洞庭湖区稻田主要种植模式物质生产及光温资源利用效率的比较

Comparison of matter production and the light and temperature resources utilization efficiencies of the main cropping systems for paddy fields in the Dongting Lake region

  • 摘要: 合理的种植模式可实现作物生长需求和自然资源供给的匹配。比较研究洞庭湖区稻田主要种植模式, 可明确该区域优势种植模式, 为优化湖区资源配置和建立丰产高效种植模式提供理论依据。2016—2018年, 选取4种湖区稻田主要种植模式为研究对象, 分析不同模式的干物质生产效率和干物质产能、光温资源利用效率以及经济效益。4种模式中, 冬闲-中稻一熟制模式周年平均干物质生产效率和干物质产能、有效积温和光能分配率最低, 分别为18 330 kg∙hm−2和27.00 MJ∙m−2、70.0%和49.2%, 表明湖区冬闲-中稻一熟制模式光温资源利用不充分。而油菜-早稻-晚稻三熟制模式周年平均干物质生产效率和干物质产能最高, 分别为31 525 kg∙hm−2和48.22 MJ∙m−2, 但周年平均生育期为364.5 d, 2016—2017年周年有效积温和光能分配率分别达到102.5%和102.6%, 表明部分年份油菜-早稻-晚稻三熟制光温资源欠缺, 难以满足3季作物需求, 且三熟制经济效益最低, 两周年平均为8738元∙hm−2。冬闲-早稻-晚稻两熟制模式生长季集中于4月上旬至10月中下旬, 冬季温光资源浪费, 且周年经济效益平均为9009元∙hm−2, 仅为冬闲-中稻模式的75.3%, 油菜-中稻模式的62.3%。油菜-中稻两熟制模式全年时间平均利用率88.9%, 周年平均有效积温和光能分配率为86.6%和87.7%, 光温资源充足且利用率高, 周年经济效益最高, 为14 468元∙hm−2, 明显高于其他3种模式。油菜-中稻两熟制模式与其他3种模式综合比较, 可充分利用全年光温资源, 干物质生产效率和产能较高, 也是经济效益最高的种植模式, 适宜在洞庭湖区发展。

     

    Abstract: Reasonable cropping systems can match crop growth demand and natural resource supply. This comparison of the main cropping systems for paddy fields aims to identify the dominant cropping system in the Dongting Lake area and to provide a theoretical basis for optimizing resource allocation and the establishment of high-yield and high-efficiency planting patterns. From 2016 to 2018, four main cropping systems for paddy fields in the lake area were selected as research objects. The efficiency and energy of dry matter production, light and temperature resource utilization efficiencies, and the economic benefits of different patterns were analyzed. Among the four modes, the winter fallow-middle rice one-cropping system had the lowest year-round average efficiency and energy of dry matter production, and distribution rates of effective accumulated temperature and light energy distribution, which were 18.330 kg·hm−2 and 27.00 MJ·m−2, 70.0% and 49.2%, respectively, indicating that the winter fallow-middle rice system did not fully utilize the light and temperature resources and that the efficiency and energy of dry matter production were low. The oilseed rape-early rice-late rice triple-cropping system had the highest year-round average efficiency and energy of dry matter production, which were 31.525 kg·hm−2 and 48.22 MJ·m−2, respectively, but the year-round average growth period was 364.5 days. The distribution rates of year-round effective accumulated temperature and light energy from 2016 to 2017 reached 102.5% and 102.6%, respectively, indicating that the oilseed rape-early rice-late rice system lacked light and temperature resources and that it was difficult to meet the demands of the three crops. The triple-cropping system had the lowest net income, with an average of 8738 ¥∙hm–2 over two years. The growth season of the winter fallow-early rice-late rice system was concentrated from early April to mid-to-late October. In winter, temperature and light resources were wasted. The year-round average net income of the winter fallow-early rice-late rice system was 9009 ¥·hm−2, which was only 75.3% of the winter fallow-middle rice system and 62.3% of the oilseed rape-middle rice system. The time for oilseed rape-middle rice double-cropping system was available throughout the whole year, with an average utilization rate of 88.9%, and the year-round average distribution rates of effective accumulated temperature and light energy were 86.6% and 87.7%, respectively. The highest net income for oilseed rape-middle rice was 14 468 ¥·hm−2, which was obviously higher than that of the other three models. Compared to the other three models, the oilseed rape-middle rice two-cropping system could make full use of the light and temperature resources, and the efficiency and energy of dry matter production were higher. It was also the highest net income model and suitable for development in the Dongting Lake area.

     

/

返回文章
返回