养殖业抗生素-重金属复合污染治理研究进展

漆世英, 余少乐, 吴娟, 成水平

漆世英, 余少乐, 吴娟, 成水平. 养殖业抗生素-重金属复合污染治理研究进展[J]. 中国生态农业学报 (中英文), 2022, 30(6): 1014−1026. DOI: 10.12357/cjea.20210641
引用本文: 漆世英, 余少乐, 吴娟, 成水平. 养殖业抗生素-重金属复合污染治理研究进展[J]. 中国生态农业学报 (中英文), 2022, 30(6): 1014−1026. DOI: 10.12357/cjea.20210641
QI S Y, YU S L, WU J, CHENG S P. Advance in treatment of co-contamination of antibiotics and heavy metals from stock breeding[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 1014−1026. DOI: 10.12357/cjea.20210641
Citation: QI S Y, YU S L, WU J, CHENG S P. Advance in treatment of co-contamination of antibiotics and heavy metals from stock breeding[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 1014−1026. DOI: 10.12357/cjea.20210641
漆世英, 余少乐, 吴娟, 成水平. 养殖业抗生素-重金属复合污染治理研究进展[J]. 中国生态农业学报 (中英文), 2022, 30(6): 1014−1026. CSTR: 32371.14.cjea.20210641
引用本文: 漆世英, 余少乐, 吴娟, 成水平. 养殖业抗生素-重金属复合污染治理研究进展[J]. 中国生态农业学报 (中英文), 2022, 30(6): 1014−1026. CSTR: 32371.14.cjea.20210641
QI S Y, YU S L, WU J, CHENG S P. Advance in treatment of co-contamination of antibiotics and heavy metals from stock breeding[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 1014−1026. CSTR: 32371.14.cjea.20210641
Citation: QI S Y, YU S L, WU J, CHENG S P. Advance in treatment of co-contamination of antibiotics and heavy metals from stock breeding[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 1014−1026. CSTR: 32371.14.cjea.20210641

养殖业抗生素-重金属复合污染治理研究进展

基金项目: 中国建设股份有限公司科技研发计划(CSCEC-2021-Z-3)资助
详细信息
    作者简介:

    漆世英, 主要研究方向为植物修复。E-mail: 2032824@tongji.edu.cn

    通讯作者:

    成水平, 主要研究方向为生态工程。E-mail: shpcheng@tongji.edu.cn

  • 中图分类号: X592

Advance in treatment of co-contamination of antibiotics and heavy metals from stock breeding

Funds: The study was supported by the China State Construction Engineering Corporation Science and Technology R & D Project (CSCEC-2021-Z-3).
More Information
  • 摘要: 我国养殖业快速发展, 抗生素因其能够预防和治疗动物疾病的功能被大量使用, 在环境中残留对生态环境安全和人类健康造成威胁。重金属作为饲料添加剂也会造成污染。本文介绍了现阶段养殖业中抗生素和重金属的使用情况以及对养殖品种和生态环境的污染现状, 并梳理了现有的抗生素处理技术以及抗生素-重金属复合污染治理研究进展。抗生素和重金属共存的情况导致了养殖业产生的废水和底泥中会存在持久性抗生素-重金属复合污染, 并在一定程度上影响抗性基因的传播。针对抗生素的去除仍是以高级氧化处理为主, 生物处理和生态处理为辅。生物处理主要利用微生物对抗生素的降解以及活性炭的吸附能力, 生态处理通过人工湿地中植物及其他耦合工艺达到污染物去除的目的。高级氧化处理工艺在短时间内能够达到高效去除的效果, 而实际应用必须达到去除效果和成本费用的均衡。因而今后的研究应着重关注以下方面: 1)养殖业复合污染废水的生态治理技术, 如人工湿地等; 2)复合污染底泥植物修复技术, 优化植物的选择及种植方式; 3)生物处理技术和生态治理技术的工程应用。
    Abstract: With the rapid development of stock breeding and aquaculture in China, antibiotics, which are widely used to prevent and treat diseases and protect the health of animals, are discharged into the environment, thereby posing a threat to the ecological environment and human health. The frequent use of antibiotics has also resulted in increased microbial resistance. Heavy metals, as feed additives, can accumulate in the environment and cause pollution. In this review, the use of antibiotics and heavy metals in breeding and the pollution in animal species and the ecological environment are elaborated. Additionally, the existing treatment technology of antibiotics and the research progress of combined antibiotic-heavy metal pollution are summarized. The coexistence of antibiotics and heavy metals leads to the persistent combined pollution of antibiotics and heavy metals in wastewater and sediments produced by breeding. The co-selection mechanism driven by heavy metals affects the transmission of antibiotic-resistance genes to a certain extent. At present, the removal of antibiotics is based on advanced oxidation treatment supplemented by biological and ecological treatments. Biological treatment mainly uses microbial degradation of antibiotics and the adsorption capacity of activated carbon, whereas ecological treatment achieves pollutant removal via plants and other coupling processes in constructed wetlands. Advanced oxidation processes can achieve an efficient removal effect in a short time; however, the actual application must maintain a balance between the removal effect and cost. In addition, research on the antibiotics removal effect of various methods in the presence of heavy metal ions is lacking. Future research should focus on the following aspects: 1) ecological treatment techniques for co-contaminated aquaculture wastewater, such as artificial wetlands; 2) phytoremediation of co-contaminated sediment, especially plant selection and cultivation optimization; and 3) application of a combination of biological and ecological treatment technologies in practice.
  • 图  2   四环素生物降解主要产物及降解途径

