)
    3.05 kg (CO2-eq)·NDU–1
      a: 单位产值碳足迹; b: 单位利润碳足迹。a: carbon footprint per unit output; b: carbon footprint per unit profit.
    下载: 导出CSV
  • [1]

    HUANG W B, WU F Q, HAN W R, et al. Carbon footprint of cotton production in China: Composition, spatiotemporal changes and driving factors[J]. The Science of the Total Environment, 2022, 821: 153407 doi: 10.1016/j.scitotenv.2022.153407

    [2] 中华人民共和国国家统计局. 中华人民共和国2003年国民经济和社会发展统计公报[J]. 中国统计, 2004(3): 6−10 doi: 10.3969/j.issn.1002-4557.2004.03.003

    National Bureau of Statistics of People’s Republic of China. 2003 Statistical Bulletin of National Economic and Social Development of People’s Republic of China[J]. China Statistics, 2004(3): 6−10 doi: 10.3969/j.issn.1002-4557.2004.03.003

    [3]

    LIU W, HUSSAIN S, WU L S, et al. Greenhouse gas emissions, soil quality, and crop productivity from a mono-rice cultivation system as influenced by fallow season straw management[J]. Environmental Science and Pollution Research International, 2016, 23(1): 315−328 doi: 10.1007/s11356-015-5227-7

    [4] 张卫建, 严圣吉, 张俊, 等. 国家粮食安全与农业双碳目标的双赢策略[J]. 中国农业科学, 2021, 54(18): 3892−3902 doi: 10.3864/j.issn.0578-1752.2021.18.009

    ZHANG W J, YAN S J, ZHANG J, et al. Win-win strategy for national food security and agricultural double-carbon goals[J]. Scientia Agricultura Sinica, 2021, 54(18): 3892−3902 doi: 10.3864/j.issn.0578-1752.2021.18.009

    [5]

    YE S J, SONG C Q, SHEN S, et al. Spatial pattern of arable land-use intensity in China[J]. Land Use Policy, 2020, 99: 104845 doi: 10.1016/j.landusepol.2020.104845

    [6] 高辉, 陈友明. 稻田高质高效生态种养200题[M]. 北京: 中国农业出版社, 2021

    GAO H, CHEN Y M. 200 Questions on High-Quality and High-Efficiency Ecological Planting and Aquaculture in Paddy Fields[M]. Beijing: China Agriculture Press, 2021

    [7] 曹凑贵, 江洋, 汪金平, 等. 稻虾共作模式的“双刃性”及可持续发展策略[J]. 中国生态农业学报, 2017, 25(9): 1245−1253

    CAO C G, JIANG Y, WANG J P, et al. “Dual character” of rice-crayfish culture and strategies for its sustainable development[J]. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1245−1253

    [8]

    GUO L, HU L L, ZHAO L F, et al. Coupling rice with fish for sustainable yields and soil fertility in China[J]. Rice Science, 2020, 27(3): 175−179 doi: 10.1016/j.rsci.2020.04.001

    [9]

    AHMED N, TURCHINI G M. The evolution of the blue-green revolution of rice-fish cultivation for sustainable food production[J]. Sustainability Science, 2021, 16(4): 1375−1390 doi: 10.1007/s11625-021-00924-z

    [10] 佀国涵, 彭成林, 徐祥玉, 等. 稻虾共作模式对涝渍稻田土壤理化性状的影响[J]. 中国生态农业学报, 2017, 25(1): 61−68 doi: 10.13930/j.cnki.cjea.160661

    SI G H, PENG C L, XU X Y, et al. Effect of integrated rice-crayfish farming system on soil physico-chemical properties in waterlogged paddy soils[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 61−68 doi: 10.13930/j.cnki.cjea.160661

    [11]

    SUN G, SUN M, DU L S, et al. Ecological rice-cropping systems mitigate global warming — A meta-analysis[J]. Science of the Total Environment, 2021, 789: 147900 doi: 10.1016/j.scitotenv.2021.147900

    [12] 徐祥玉, 张敏敏, 彭成林, 等. 稻虾共作对秸秆还田后稻田温室气体排放的影响[J]. 中国生态农业学报, 2017, 25(11): 1591−1603 doi: 10.13930/j.cnki.cjea.170280

    XU X Y, ZHANG M M, PENG C L, et al. Effect of rice-crayfish co-culture on greenhouse gases emission in straw-puddled paddy fields[J]. Chinese Journal of Eco-Agriculture, 2017, 25(11): 1591−1603 doi: 10.13930/j.cnki.cjea.170280

    [13]

