基于AquaCrop模型的阿勒泰地区春小麦节水潜力分析

任哓红, 王会肖, 刘昌明, 范玲

任哓红, 王会肖, 刘昌明, 范玲. 基于AquaCrop模型的阿勒泰地区春小麦节水潜力分析[J]. 中国生态农业学报 (中英文), 2022, 30(10): 1638−1648. DOI: 10.12357/cjea.20220031
引用本文: 任哓红, 王会肖, 刘昌明, 范玲. 基于AquaCrop模型的阿勒泰地区春小麦节水潜力分析[J]. 中国生态农业学报 (中英文), 2022, 30(10): 1638−1648. DOI: 10.12357/cjea.20220031
REN X H, WANG H X, LIU C M, FAN L. Water-saving potential analysis of spring wheat in Altay based on AquaCrop model[J]. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1638−1648. DOI: 10.12357/cjea.20220031
Citation: REN X H, WANG H X, LIU C M, FAN L. Water-saving potential analysis of spring wheat in Altay based on AquaCrop model[J]. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1638−1648. DOI: 10.12357/cjea.20220031
任哓红, 王会肖, 刘昌明, 范玲. 基于AquaCrop模型的阿勒泰地区春小麦节水潜力分析[J]. 中国生态农业学报 (中英文), 2022, 30(10): 1638−1648. CSTR: 32371.14.cjea.20220031
引用本文: 任哓红, 王会肖, 刘昌明, 范玲. 基于AquaCrop模型的阿勒泰地区春小麦节水潜力分析[J]. 中国生态农业学报 (中英文), 2022, 30(10): 1638−1648. CSTR: 32371.14.cjea.20220031
REN X H, WANG H X, LIU C M, FAN L. Water-saving potential analysis of spring wheat in Altay based on AquaCrop model[J]. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1638−1648. CSTR: 32371.14.cjea.20220031
Citation: REN X H, WANG H X, LIU C M, FAN L. Water-saving potential analysis of spring wheat in Altay based on AquaCrop model[J]. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1638−1648. CSTR: 32371.14.cjea.20220031

基于AquaCrop模型的阿勒泰地区春小麦节水潜力分析

基金项目: 中国科学院新疆可持续发展研究专项资助
详细信息
    作者简介:

    任哓红, 主要研究方向为农业水文水资源。E-mail: renxiaohong@mail.bnu.edu.cn

    通讯作者:

    王会肖, 主要研究方向为农业水文水资源。E-mail: huixiaowang@bnu.edu.cn

  • 中图分类号: S512.1+2

Water-saving potential analysis of spring wheat in Altay based on AquaCrop model

Funds: This study was supported by the Xinjiang Sustainable Development Research Program of the Chinese Academy of Sciences.
More Information
  • 摘要: 为进一步发展节水农业, 提高水分利用效率, 建立作物产量与耗水量的响应关系, 确定区域农业节水潜力, 为水资源合理配置提供依据。以AquaCrop为研究模型, 对模型产量模块参数标准化的水分生产效率(WP*)和参考收获指数(HI0)进行多年率定与验证, 以2017年作为现状水平年, 通过设置4月10日和4月20日两个春小麦(‘新春6号’)播种日期, 每个播种日期下设置400 mm、350 mm、300 mm、250 mm、200 mm的灌溉定额和7 d和10 d的灌溉周期, 共20个情景, 对新疆阿勒泰地区春小麦产量进行模拟, 对比不同情景下的春小麦产量和灌溉水利用效率受灌溉定额和灌水次数的影响, 以产量和水分利用效率均较高为目标, 择优选择最佳灌溉策略。利用现状年春小麦种植面积作为参考值, 对比现状水平年和未来水平年在不同情景下的小麦产量及总节水量差异, 分析小麦的节水潜力。结果表明: 1)推荐WP*=18 g∙m−2和HI0=48%作为阿勒泰地区2005—2014多年率定及2015—2017年验证后的产量模块参数, 率定产量误差范围为−3.44%~5.67%, 适用性评价指标均方根误差(RMSE)、相对均方根误差(RRMSE)、残差系数(CRM)、Willmott一致度(d)和纳什效率系数(ENS)值分别为0.110、0.023、0.002、0.956、0.935, 适用性好; 2015—2017年验证产量误差分别为−0.41%、−3.02%、3.34%, 模拟误差较小。2)不同情景下的模拟结果显示, 情景S15 (4月20日播种、灌溉定额为300 mm、灌溉周期为7 d)可以作为推荐灌溉策略, 该模拟情景下, 作物产量和灌溉水分利用效率分别为5.610 t∙hm−2和1.870 kg∙m−3。3)对于阿勒泰地区的春小麦种植, 情景S15作为推荐的灌溉策略, 现状水平年可以实现节水2.335亿m3, 节水潜力是可观的, 未来水平年可以分别实现节水2.407亿m3、2.431亿m3、2.476亿m3
    Abstract: In 2017, the comprehensive irrigation quota of various crops in Altay was 955 mm, and the actual irrigation quota of spring wheat, the main food crop, was approximately 780 mm, which is far higher than the actual water demand of spring wheat. To improve water-use efficiency, the best irrigation quota for spring wheat was determined, and the relationship between crop yield and water consumption was established. The AquaCrop model was used as the research model, and the main parameters of the AquaCrop model were localized in northern Xinjiang. The annual rate and applicability of the AquaCrop model from 2005 to 2014 were evaluated based on standardized water production efficiency (WP*) and reference harvest index (HI0). After determining the appropriate parameters, the meteorological data from 2015 to 2017 were used for verification. Two sowing dates of spring wheat variety ‘Xinchun 6’ on April 10 and April 20 were set in this study, and irrigation quotas of 400 mm, 350 mm, 300 mm, 250 mm, and 200 mm and irrigation cycles of 7 d and 10 d were set under each sowing date for a total of 20 scenarios. The spring wheat yield in the Altay region of Xinjiang was simulated, and the spring wheat yield and irrigation water use efficiency under different scenarios and influence of the irrigation quota and irrigation times were compared. The optimal irrigation strategy was selected, with high yield and water-use efficiency as the goal. Using the wheat planting area and irrigation quota in 2017 as reference values, the differences in wheat yield and total water-saving amount under different scenarios in 2017 and 2020 were compared to analyze the water-saving potential of wheat. The results are as follow: 1) WP*=18 g∙m−2 and HI0=48% were recommended as the yield module parameters in the Altay area. The parameters of the AquaCrop model are divided into two modules: crop growth and yield. The parameters of the crop growth module required field experiments; therefore, the parameters of the yield module were adjusted. WP*=18 g∙m−2, HI0=48% and WP*=19 g∙m−2, HI0=45% were selected as the yield module parameters, and the yield error ranges were −3.44% to 5.67% and −4.92% to 4.56%, respectively. WP*=18 g∙m−2 and HI0=48% had better applicability, and the evaluation indexes: root mean square error (RMSE), relative RMSE (RRMSE), residual coefficient (CRM), Willmott cossitancy (d), and Nash efficincy coefficient (ENS) were 0.110, 0.023, 0.002, 0.956, and 0.935, respectively. Finally, meteorological data from 2015 to 2017 were used for validation, and the validated yield error results were −0.41%, −3.02%, and 3.34%, respectively, with small simulation errors. 2) Scenario S15 (sowing on April 20, irrigation quota of 300 mm, irrigation cycle of seven days) can be used as the recommended irrigation strategy. Through the simulation of spring wheat yield and calculation of irrigation water-use efficiency under different scenarios, it was found that the postponement of sowing date was beneficial to the accumulation of crop yield because the crop was less exposed to low-temperature stress at that time. The effect of irrigation cycle on spring wheat yield was the opposite under different planting dates and irrigation quotas. The spring wheat yield of S15 was 5.610 t∙hm−2, and the irrigation water use efficiency was 1.870 kg∙m−3. 3) In 2017, scenario S15 saved 2.335×108 m3 of water. Under irrigation quotas (400 mm, 350 mm, 300 mm, 250 mm and 200 mm), 1.849×108 m3, 2.092×108 m3, 2.335×108 m3, 2.579×108 m3, and 2.822×108 m3 were saved in 2017. Under the recommended irrigation strategy, water savings of 2.407×108 m3, 2.431×108 m3, and 2.476×108 m3 can be achieved in the future when the utilization coefficient of irrigation water is 0.570, 0.580 and 0.600, respectively; indicating a huge water-saving potential.
  • 图  3   阿勒泰地区不同产量模块参数下的多年作物模拟产量对比图