    Figure  2.   The main products and degradation pathways of tetracycline biodegradation

    图  1   抗生素和重金属复合污染下研究网络

    在Web of Science中检索[TS = (heavy metal*)] AND TS = (antibiotic*) AND TS = (risk*) AND 论文 (文献类型), 得到的文章按照年份进行了相关性分析。

    Figure  1.   The web of study on the coexistence of antibiotics and heavy metals

    The correlation analysis according to year retrieval results that searched [TS = (heavy metal*)] AND TS = (antibiotic*) AND TS = (risk*) AND thesis (literature type) in Web of Science were conducted.

    图  3   四环素类抗生素与金属离子的络合方式

    Figure  3.   The complexation of tetracyclines antibiotics with metal ions

    表  1   抗生素在部分种植业和养殖业中的污染情况

    Table  1   The contamination of antibiotics in planting and breeding industries

    抗生素种类 Antibiotics场所 Site检出浓度 Range (mg∙kg−1)检出率 Detection rate (%)参考文献 Reference
    四环素类 Tetracyclines 四环素 Tetracycline 农田 Farmland ND~0.232 74 [17]
    鱼类 Fish 0.042~1.20 82.5 [9]
    底泥 Sediment ND~0.112 ND [15]
    粪便 Manure 1.99~6.99 100 [18]
    土霉素 Oxytetracycline 农田 Farmland 0.006~0.332 100 [14]
    底泥 Sediment 0.552~13.9 100 [19]
    水体 Water ND~0.018 93 [16]
    粪便 Manure 1.68~10.40 43 [20]
    金霉素 Chlorotetracycline 农田 Farmland 0.034~0.773 100 [17]
    水体 Water ND~0.143 ND [15]
    粪便 Manure 0.32~66.62 41 [20]
    强力霉素 Doxycycline 农田 Farmland 0.002~0.249 100 [14]
    喹诺酮类 Quinolones 诺氟沙星 Norfloxacin 农田 Farmland ND~0.374 55 [14]
    鱼类 Fish 1.95~22.30 100 [21]
    粪便 Manure ND~2.71 41 [20]
    氧氟沙星 Ofloxacin 农田 Farmland ND~0.643 65 [14]
    底泥 Sediment ND~206.3 100 [19]
    磺胺类 Sulfonamides 磺胺嘧啶 Sulphadiazine 农田 Farmland ND~0.008 ND [14]
    磺胺甲噁唑 Sulfamethoxazole 底泥 Sediment ND~46.74 75 [16]
    磺胺二甲嘧啶 Sulfamethazine 农田 Farmland ND~0.030 95 [14]
    底泥 Sediment ND~0.100 ND [15]
    粪便 Manure 17.55~37.32 42 [20]
    水体 Water ND~5.654 ND [15]
    大环内酯类 Macrolides 红霉素 Erythromycin 鱼类 Fish 0.002~0.034 100 [21]
    底泥 Sediment 0.48~28.5 100 [19]
    罗红霉素 Roxithromycin 底泥 Sediment ND~1.11 98 [16]
    氯霉素类 Chloramphenicoles 氟苯尼考 Florfenicol 鱼类 Fish 0.21~2.61 47 [9]
      ND表示未检出。ND indicates the concentration of antibiotics below the detection limit.
    下载: 导出CSV
  • [1]

    NAYLOR R L, HARDY R W, BUSCHMANN A H, et al. A 20-year retrospective review of global aquaculture[J]. Nature, 2021, 591(7851): 551−563 doi: 10.1038/s41586-021-03308-6

    [2]

    WANG J J, BEUSEN A H W, LIU X C, et al. Aquaculture production is a large, spatially concentrated source of nutrients in Chinese freshwater and coastal seas[J]. Environmental Science & Technology, 2020, 54(3): 1464−1474

    [3]

    SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006, 65(5): 725−759 doi: 10.1016/j.chemosphere.2006.03.026

    [4]

    SCHWARZ S, KEHRENBERG C, WALSH T R. Use of antimicrobial agents in veterinary medicine and food animal production[J]. International Journal of Antimicrobial Agents, 2001, 17(6): 431−437 doi: 10.1016/S0924-8579(01)00297-7

    [5]

    BARTON M D. Impact of antibiotic use in the swine industry[J]. Current Opinion in Microbiology, 2014, 19: 9−15 doi: 10.1016/j.mib.2014.05.017

    [6]

    FEUERBACHER O, BONAR S A, BARRETT P J. Enhancing hatch rate and survival in laboratory-reared hybrid devils hole pupfish through application of antibiotics to eggs and larvae[J]. North American Journal of Aquaculture, 2017, 79(1): 106−114 doi: 10.1080/15222055.2016.1240123

    [7]