    XU Q, LIU T, GUO H L, et al. Conversion from rice-wheat rotation to rice-crayfish coculture increases net ecosystem service values in Hung-tse Lake area, East China[J]. Journal of Cleaner Production, 2021, 319: 128883 doi: 10.1016/j.jclepro.2021.128883

    [14]

    XU Q, HU K L, YAO Z S, et al. Evaluation of carbon, nitrogen footprint and primary energy demand under different rice production systems[J]. Ecological Indicators, 2020, 117: 106634 doi: 10.1016/j.ecolind.2020.106634

    [15]

    PHONG L T, DE BOER I J M, UDO H M J. Life cycle assessment of food production in integrated agriculture-aquaculture systems of the Mekong Delta[J]. Livestock Science, 2011, 139(1/2): 80−90

    [16]

    VAN DOOREN C. Proposing the nutrient density unit as the functional unit in LCAs of foods[C]. International Conference on Life Cycle Assessment of Food 2016, 2016

    [17]

    BICER Y, DINCER I. Life cycle environmental impact assessments and comparisons of alternative fuels for clean vehicles[J]. Resources, Conservation and Recycling, 2018, 132: 141−157 doi: 10.1016/j.resconrec.2018.01.036

    [18]

    MENESES M, TORRES C M, CASTELLS F. Sensitivity analysis in a life cycle assessment of an aged red wine production from Catalonia, Spain[J]. Science of the Total Environment, 2016, 562: 571−579 doi: 10.1016/j.scitotenv.2016.04.083

    [19]

    XU Q, YANG Y, HU K L, et al. Economic, environmental, and emergy analysis of China’s green tea production[J]. Sustainable Production and Consumption, 2021, 28: 269−280 doi: 10.1016/j.spc.2021.04.019

    [20] 赵杰, 李绍平, 程爽, 等. “独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻产量和品质的影响[J]. 作物学报, 2021, 47(6): 1162−1174

    ZHAO J, LI S P, CHENG S, et al. Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield and quality of dry direct seeding rice under “solo-stalk” cultivation mode[J]. Acta Agronomica Sinica, 2021, 47(6): 1162−1174

    [21] 刘秋员, 周磊, 田晋钰, 等. 长江中下游地区常规中熟粳稻氮效率综合评价及高产氮高效品种筛选[J]. 中国农业科学, 2021, 54(7): 1397−1409 doi: 10.3864/j.issn.0578-1752.2021.07.007

    LIU Q Y, ZHOU L, TIAN J Y, et al. Comprehensive evaluation of nitrogen efficiency and screening of varieties with high grain yield and high nitrogen efficiency of inbred middle-ripe Japonica rice in the middle and lower reaches of Yangtze River[J]. Scientia Agricultura Sinica, 2021, 54(7): 1397−1409 doi: 10.3864/j.issn.0578-1752.2021.07.007

    [22] 车阳, 程爽, 田晋钰, 等. 不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异[J]. 作物学报, 2021, 47(10): 1953−1965

    CHE Y, CHENG S, TIAN J Y, et al. Characteristics and differences of rice yield, quality, and economic benefits under different modes of comprehensive planting-breeding in paddy fields[J]. Acta Agronomica Sinica, 2021, 47(10): 1953−1965

    [23]

    CHURCH J, CLARK P, CAZENAVE A, et al. Climate Change 2013: The physical science basis, in contribution of working groupⅠto the fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge and New York: IPCC, 2013

    [24]

    IPCC. Revised guidelines for national greenhouse gas inventories. Volume 4. Agriculture, forestry and other land use. Chapter 11. N2O emissions from managed soils and CO2 emissions from lime and urea application[R]. Cambridge and New York: IPCC, 2019

    [25]

    LI B, FAN C H, ZHANG H, et al. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China[J]. Atmospheric Environment, 2015, 100: 10−19 doi: 10.1016/j.atmosenv.2014.10.034

    [26]

    ZHAO L L, OU X M, CHANG S Y. Life-cycle greenhouse gas emission and energy use of bioethanol produced from corn stover in China: current perspectives and future prospectives[J]. Energy, 2016, 115: 303−313 doi: 10.1016/j.energy.2016.08.046

    [27]

    JIAO J L, LI J J, BAI Y. Uncertainty analysis in the life cycle assessment of cassava ethanol in China[J]. Journal of Cleaner Production, 2019, 206: 438−451 doi: 10.1016/j.jclepro.2018.09.199

    [28]

    TILMAN D, CLARK M. Global diets link environmental sustainability and human health[J]. Nature, 2014, 515(7528): 518−522 doi: 10.1038/nature13959