    Figure  3.   Comparison diagram of crop yield simulation at Altay region station under different yield module parameters

    图  1   阿勒泰地区耕地及主要气象站点分布图

    Figure  1.   Distribution of cultivated land and main meteorological stations in Altay region

    图  2   研究区不同气象站点的2017年气象参数(a: 阿勒泰站; b: 福海站; c: 哈巴河站)

    Figure  2.   Meteorological parameters of the study areas in different meteorological stations in 2017 (a: Altay Station; b: Fuhai Station; c: Habahe Station)

    表  1   小麦不同播种时间下灌溉模拟情景设置

    Table  1   Settings of simulated scenarios of irrigation of wheat sown in different dates

    播种时间(月-日)
    Sowing date
    (month-day)
    模拟情景
    Simulated
    scenario
    灌溉定额
    Irrigation
    quota (mm)
    灌溉周期
    Irrigation
    cycle (d)
    播种时间(月-日)
    Sowing date
    (month-day)
    模拟情景
    Simulated
    scenario
    灌溉定额
    Irrigation
    quota (mm)
    灌溉周期
    Irrigation
    cycle (d)
    04-10S14007 04-20S114007
    S240010S1240010
    S33507S133507
    S435010S1435010
    S53007S153007
    S630010S1630010
    S72507S172507
    S825010S1825010
    S92007S192007
    S1020010S2020010
    下载: 导出CSV

    表  2   AquaCrop模型中经本地化校准后的部分参数

    Table  2   Partial parameters of AquaCrop model after localization and calibration

    模型模块
    Model module
    作物参数描述
    Description of crop parameter
    校准值
    Calibration value
    作物生长
    Crop growth
    初始冠层覆盖度 Canopy size of the average seedling at 90% emergence (CC0) (%)6.65
    最大冠层覆盖度 Maximum canopy cover (CCx) (%)98
    播种到出苗所需时间 Time from sowing to emergence (℃·d)101
    达到最大冠层覆盖所需时间 Time required to reach maximum canopy cover (℃·d)851
    达到最大根系深度所需时间 Time required to reach maximum root depth (℃·d)815
    冠层开始衰减时间 Time of canopy onset decay (℃·d)904
    达到生理成熟所需时间 Time required to reach physiological maturity (℃·d )1910
    开始开花所需时间 Time required to start flowering (℃·d)815
    开花期持续时间 Duration of anthesis (℃·d)169
    经济产量形成终止时间 Termination time of economic output formation (℃·d)640
    最大有效根系深度 Maximum effective rooting depth (Zm) (m)1.5
    冠层完全覆盖但未衰老时的作物蒸腾系数
    Transpiration coefficient of crops under complete canopy cover without senescence (KcTr)
    1.2
    影响冠层生长的土壤水分耗损阈值(上限) Threshold of soil water loss affecting canopy growth (upper limit)0.10
    影响冠层生长的土壤水分耗损阈值(下限) Threshold of soil water loss affecting canopy growth (lower limit)0.45
    产量
    Yield
    标准化的水分生产效率 Standardized water production efficiency (WP*) (g∙m−2)18
    参考收获指数 Reference harvest index (HI0) (%)42
    下载: 导出CSV

    表  3   阿勒泰地区主要土壤参数

    Table  3   Main soil parameters in Altay region

    站点名称
    Site name
    土层深度
    Soil depth (cm)
    土壤质地
    Soil texture
    田间持水量
    Field capacity (%)
    凋萎含水量
    Wilting moisture
    content (%)
    饱和含水量
    Saturation moisture
    content (%)
    饱和导水率
    Saturated hydraulic
    conductivity (mm∙d−1)
    阿勒泰
    Altay
    0~30壤土 Loam32.916.055.5789.58
    30~100壤土 Loam32.615.556.8822.96
    福海
    Fuhai
    0~30壤土 Loam31.914.457.0944.88
    30~100黏壤土 Clay loam31.514.557.2938.78
    哈巴河
    Habahe
    0~30砂壤土 Sandy loam23.113.353.01261.87
    30~100砂黏土 Sandy clay36.924.152.2176.78
    下载: 导出CSV