    JARAU M, MACINNES J I, LUMSDEN J S. Erythromycin and florfenicol treatment of rainbow trout Oncorhynchus mykiss (walbaum) experimentally infected with Flavobacterium psychrophilum[J]. Journal of Fish Diseases, 2019, 42(3): 325−334 doi: 10.1111/jfd.12944

    [8]

    TANG Q, XIA L L, TI C P, et al. Oxytetracycline, copper, and zinc effects on nitrification processes and microbial activity in two soil types[J]. Food and Energy Security, 2020, 9: e248

    [9]

    ADEL M, DADAR M, OLIVERI CONTI G. Antibiotics and malachite green residues in farmed rainbow trout (Oncorhynchus mykiss) from the Iranian markets: a risk assessment[J]. International Journal of Food Properties, 2017, 20(2): 402−408 doi: 10.1080/10942912.2016.1163577

    [10]

    ZHANG Q, CHENG J P, XIN Q. Effects of tetracycline on developmental toxicity and molecular responses in zebrafish (Danio rerio) embryos[J]. Ecotoxicology, 2015, 24(4): 707−719 doi: 10.1007/s10646-015-1417-9

    [11]

    ZHANG Y N, WANG X D, YIN X H, et al. Toxicity assessment of combined fluoroquinolone and tetracycline exposure in zebrafish (Danio rerio)[J]. Environmental Toxicology, 2016, 31(6): 736−750 doi: 10.1002/tox.22087

    [12]

    CABELLO F C, GODFREY H P, BUSCHMANN A H, et al. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance[J]. The Lancet Infectious Diseases, 2016, 16(7): e127−e133 doi: 10.1016/S1473-3099(16)00100-6

    [13] 中科院发布抗生素污染地图[J]. 饲料与畜牧, 2017(2): 18–20

    Chinese Academy of Sciences publishes map of antibiotic pollution[J]. Animal Agriculture, 2017(2): 18–20

    [14] 尹春艳, 骆永明, 滕应, 等. 典型设施菜地土壤抗生素污染特征与积累规律研究[J]. 环境科学, 2012, 33(8): 2810−2816

    YIN C Y, LUO Y M, TENG Y, et al. Pollution characteristics and accumulation of antibiotics in typical protected vegetable soils[J]. Environmental Science, 2012, 33(8): 2810−2816

    [15]

    XU J, ZHANG Y, ZHOU C B, et al. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China[J]. Science of the Total Environment, 2014, 497/498: 267−273 doi: 10.1016/j.scitotenv.2014.07.114

    [16] 孙秋根. 太湖平原河网典型抗生素的时空分布和风险评价[D]. 重庆: 重庆交通大学, 2018

    SUN Q G. Spatial-temporal distribution and risk evaluation of four typical antibiotics in river networks of Taihu Lake Basin[D]. Chongqing: Chongqing Jiaotong University, 2018

    [17] 张小红, 陶红, 王亚娟, 等. 银川市农田土壤中四环素类抗生素的污染特征及生态风险评估[J]. 环境科学, 2021, 42(10): 4933−4941

    ZHANG X H, TAO H, WANG Y J, et al. Pollution characteristics and risk assessment of tetracycline antibiotics in farmland soil in Yinchuan[J]. Environmental Science, 2021, 42(10): 4933−4941

    [18] 任君焘, 徐琳. 山东东营地区畜禽粪便中抗生素残留研究[J]. 黑龙江畜牧兽医, 2019(6): 56−59

    REN J T, XU L. Antibiotic residues in manure of livestock and poultry manure in Dongying, Shandong Province[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019(6): 56−59

    [19]

    SHI H, YANG Y, LIU M, et al. Occurrence and distribution of antibiotics in the surface sediments of the Yangtze Estuary and nearby coastal areas[J]. Marine Pollution Bulletin, 2014, 83(1): 317−323 doi: 10.1016/j.marpolbul.2014.04.034

    [20] 雷雨洋, 李方方, 欧阳洁, 等. 浙江地区抗生素残留的环境分布特征及来源分析[J]. 化学进展, 2021, 33(8): 1414−1425

    LEI Y Y, LI F F, OUYANG J, et al. Environmental distribution characteristics and source analysis of antibiotics in Zhejiang area[J]. Progress in Chemistry, 2021, 33(8): 1414−1425

    [21] 郝勤伟, 徐向荣, 陈辉, 等. 广州市南沙水产养殖区抗生素的残留特性[J]. 热带海洋学报, 2017, 36(1): 106−113

    HAO Q W, XU X R, CHEN H, et al. Residual antibiotics in the Nansha aquaculture area of Guangzhou[J]. Journal of Tropical Oceanography, 2017, 36(1): 106−113

    [22] 潘寻, 韩哲, 贲伟伟. 山东省规模化猪场猪粪及配合饲料中重金属含量研究[J]. 农业环境科学学报, 2013, 32(1): 160−165

    PAN X, HAN Z, BEN W W. Heavy metal contents in pig manure and pig feeds from intensive pig farms in Shandong Province, China[J]. Journal of Agro-Environment Science, 2013, 32(1): 160−165