    [29]

    WILLETT W, ROCKSTRÖM J, LOKEN B, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems[J]. Lancet (London, England), 2019, 393(10170): 447−492 doi: 10.1016/S0140-6736(18)31788-4

    [30] 中国营养学会. 中国居民膳食指南科学研究报告 2021[M]. 北京: 人民卫生出版社, 2021

    Chinese Nutrition Society. 2021 Scientific Research Report on Dietary Guidelines for Chinese Residents [M]. Beijing: People’s Medical Publishing House, 2021

    [31]

    LING L, SHUAI Y J, XU Y, et al. Comparing rice production systems in China: economic output and carbon footprint[J]. Science of the Total Environment, 2021, 791: 147890 doi: 10.1016/j.scitotenv.2021.147890

    [32]

    HU N J, LIU C H, CHEN Q, et al. Life cycle environmental impact assessment of rice-crayfish integrated system: a case study[J]. Journal of Cleaner Production, 2021, 280: 124440 doi: 10.1016/j.jclepro.2020.124440

    [33] 刘金根, 杨通, 冯金飞. 稻-虾(克氏原螯虾)综合种养模式的碳足迹分析[J]. 生态与农村环境学报, 2021, 37(8): 1041−1049

    LIU J G, YANG T, FENG J F. Carbon footprint analysis of rice-Procambarus clarkii integrated farming system[J]. Journal of Ecology and Rural Environment, 2021, 37(8): 1041−1049

    [34] 戴然欣, 赵璐峰, 唐建军, 等. 稻渔系统碳固持与甲烷排放特征[J]. 中国生态农业学报(中英文), 2022, 30(4): 616−629 doi: 10.12357/cjea.20210811

    DAI R X, ZHAO L F, TANG J J, et al. Characteristics of carbon sequestration and methane emission in rice-fish system[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 616−629 doi: 10.12357/cjea.20210811

    [35] 丁维新, 袁俊吉, 刘德燕, 等. 淡水养殖系统温室气体CH4和N2O排放量研究进展[J]. 农业环境科学学报, 2020, 39(4): 749−761 doi: 10.11654/jaes.2019-1388

    DING W X, YUAN J J, LIU D Y, et al. CH4 and N2O emissions from freshwater aquaculture[J]. Journal of Agro-Environment Science, 2020, 39(4): 749−761 doi: 10.11654/jaes.2019-1388

    [36]

    ZHENG H, HUANG H, YAO L, et al. Impacts of rice varieties and management on yield-scaled greenhouse gas emissions from rice fields in China: a meta-analysis[J]. Biogeosciences, 2014, 11(13): 3685−3693 doi: 10.5194/bg-11-3685-2014

    [37] 孙会峰, 周胜, 陈桂发, 等. 水稻品种对稻田CH4和N2O排放的影响[J]. 农业环境科学学报, 2015, 34(8): 1595−1602 doi: 10.11654/jaes.2015.08.024

    SUN H F, ZHOU S, CHEN G F, et al. Effects of rice cultivars on CH4 and N2O emissions from rice fields[J]. Journal of Agro-Environment Science, 2015, 34(8): 1595−1602 doi: 10.11654/jaes.2015.08.024

    [38] 张卫建, 张艺, 邓艾兴, 等. 我国水稻品种更新与稻作技术改进对碳排放的综合影响及趋势分析[J]. 中国稻米, 2021, 27(4): 53−57 doi: 10.3969/j.issn.1006-8082.2021.04.011

    ZHANG W J, ZHANG Y, DENG A X, et al. Integrated impacts and trend analysis of rice cultivar renewal and planting technology improvement on carbon emission in China[J]. China Rice, 2021, 27(4): 53−57 doi: 10.3969/j.issn.1006-8082.2021.04.011

    [39]

    LI J L, LI Y E, WAN Y F, et al. Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissions and increase rice yield[J]. Geoderma, 2018, 315: 1−10 doi: 10.1016/j.geoderma.2017.11.033

    [40]

    MACLEOD M J, HASAN M R, ROBB D H F, et al. Quantifying greenhouse gas emissions from global aquaculture[J]. Scientific Reports, 2020, 10(1): 11679 doi: 10.1038/s41598-020-68231-8

图(5)  /  表(5)
计量
  • 文章访问数:  1276
  • HTML全文浏览量:  461
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-13
  • 录用日期:  2022-05-23
  • 网络出版日期:  2022-08-15
  • 刊出日期:  2022-10-09

目录

    /

    返回文章
    返回