    表  4   AquaCorp模型产量模块参数在不同情况下的适用性评价结果

    Table  4   Adaptability evaluation results of yield module parameters of AquaCorp modle under different conditions

    WP*, HI0
    均方根误差
    Root mean square error
    (RMSE)
    相对均方根误差
    Relative RMSE
    (RRMSE)
    残差系数
    Residual coefficient
    (CRM)
    Willmott一致度
    Willmott cossitancy
    (d)
    纳什效率系数
    Nash efficiency coefficient
    (ENS)
    18, 42%0.6170.149−0.1460.508−1.008
    18, 45%0.3220.072−0.0660.7250.453
    18, 48%0.1100.023−0.0020.9560.935
    19, 42%0.3910.089−0.0840.6520.193
    19, 45%0.1380.029−0.0110.9280.899
    19, 48%0.2680.0540.0490.8020.621
      WP*: 标准化的水分生产效率; HI0:参考收获指数。WP*: standardized water production efficiency; HI0: reference harvest index.
    下载: 导出CSV

    表  5   不同播期下春小麦不同情景下的水分利用效率模拟结果

    Table  5   Simulation results of water use efficiency of spring wheat sown in dates under different scenarios

    播种时间(月-日)
    Sowing date (month-day)
    模拟情景
    Simulated scenario
    产量
    Yield (t∙hm−2)
    地上生物量
    Biomass (t∙hm−2)
    灌溉定额
    Irrigation quota (mm)
    灌溉水利用效率
    Utilization efficiency of irrigation water (kg∙m−3)
    04-10S14.5459.1634001.275
    S25.17610.2204001.294
    S35.10310.1413501.458
    S45.18110.2053501.480
    S55.10810.1293001.703
    S65.15810.0383001.719
    S75.0359.9082502.014
    S84.9559.5542501.982
    S94.4238.5512002.211
    S104.2198.2532002.109
    04-20S115.62310.9204001.406
    S125.61411.1814001.403
    S135.62110.9153501.606
    S145.59311.1393501.598
    S155.61010.8923001.870
    S165.49110.8573001.830
    S175.50410.6512502.202
    S185.06810.0292502.027
    S193.9608.3332001.980
    S204.1808.3932002.090
      各模拟情景说明见表1。Detail information of each simulated scenario is shown in the Table 1.
    下载: 导出CSV

    表  6   固定种植面积不同模拟情景下不同播期春小麦产量与总节水量

    Table  6   Yield and total water saving of spring wheat sown in different dates under different simulated conditions with the fixed planting area

    播种时间(月-日)
    Sowing date (month-day)
    模拟情景
    Simulated scenario
    产量
    Yield (×104 t)
    总节水量 Total water saving (×108 m3)
    η0=0.542η1=0.570 η1=0.580η1=0.600
    04-10S113.961.8491.9441.9762.037
    S214.171.8491.9441.9762.037
    S313.972.0922.1762.2042.257
    S414.182.0922.1762.2042.257
    S513.982.3352.4072.4312.476
    S614.122.3352.4072.4312.476
    S713.782.5792.6382.6582.696
    S813.562.5792.6382.6582.696
    S912.102.8222.8702.8862.916
    S1011.552.8222.8702.8862.916
    04-20S1115.391.8491.9441.9762.037
    S1215.361.8491.9441.9762.037
    S1315.382.0922.1762.2042.257
    S1415.212.0922.1762.2042.257
    S1515.352.3352.4072.4312.476
    S1615.032.3352.4072.4312.476
    S1715.072.5792.6382.6582.696
    S1813.872.5792.6382.6582.696
    S1910.842.8222.8702.8862.916
    S2011.442.8222.8702.8862.916
      各模拟情景说明见表1。η0η1为作物实际和可能灌溉水利用系数。Detail information of each simulated scenario is shown in the Table 1. η0 and η1 are actual and possible utilization coefficiences of irrigation water.
    下载: 导出CSV
  • [1] 唐登银, 罗毅, 于强. 农业节水的科学基础[J]. 灌溉排水, 2000, 19(2): 1−9 doi: 10.3969/j.issn.1672-3317.2000.02.001