    [23] 晁雷, 周启星, 崔爽, 等. 堆肥对土壤重金属垂直分布的影响与污染评价[J]. 应用生态学报, 2007, 18(6): 1346−1350 doi: 10.3321/j.issn:1001-9332.2007.06.030

    CHAO L, ZHOU Q X, CUI S, et al. Profile distribution and pollution assessment of heavy metals in soils under livestock feces composts[J]. Chinese Journal of Applied Ecology, 2007, 18(6): 1346−1350 doi: 10.3321/j.issn:1001-9332.2007.06.030

    [24] 李祥峰, 杨冬月, 陈娜, 等. 浅谈猪饲料中重金属对生猪安全养殖的影响[J]. 上海畜牧兽医通讯, 2018(1): 49, 52

    LI X F, YANG D Y, CHEN N, et al. An review: The effect of heavy metal on pig safety in pig breeding[J]. Shanghai Journal of Animal Husbandry and Veterinary Medicine, 2018(1): 49, 52

    [25] 张亦菲, 张浩然, 徐汀, 等. 上海地区畜禽粪便中的重金属含量分析[J]. 畜牧与兽医, 2021, 53(6): 27−32

    ZHANG Y F, ZHANG H R, XU T, et al. An analysis of heavy metal contents in livestock and poultry manure in the Shanghai area[J]. Animal Husbandry & Veterinary Medicine, 2021, 53(6): 27−32

    [26] 徐慧, 程岩雄, 张玲茜, 等. 渔业养殖环境底泥中重金属含量的调查分析[J]. 农业与技术, 2018, 38(21): 33−34, 48

    XU H, CHENG Y X, ZHANG L Q, et al. Investigation and analysis of heavy metal contents in sediment of fishery culture environment[J]. Agriculture and Technology, 2018, 38(21): 33−34, 48

    [27] 张雨. 抗生素-金属复合物水生毒理及选择性吸附去除[D]. 大连: 大连理工大学, 2013

    ZHANG Y. Aquatic toxicity and selective adsorption removal of antibiotic and metal complex[D]. Dalian: Dalian University of Technology, 2013

    [28]

    SEILER C, BERENDONK T U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture[J]. Frontiers in Microbiology, 2012, 3: 399

    [29]

    HUANG R X, WEN B, PEI Z G, et al. Accumulation, subcellular distribution and toxicity of copper in earthworm (Eisenia fetida) in the presence of ciprofloxacin[J]. Environmental Science & Technology, 2009, 43(10): 3688−3693

    [30]

    PALM G J, LEDERER T, ORTH P, et al. Specific binding of divalent metal ions to tetracycline and to the Tet repressor/tetracycline complex[J]. JBIC Journal of Biological Inorganic Chemistry, 2008, 13(7): 1097−1110 doi: 10.1007/s00775-008-0395-2

    [31]

    LI L G, XIA Y, ZHANG T. Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection[J]. The ISME Journal, 2017, 11(3): 651−662 doi: 10.1038/ismej.2016.155

    [32]

    URRA J, ALKORTA I, MIJANGOS I, et al. Application of sewage sludge to agricultural soil increases the abundance of antibiotic resistance genes without altering the composition of prokaryotic communities[J]. Science of the Total Environment, 2019, 647: 1410−1420 doi: 10.1016/j.scitotenv.2018.08.092

    [33]

    KHATAEE A R, FATHINIA M. Recent advances in photocatalytic processes by nanomaterials[M]//SUIB S L. New and Future Developments in Catalysis: Catalysis by Nanoparticles. Amsterdam: Elsevier, 2013: 267–288

    [34]

    ANJALI R, SHANTHAKUMAR S. Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes[J]. Journal of Environmental Management, 2019, 246: 51−62

    [35]

    SAADATI F, KERAMATI N, GHAZI M M. Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: a review[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(8): 757−782 doi: 10.1080/10643389.2016.1159093

    [36]

    SONG C, ZHANG K X, WANG X J, et al. Effects of natural organic matter on the photolysis of tetracycline in aquatic environment: Kinetics and mechanism[J]. Chemosphere, 2021, 263: 128338 doi: 10.1016/j.chemosphere.2020.128338

    [37] 林立, 黄毅, 徐玲, 等. 分级结构g-C3N4/BiOBr可见光催化降解水环境中罗丹明B和四环素[J]. 湖南城市学院学报: 自然科学版, 2021, 30(4): 62−67

    LIN L, HUANG Y, XU L, et al. Degradation of RhB and tetracycline in aqueous solution by hierarchical g-C3N4/BiOBr under visible light[J]. Journal of Hunan City University: Natural Science, 2021, 30(4): 62−67

    [38]

    SONG C, LIU H Y, GUO S, et al. Photolysis mechanisms of tetracycline under UV irradiation in simulated aquatic environment surrounding limestone[J]. Chemosphere, 2020, 244: 125582 doi: 10.1016/j.chemosphere.2019.125582

    [39] 朱颖, 张蕾, 张寒冰, 等. BiVO4光催化去除废水中的四环素和环丙沙星[J]. 分子科学学报, 2020, 36(1): 41−48

    ZHU Y, ZHANG L, ZHANG H B, et al. Photocatalytic degradation of tetracycline and ciprofloxacin contaminated water by BiVO4[J]. Journal of Molecular Science, 2020, 36(1): 41−48

    [40]

    WANG L, BEN W W, LI Y G, et al. Behavior of tetracycline and macrolide antibiotics in activated sludge process and their subsequent removal during sludge reduction by ozone[J]. Chemosphere, 2018, 206: 184−191 doi: 10.1016/j.chemosphere.2018.04.180

    [41]

    WU J G, JIANG Y X, ZHA L Y, et al. Tetracycline degradation by ozonation, and evaluation of biodegradability and toxicity of ozonation byproducts[J]. Canadian Journal of Civil Engineering, 2010, 37(11): 1485−1491 doi: 10.1139/L10-100

    [42]

    AKMEHMET BALCıOĞLU I, ÖTKER M. Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes[J]. Chemosphere, 2003, 50(1): 85−95 doi: 10.1016/S0045-6535(02)00534-9

    [43]

    WANG C K, LIN C Y, LIAO G Y. Degradation of antibiotic tetracycline by ultrafine-bubble ozonation process[J]. Journal of Water Process Engineering, 2020, 37: 101463 doi: 10.1016/j.jwpe.2020.101463

    [44]

    FENTON H J H. LXXIII.— Oxidation of tartaric acid in presence of iron[J]. Journal of the Chemical Society, Transactions, 1894, 65: 899−910 doi: 10.1039/CT8946500899

    [45] 林爱秋, 程和发. 芬顿及光芬顿法降解氟喹诺酮类抗生素研究进展[J]. 环境化学, 2021, 40(5): 1305−1318 doi: 10.7524/j.issn.0254-6108.2021011401

    LIN A Q, CHENG H F. Recent development in the degradation of fluoroquinolones by Fenton and photo-Fenton processes[J]. Environmental Chemistry, 2021, 40(5): 1305−1318 doi: 10.7524/j.issn.0254-6108.2021011401

    [46]

    SHARMA A, AHMAD J, FLORA S J S. Application of advanced oxidation processes and toxicity assessment of transformation products[J]. Environmental Research, 2018, 167: 223−233 doi: 10.1016/j.envres.2018.07.010

    [47]

    LIU S, ZHAO X R, SUN H Y, et al. The degradation of tetracycline in a photo-electro-Fenton system[J]. Chemical Engineering Journal, 2013, 231: 441−448 doi: 10.1016/j.cej.2013.07.057

    [48]

    HOU L W, WANG L G, ROYER S, et al. Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst[J]. Journal of Hazardous Materials, 2016, 302: 458−467 doi: 10.1016/j.jhazmat.2015.09.033

    [49]

    BARHOUMI N, OTURAN N, AMMAR S, et al. Enhanced degradation of the antibiotic tetracycline by heterogeneous electro-Fenton with pyrite catalysis[J]. Environmental Chemistry Letters, 2017, 15(4): 689−693 doi: 10.1007/s10311-017-0638-y

    [50]

    BARHOUMI N, OLVERA-VARGAS H, OTURAN N, et al. Kinetics of oxidative degradation/mineralization pathways of the antibiotic tetracycline by the novel heterogeneous electro-Fenton process with solid catalyst chalcopyrite[J]. Applied Catalysis B: Environmental, 2017, 209: 637−647 doi: 10.1016/j.apcatb.2017.03.034

    [51]

    ZOU J P, CHEN Y, LIU S S, et al. Electrochemical oxidation and advanced oxidation processes using a 3D hexagonal Co3O4 array anode for 4-nitrophenol decomposition coupled with simultaneous CO2 conversion to liquid fuels via a flower-like CuO cathode[J]. Water Research, 2019, 150: 330−339 doi: 10.1016/j.watres.2018.11.077

    [52]

    HOMEM V, SANTOS L. Degradation and removal methods of antibiotics from aqueous matrices—A review[J]. Journal of Environmental Management, 2011, 92(10): 2304−2347 doi: 10.1016/j.jenvman.2011.05.023

    [53]

    LIU H Y, QU J, ZHANG T T, et al. Insights into degradation pathways and toxicity changes during electro-catalytic degradation of tetracycline hydrochloride[J]. Environmental Pollution, 2020, 258: 113702 doi: 10.1016/j.envpol.2019.113702

    [54]

    WANG J B, ZHI D, ZHOU H, et al. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode[J]. Water Research, 2018, 137: 324−334 doi: 10.1016/j.watres.2018.03.030

    [55]

    FOMINA M, GADD G M. Biosorption: current perspectives on concept, definition and application[J]. Bioresource Technology, 2014, 160: 3−14 doi: 10.1016/j.biortech.2013.12.102

    [56] 王晓洁, 赵蔚, 张志超, 等. 兽用抗生素在土壤中的环境行为、生态毒性及危害调控[J]. 中国科学: 技术科学, 2021, 51(6): 615−636 doi: 10.1360/SST-2020-0337

    WANG X J, ZHAO W, ZHANG Z C, et al. Veterinary antibiotics in soils: Environmental processes, ecotoxicity, and risk mitigation[J]. Scientia Sinica: Technologica, 2021, 51(6): 615−636 doi: 10.1360/SST-2020-0337