    TANG D Y, LUO Y, YU Q. Fundamentals of agricultural water saving[J]. Irrigation and Drainage, 2000, 19(2): 1−9 doi: 10.3969/j.issn.1672-3317.2000.02.001

    [2] 张娟, 谢惠民, 张正斌, 等. 小麦抗旱节水生理遗传育种研究进展[J]. 干旱地区农业研究, 2005, 23(3): 231−238 doi: 10.3321/j.issn:1000-7601.2005.03.049

    ZHANG J, XIE H M, ZHANG Z B, et al. Advances in drought-resistance and water-saving physiology, genetics and breeding of wheat[J]. Agricultural Research in the Arid Areas, 2005, 23(3): 231−238 doi: 10.3321/j.issn:1000-7601.2005.03.049

    [3] 程云伟. 节水灌溉技术在农田水利工程中的应用[J]. 中国水运, 2014, 14(2): 285−286

    CHENG Y W. Application of water saving irrigation technology in farmland water conservancy project[J]. China Water Transport, 2014, 14(2): 285−286

    [4] 钟新才, 李寿山, 冯耀祖, 等. 农艺节水是干旱区水资源高效利用的重要途径[J]. 新疆农业科学, 2005, 42(5): 342−344 doi: 10.3969/j.issn.1001-4330.2005.05.013

    ZHONG X C, LI S S, FENG Y Z, et al. Agronomic water saving is the important way to high-effectively use water resources in arid area[J]. Xinjiang Agricultural Sciences, 2005, 42(5): 342−344 doi: 10.3969/j.issn.1001-4330.2005.05.013

    [5] 郭晖, 陈向东, 董增川, 等. 基于合同节水管理的水权交易构建方法[J]. 水资源保护, 2019, 35(3): 33−38, 62 doi: 10.3880/j.issn.1004-6933.2019.03.005

    GUO H, CHEN X D, DONG Z C, et al. Construction method of water right trading based on water-saving management contract[J]. Water Resources Protection, 2019, 35(3): 33−38, 62 doi: 10.3880/j.issn.1004-6933.2019.03.005

    [6]

    GARCÍA-VILA M, FERERES E, MATEOS L, et al. Deficit irrigation optimization of cotton with AquaCrop[J]. Agronomy Journal, 2009, 101(3): 477−487 doi: 10.2134/agronj2008.0179s

    [7]

    ARAYA A, HABTU S, HADGU K M, et al. Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare)[J]. Agricultural Water Management, 2010, 97(11): 1838−1846 doi: 10.1016/j.agwat.2010.06.021

    [8]

    NYAKUDYA I W, STROOSNIJDER L. Effect of rooting depth, plant density and planting date on maize (Zea mays L.) yield and water use efficiency in semi-arid Zimbabwe: modelling with AquaCrop[J]. Agricultural Water Management, 2014, 146: 280−296 doi: 10.1016/j.agwat.2014.08.024

    [9]

    JALIL A, AKHTAR F, AWAN U K. Evaluation of the AquaCrop model for winter wheat under different irrigation optimization strategies at the downstream Kabul River Basin of Afghanistan[J]. Agricultural Water Management, 2020, 240: 106321 doi: 10.1016/j.agwat.2020.106321

    [10]

    SINGH A, SAHA S, MONDAL S. Modelling irrigated wheat production using the fao aquacrop model in west Bengal, India, for sustainable agriculture[J]. Irrigation and Drainage, 2013, 62(1): 50−56 doi: 10.1002/ird.1722

    [11]

    BATTISTI R, SENTELHAS P C, BOOTE K J. Inter-comparison of performance of soybean crop simulation models and their ensemble in southern Brazil[J]. Field Crops Research, 2017, 200: 28−37 doi: 10.1016/j.fcr.2016.10.004

    [12] 杜文勇, 何雄奎, Shamaila Z, 等. 冬小麦生物量和产量的AquaCrop模型预测[J]. 农业机械学报, 2011, 42(4): 174−178,183

    DU W Y, HE X K, SHAMAILA Z, et al. Yield and biomass prediction testing of AquaCrop model for winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(4): 174−178,183

    [13] 付驰, 李双双, 李晶, 等. AquaCrop作物模型在松嫩平原春麦区的校正和验证[J]. 灌溉排水学报, 2012, 31(5): 99−102

    FU C, LI S S, LI J, et al. Calibration and validation of AquaCrop model in spring wheat region of Songnen Plain[J]. Journal of Irrigation and Drainage, 2012, 31(5): 99−102

    [14] 倪玲, 冯浩, 任小川, 等. AquaCrop作物模型在黄土塬区夏玉米生产中的适用性评价[J]. 干旱地区农业研究, 2015, 33(6): 40−45 doi: 10.7606/j.issn.1000-7601.2015.06.07

    NI L, FENG H, REN X C, et al. Applicable evaluation of crop model AquaCrop for summer maize production in Loess Plateau Region[J]. Agricultural Research in the Arid Areas, 2015, 33(6): 40−45 doi: 10.7606/j.issn.1000-7601.2015.06.07

    [15] 徐志鹏, 穆奎, 董文俊, 等. 关中地区播前土壤墒情对覆膜旱作夏玉米产量和水分利用的影响[J]. 水土保持学报, 2021, 35(6): 123−134,143

    XU Z P, MU K, DONG W J, et al. Effects of soil moisture content before sowing on summer maize yield and water use under plastic mulching in Guanzhong Region[J]. Journal of Soil and Water Conservation, 2021, 35(6): 123−134,143

    [16] 马于茗, 陈捷, 金志凤, 等. 基于AquaCrop模型的茶叶产量和开采期预报[J]. 中国生态农业学报(中英文), 2021, 29(8): 1339−1349

    MA Y M, CHEN J, JIN Z F, et al. Prediction of tea yield and picking date based on the AquaCrop model[J]. Chinese Journal of Eco-Agriculture, 2021, 29(8): 1339−1349

    [17] 柴顺喜, 陈锐, 李杰, 等. AquaCrop模型在北疆滴灌春小麦生产中的校准及验证[J]. 江苏农业科学, 2017, 45(8): 215−219

    CHAI S X, CHEN R, LI J, et al. Calibration and validation of AquaCrop model in spring wheat production under drip irrigation in Northern Xinjiang[J]. Jiangsu Agricultural Sciences, 2017, 45(8): 215−219

    [18] 邓铭江. 发展新疆农业节水的总体思路[EB/OL]. 中国节水灌溉网. [2021-08-02]. http://www.jsgg.com.cn/Index/Display.asp?NewsID=4481

    DENG M J. The general idea of developing Xinjiang agriculture water-saving[EB/OL]. China Water Saving Irrigation Network. [2021-08-02]. http://www.jsgg.com.cn/Index/Display.asp?NewsID=4481

    [19] 中华人民共和国水利部. 中国水资源公报—2019[M]. 北京: 中国水利水电出版社, 2020

    Ministry of Water Resources, People’s Republic of China. China Water Resources Bulletin—2019[M]. Beijing: China Water Power Press, 2020

    [20] 叶尔丁巴衣尔·布仁, 闫辰啸, 秦佳豪. 阿勒泰地区农业节水存在的问题及建议[J]. 现代农业科技, 2020(18): 149−150, 154 doi: 10.3969/j.issn.1007-5739.2020.18.079

    YEERDINGBAYIER BUREN, YAN C X, QIN J H. Problems and suggestions on agricultural water saving in Altay Region[J]. Modern Agricultural Science and Technology, 2020(18): 149−150, 154 doi: 10.3969/j.issn.1007-5739.2020.18.079

    [21] 赵星. 阿勒泰地区水利发展战略规划思路[J]. 水利规划与设计, 2021(7): 6−9, 78 doi: 10.3969/j.issn.1672-2469.2021.07.002

    ZHAO X. Strategic planning of water resources development in Altay[J]. Water Resources Planning and Design, 2021(7): 6−9, 78 doi: 10.3969/j.issn.1672-2469.2021.07.002

    [22]

    STEDUTO P, HSIAO T C, RAES D, et al. AquaCrop — the FAO crop model to simulate yield response to water:Ⅰ. concepts and underlying principles[J]. Agronomy Journal, 2009, 101(3): 426−437 doi: 10.2134/agronj2008.0139s

    [23]

    RAES D, STEDUTO P, HSIAO T C, et al. AquaCrop the FAO crop model to simulate yield response to water:Ⅱ. main algorithms and software description[J]. Agronomy Journal, 2009, 101(3): 438−447 doi: 10.2134/agronj2008.0140s