    [57]

    JIAO S J, ZHENG S R, YIN D Q, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria[J]. Chemosphere, 2008, 73(3): 377−382 doi: 10.1016/j.chemosphere.2008.05.042

    [58]

    LIU P, LIU W J, JIANG H, et al. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution[J]. Bioresource Technology, 2012, 121: 235−240 doi: 10.1016/j.biortech.2012.06.085

    [59]

    YANG W B, ZHENG F F, LU Y P, et al. Adsorption interaction of tetracyclines with porous synthetic resins[J]. Industrial & Engineering Chemistry Research, 2011, 50(24): 13892−13898

    [60]

    JI L L, CHEN W, DUAN L, et al. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents[J]. Environmental Science & Technology, 2009, 43(7): 2322−2327

    [61]

    JING X R, WANG Y Y, LIU W J, et al. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar[J]. Chemical Engineering Journal, 2014, 248: 168−174 doi: 10.1016/j.cej.2014.03.006

    [62]

    CHENG D L, NGO H H, GUO W S, et al. Applying a new pomelo peel derived biochar in microbial fell cell for enhancing sulfonamide antibiotics removal in swine wastewater[J]. Bioresource Technology, 2020, 318: 123886 doi: 10.1016/j.biortech.2020.123886

    [63]

    FERNÁNDEZ-CALVIÑO D, BERMÚDEZ-COUSO A, ARIAS-ESTÉVEZ M, et al. Competitive adsorption/desorption of tetracycline, oxytetracycline and chlortetracycline on two acid soils: Stirred flow chamber experiments[J]. Chemosphere, 2015, 134: 361−366 doi: 10.1016/j.chemosphere.2015.04.098

    [64]

    YIN Z F, XIA D, SHEN M, et al. Tetracycline degradation by Klebsiella sp. strain TR5: Proposed degradation pathway and possible genes involved[J]. Chemosphere, 2020, 253: 126729 doi: 10.1016/j.chemosphere.2020.126729

    [65]

    LENG Y F, BAO J G, CHANG G F, et al. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1[J]. Journal of Hazardous Materials, 2016, 318: 125−133 doi: 10.1016/j.jhazmat.2016.06.053

    [66]

    LIAO X B, ZOU R S, LI B X, et al. Biodegradation of chlortetracycline by acclimated microbiota[J]. Process Safety and Environmental Protection, 2017, 109: 11−17 doi: 10.1016/j.psep.2017.03.015

    [67]

    SHAO S C, HU Y Y, CHENG C, et al. Simultaneous degradation of tetracycline and denitrification by a novel bacterium, Klebsiella sp. SQY5[J]. Chemosphere, 2018, 209: 35−43 doi: 10.1016/j.chemosphere.2018.06.093

    [68]

    LI X, ZHAO X, CHEN Z L, et al. Isolation of oxytetracycline-degrading bacteria and its application in improving the removal performance of aerobic granular sludge[J]. Journal of Environmental Management, 2020, 272: 111115 doi: 10.1016/j.jenvman.2020.111115

    [69]

    MIGLIORE L, FIORI M, SPADONI A, et al. Biodegradation of oxytetracycline by Pleurotus ostreatus mycelium: a mycoremediation technique[J]. Journal of Hazardous Materials, 2012, 215/216: 227−232 doi: 10.1016/j.jhazmat.2012.02.056

    [70]

    WEN X H, JIA Y N, LI J X. Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 924−928

    [71]

    WANG S, MA X X, WANG Y Y, et al. Piggery wastewater treatment by aerobic granular sludge: Granulation process and antibiotics and antibiotic-resistant bacteria removal and transport[J]. Bioresource Technology, 2019, 273: 350−357 doi: 10.1016/j.biortech.2018.11.023

    [72]

    SONG X Y, LIU R, CHEN L J, et al. Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics[J]. Frontiers of Environmental Science & Engineering, 2017, 11(2): 1−9

    [73]

    CHEN J, LIU Y S, ZHANG J N, et al. Removal of antibiotics from piggery wastewater by biological aerated filter system: Treatment efficiency and biodegradation kinetics[J]. Bioresource Technology, 2017, 238: 70−77 doi: 10.1016/j.biortech.2017.04.023

    [74]

    CHENG D L, NGO H H, GUO W S, et al. Anaerobic membrane bioreactors for antibiotic wastewater treatment: Performance and membrane fouling issues[J]. Bioresource Technology, 2018, 267: 714−724 doi: 10.1016/j.biortech.2018.07.133

    [75]

    XIAO Y Y, YAOHARI H, DE ARAUJO C, et al. Removal of selected pharmaceuticals in an anaerobic membrane bioreactor (AnMBR) with/without powdered activated carbon (PAC)[J]. Chemical Engineering Journal, 2017, 321: 335−345 doi: 10.1016/j.cej.2017.03.118

    [76]

    PANJA S, SARKAR D, ZHANG Z M, et al. Removal of antibiotics and nutrients by vetiver grass (Chrysopogon zizanioides) from a plug flow reactor based constructed wetland model[J]. Toxics, 2021, 9(4): 84 doi: 10.3390/toxics9040084

    [77] 石路路, 丁海静, 白少元, 等. 均匀流场水平潜流人工湿地对四环素类抗生素的去除效果[J]. 化工环保, 2020, 40(6): 601−605 doi: 10.3969/j.issn.1006-1878.2020.06.007

    SHI L L, DING H J, BAI S Y, et al. Removal of tetracycline antibiotics in horizontal subsurface flowconstructed wetland with uniform flow field[J]. Environmental Protection of Chemical Industry, 2020, 40(6): 601−605 doi: 10.3969/j.issn.1006-1878.2020.06.007

    [78]

    SONG H L, ZHANG S, GUO J H, et al. Vertical up-flow constructed wetlands exhibited efficient antibiotic removal but induced antibiotic resistance genes in effluent[J]. Chemosphere, 2018, 203: 434−441 doi: 10.1016/j.chemosphere.2018.04.006

    [79]

    CHENG D L, NGO H H, GUO W S, et al. Evaluation of a continuous flow microbial fuel cell for treating synthetic swine wastewater containing antibiotics[J]. Science of the Total Environment, 2021, 756: 144133 doi: 10.1016/j.scitotenv.2020.144133

    [80] 陶玥彤, 李茹莹. 生物电化学系统对河道沉积物中抗生素的强化去除[J]. 环境科学学报, 2021, 41(4): 1383−1392

    TAO Y T, LI R Y. Enhanced removal of antibiotics from the river sediments by bioelectrochemical systems[J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1383−1392

    [81]

    WEN H Y, ZHU H, YAN B X, et al. Treatment of typical antibiotics in constructed wetlands integrated with microbial fuel cells: Roles of plant and circuit operation mode[J]. Chemosphere, 2020, 250: 126252 doi: 10.1016/j.chemosphere.2020.126252

    [82]

    YANG Z, JIA S Y, ZHUO N, et al. Flocculation of copper(Ⅱ) and tetracycline from water using a novel pH- and temperature-responsive flocculants[J]. Chemosphere, 2015, 141: 112−119 doi: 10.1016/j.chemosphere.2015.06.050

    [83] 王辉. Fe(Ⅱ/Ⅲ)对四环素类抗生素降解的影响及机制研究[D]. 北京: 北京交通大学, 2016

    WANG H. Effects and mechanisms of Fe(Ⅱ/Ⅲ) on the degradation of tetracycline antibiotics in water[D]. Beijing: Beijing Jiaotong University, 2016

    [84] 袁越. 钙镁离子对四环素在水—腐殖酸间分配的影响[D]. 北京: 中国地质大学(北京), 2020

    YUAN Y. Effects of calcium and magnesium ions on the partition of tetracycline between water and humic acid[D]. Beijing: China University of Geosciences, 2020

    [85] 黄翔峰, 熊永娇, 彭开铭, 等. 金属离子络合对抗生素去除特性的影响研究进展[J]. 环境化学, 2016, 35(1): 133−140 doi: 10.7524/j.issn.0254-6108.2016.01.2015071001

    HUANG X F, XIONG Y J, PENG K M, et al. The progress of antibiotics removal performance under the complexion effect of metal ions[J]. Environmental Chemistry, 2016, 35(1): 133−140 doi: 10.7524/j.issn.0254-6108.2016.01.2015071001

    [86]

    WANG Z Y, DUAN L, ZHU D Q, et al. Effects of Cu(Ⅱ) and Ni(Ⅱ) ions on adsorption of tetracycline to functionalized carbon nanotubes[J]. Journal of Zhejiang University SCIENCE A, 2014, 15(8): 653−661 doi: 10.1631/jzus.A1400108

    [87]

    GUO X, WANG P C, LI P, et al. Effect of Cu(Ⅱ) on adsorption of tetracycline by natural zeolite: performance and mechanism[J]. Water Science and Technology, 2019, 80(1): 164−172 doi: 10.2166/wst.2019.259

    [88]

    BAI Y H, SU J F, WEN Q, et al. Removal of tetracycline by denitrifying Mn(Ⅱ)-oxidizing bacterium Pseudomonas sp. H117 and biomaterials (BMO and MBMO): Efficiency and mechanisms[J]. Bioresource Technology, 2020, 312: 123565 doi: 10.1016/j.biortech.2020.123565

    [89]

    CHEN Y, LI H, WANG Z P, et al. Photoproducts of tetracycline and oxytetracycline involving self-sensitized oxidation in aqueous solutions: Effects of Ca2+ and Mg2+[J]. Journal of Environmental Sciences, 2011, 23(10): 1634−1639 doi: 10.1016/S1001-0742(10)60625-0

    [90] 汤贝贝. 铜—四环素络合对植物根系吸附和转移四环素的影响研究[D]. 南京: 南京理工大学, 2018

    TANG B B. The adsorption and transport of tetracycline by roots of macrophyte under the influence of copper complexation[D]. Nanjing: Nanjing University of Science and Technology, 2018