    [24] 王会肖, 刘昌明. 作物水分利用效率内涵及研究进展[J]. 水科学进展, 2000, 11(1): 99−104 doi: 10.3321/j.issn:1001-6791.2000.01.018

    WANG H X, LIU C M. Advances in crop water use efficiency research[J]. Advances in Water Science, 2000, 11(1): 99−104 doi: 10.3321/j.issn:1001-6791.2000.01.018

    [25] 张娜. 新疆农业高效节水灌溉发展现状及“十三五”发展探讨[J]. 中国水利, 2018(13): 36−38, 45 doi: 10.3969/j.issn.1000-1123.2018.13.012

    ZHANG N. High-efficient water-saving irrigation development and 13th Five-Year Plan in Xinjiang Uygur Autonomous Region[J]. China Water Resources, 2018(13): 36−38, 45 doi: 10.3969/j.issn.1000-1123.2018.13.012

    [26] 柴顺喜. 基于AquaCrop模型的北疆滴灌春小麦灌溉制度研究[D]. 石河子: 石河子大学, 2016

    CHAI S X. Irrigation management for drip irrigated spring wheat in northern Xinjiang Province based on AquaCrop model[D]. Shihezi: Shihezi University, 2016

    [27] 周英霞, 王全九, 张继红, 等. 基于AquaCrop模型的气候变化对陕西省冬小麦产量影响模拟分析[J]. 水土保持研究, 2018, 25(6): 357−364

    ZHOU Y X, WANG Q J, ZHANG J H, et al. Simulation analysis of the impact of climate change on the yield of winter wheat in Shaanxi Province based on the AquaCrop model[J]. Research of Soil and Water Conservation, 2018, 25(6): 357−364

    [28] 孙哲, 粟晓玲. 基于AquaCrop的县域资源节水潜力研究−以高台县为例[J]. 西北农林科技大学学报(自然科学版), 2021, 49(10): 145−154

    SUN Z, SU X L. Resource-based water-saving potential based on AquaCrop: a case study in Gaotai County[J]. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(10): 145−154

    [29] 于景春, 肖继兵, 杨宁, 等. 播期对辽西地区春小麦水分利用效率和产量的影响[J]. 水土保持应用技术, 2020(1): 10−13 doi: 10.3969/j.issn.1673-5366.2020.01.04

    YU J C, XIAO J B, YANG N, et al. Effects of sowing date on water use efficiency and yield of spring wheat in western Liaoning Province[J]. Technology of Soil and Water Conservation, 2020(1): 10−13 doi: 10.3969/j.issn.1673-5366.2020.01.04

    [30] 贺丹. 积温与春小麦群体生长动态、灌浆特性及产量形成关系的研究[D]. 哈尔滨: 东北农业大学, 2015

    HE D. Effects of accumulated temperature on group development dynamic, filling characteristics and yield of spring wheat[D]. Harbin: Northeast Agricultural University, 2015

    [31]

    FAO. AquaCrop Traning Handbooks[M]. Rome: FAO, 2017

    [32] 别肯·哈布齐克. 阿勒泰地区地下水位变化特性分析[J]. 地下水, 2020, 42(3): 66−67

    BEKEN HABAQIKE. Analysis of variation characteristics of groundwater level in Altay Area[J]. Ground Water, 2020, 42(3): 66−67

    [33]

    HENG L K, HSIAO T, EVETT S, et al. Validating the FAO AquaCrop model for irrigated and water deficient field maize[J]. Agronomy Journal, 2009, 101(3): 488−498 doi: 10.2134/agronj2008.0029xs

    [34]

    JIN X L, FENG H K, ZHU X K, et al. Assessment of the AquaCrop model for use in simulation of irrigated winter wheat canopy cover, biomass, and grain yield in the North China Plain[J]. PLoS One, 2014, 9(1): e86938 doi: 10.1371/journal.pone.0086938

图(3)  /  表(6)
计量
  • 文章访问数:  618
  • HTML全文浏览量:  201
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 录用日期:  2022-04-05
  • 网络出版日期:  2022-05-22
  • 刊出日期:  2022-10-09

目录

    /

    返回文章
    返回