    [91] 朱伟刚. 重金属-四环素复合污染植物修复研究[D]. 开封: 河南大学, 2020

    ZHU W G. Study on phytoremediation of soil co-contaminated by heavy-metal and tetracycline[D]. Kaifeng: Henan University, 2020

    [92]

    LU X, TANG B B, ZHANG Q, et al. The presence of Cu facilitates adsorption of tetracycline (TC) onto water hyacinth roots[J]. International Journal of Environmental Research and Public Health, 2018, 15(9): 1982 doi: 10.3390/ijerph15091982

    [93] 张燕, 伏春燕, 阎佩佩, 等. 人工湿地去除畜禽养殖废水污染物研究进展[J]. 中国农业大学学报, 2021, 26(4): 192−200

    ZHANG Y, FU C Y, YAN P P, et al. Research progress on pollutant removal from livestock and poultry breeding wastewater by constructed wetlands[J]. Journal of China Agricultural University, 2021, 26(4): 192−200

    [94] 赵伟, 范增增, 杨新萍. 水平潜流人工湿地对畜禽养殖废水中特征污染物的去除[J]. 环境科学, 2021, 42(12): 5865−5875

    ZHAO W, FAN Z Z, YANG X P. Removal of characteristic pollutants in livestock wastewater by horizontal subsurface flow constructed wetlands[J]. Environmental Science, 2021, 42(12): 5865−5875

    [95]

    GUO X, LIU M M, ZHONG H, et al. Potential of Myriophyllum aquaticum for phytoremediation of water contaminated with tetracycline antibiotics and copper[J]. Journal of Environmental Management, 2020, 270: 110867 doi: 10.1016/j.jenvman.2020.110867

    [96]

    LIU X H, GUO X C, LIU Y, et al. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: Performance and microbial response[J]. Environmental Pollution, 2019, 254: 112996 doi: 10.1016/j.envpol.2019.112996

    [97] 陶正凯, 管凛, 荆肇乾, 等. 人工湿地处理含抗生素水的微生物响应研究进展[J]. 水处理技术, 2021, 47(9): 12−17, 31

    TAO Z K, GUAN L, JING Z Q, et al. Research progress in the treatment of antibiotic-containing water by microorganisms in constructed wetlands[J]. Technology of Water Treatment, 2021, 47(9): 12−17, 31

    [98]

    LIU L, LIU C X, ZHENG J Y, et al. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands[J]. Chemosphere, 2013, 91(8): 1088−1093 doi: 10.1016/j.chemosphere.2013.01.007

    [99] 马冬冬. 会仙湿地中典型微量污染物的分布特征与污染风险评价[D]. 桂林: 桂林理工大学, 2019

    MA D D. Distribution characteristics and pollution risk assessment of typical trace contaminants in Huixian wetland[D]. Guilin: Guilin University of Technology, 2019

  • 期刊类型引用(8)

    1. 殷寿延,杨思林,寇旭阳,孙仕仙. 湿地植物对镉和抗生素单一及复合污染物的去除机制. 生态毒理学报. 2024(01): 127-149 . 百度学术
    2. 崔芳溪,张蓬,曹胜凯,郑智轩,朱超,葛林科. 不同pH溶液中四环素类抗生素与金属离子配合前后的光化学性质及毒性差异. 环境科学学报. 2024(02): 136-144 . 百度学术
    3. 陶传奇,张华,黄健,奚姗姗,何春华,罗涛,王金花,张佳妹,马牧野. 金霉素和土霉素对生物除磷中微生物EPS的影响. 光谱学与光谱分析. 2024(04): 1191-1200 . 百度学术
    4. 郑晨格,裴欢欢,张亚珊,李嘉欣,刘奋武,乔星星,秦俊梅. 生物炭对四环素和铜复合污染土壤生菜生长及污染物累积的影响. 环境科学. 2024(05): 3037-3046 . 百度学术
    5. 连能利,罗竞,林长学,王智英,庄荣俊,肖长烨. 巯基化改性纤维素对水中Hg(Ⅱ)-四环素复合污染的处理研究. 工业水处理. 2024(10): 183-192 . 百度学术
    6. 刘子青,刘菁,刘寒冰,樊飞跃,苏春利,孙在金,师华定,梁家辉. 我国耕地土壤重金属输入输出平衡变化分析. 农业环境科学学报. 2023(06): 1274-1284+1182 . 百度学术
    7. 周强,蒋菱玉,杨燕,王振南,吕慎金. 畜禽养殖业污染防治发展现状、问题及对策. 养殖与饲料. 2022(11): 81-83 . 百度学术
    8. 杨莹博,易显凤,邓素媛,易显菊,赖大伟,黄丽,高崇敏. 日粮添加发酵紫花苜蓿饲喂金陵花鸡的效果研究. 饲料研究. 2022(19): 40-46 . 百度学术

    其他类型引用(16)

图(3)  /  表(1)
计量
  • 文章访问数:  1296
  • HTML全文浏览量:  503
  • PDF下载量:  141
  • 被引次数: 24
出版历程
  • 收稿日期:  2021-09-21
  • 录用日期:  2021-12-29
  • 网络出版日期:  2021-12-30
  • 刊出日期:  2022-06-08

目录

    /

    返回文章
    返回