离心微滤对猪场废水固液分离效果研究

胡旭朝, 董红敏, 尹福斌, 陈永杏

胡旭朝, 董红敏, 尹福斌, 陈永杏. 离心微滤对猪场废水固液分离效果研究[J]. 中国生态农业学报 (中英文), 2022, 30(6): 1027−1035. DOI: 10.12357/cjea.20210576
引用本文: 胡旭朝, 董红敏, 尹福斌, 陈永杏. 离心微滤对猪场废水固液分离效果研究[J]. 中国生态农业学报 (中英文), 2022, 30(6): 1027−1035. DOI: 10.12357/cjea.20210576
HU X Z, DONG H M, YIN F B, CHEN Y X. Effect of centrifugal microfiltration on solid-liquid separation of pig farm wastewater[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 1027−1035. DOI: 10.12357/cjea.20210576
Citation: HU X Z, DONG H M, YIN F B, CHEN Y X. Effect of centrifugal microfiltration on solid-liquid separation of pig farm wastewater[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 1027−1035. DOI: 10.12357/cjea.20210576
胡旭朝, 董红敏, 尹福斌, 陈永杏. 离心微滤对猪场废水固液分离效果研究[J]. 中国生态农业学报 (中英文), 2022, 30(6): 1027−1035. CSTR: 32371.14.cjea.20210576
引用本文: 胡旭朝, 董红敏, 尹福斌, 陈永杏. 离心微滤对猪场废水固液分离效果研究[J]. 中国生态农业学报 (中英文), 2022, 30(6): 1027−1035. CSTR: 32371.14.cjea.20210576
HU X Z, DONG H M, YIN F B, CHEN Y X. Effect of centrifugal microfiltration on solid-liquid separation of pig farm wastewater[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 1027−1035. CSTR: 32371.14.cjea.20210576
Citation: HU X Z, DONG H M, YIN F B, CHEN Y X. Effect of centrifugal microfiltration on solid-liquid separation of pig farm wastewater[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 1027−1035. CSTR: 32371.14.cjea.20210576

离心微滤对猪场废水固液分离效果研究

基金项目: 国家重点研发计划项目(2018YFD1100505)、财政部和农业农村部国家现代农业产业技术体系资助
详细信息
    作者简介:

    胡旭朝, 研究方向为农业废弃物处理与资源化利用。E-mail: huxuzhao@caas.cn

    通讯作者:

    尹福斌, 主要从事畜牧环境工程方面研究。E-mail: yinfubin@caas.cn

  • 中图分类号: X713

Effect of centrifugal microfiltration on solid-liquid separation of pig farm wastewater

Funds: The study was supported by the National Key Research and Development Program of China (2018YFD1100505) and China Agriculture Research System of Ministry of Finance and Ministry of Agriculture and Rural Affairs.
More Information
  • 摘要: 固液分离是畜禽废水处理的关键技术, 不仅可以将固体物质分离出来进一步肥料化利用, 还可减少废水中污染物浓度从而降低后续处理负荷。本文主要针对传统的固液分离设备效果差和效率低的问题, 以离心微滤机为研究对象, 通过系统监测, 科学评价猪场废水总固体浓度(1%、2%、3%、4%和5%)和离心微滤机筛网孔径(15 µm、25 µm和50 µm)对去除率的影响。结果表明, 随着总固体浓度的增高和筛网孔径的减小, 水质指标的去除率有增加趋势。随筛网孔径的增大离心微滤机单位时间内的处理量也随之增加, 50 µm时处理量为14~19 m3∙h−1, 15 µm与25 µm时处理量为2~7 m3∙h−1。综合考虑, 总固体浓度为5%和筛网孔径为50 µm为最佳处理组, 水质指标中总固体浓度、化学需氧量和总磷的去除率分别为57%、29%和43%。该离心微滤机与其他固液分离设备相比, 具有分离效果好和能耗低的优点, 因此在处理猪场废水时具有较好的应用前景。
    Abstract: Large amounts of livestock waste are discharged owing to the rapid development of the livestock industry, and they cause serious environmental pollution if not effectively treated. Livestock waste has high pollutant concentrations and complex compositions; hence, it requires effective pretreatment to avoid high post-treatment difficulties and low treatment effects. Solid-liquid separation has been reported to be a key technology for livestock waste treatment. This technology could produce a solid fraction that can be used as a high-nutrient fertilizer and reduce pollutants in the waste, lowering the loads for subsequent treatments. However, the effect and efficiency of the traditional solid-liquid separation process for treating livestock waste are relatively low and need to be improved. In this study, a new centrifugal microfiltration separator, used for the reduction of pollutants in livestock waste, was systematically evaluated under different conditions. This study monitored the correlation between total solid (TS) concentrations in pig farm wastewater and other related water quality parameters. The effects of different TS concentrations and mesh sizes on the rate and treatment costs of the separator were also studied. The TS was set to 1%, 2%, 3%, 4%, and 5%, and the mesh sizes were set to 15, 25, and 50 µm. The results showed that TS concentrations were negatively correlated with pH and electrical conductivity (EC), and positively correlated with chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (NH4 +-N) and total phosphorus (TP) in the wastewater. The correlation between TS and pH, COD, and TP was higher, with correlation coefficients (R2) of 0.57, 0.53, and 0.66, respectively. TS had no obvious correlation with turbidity, EC, TN, or NH4 +-N with R2 of 0.33, 0.02, 0.10 and 0.03, respectively. The separator effectively removed TS from pig farm wastewater with a removal rate of 17%−68%. The removal rate of turbidity, COD, TN, TP and NH4 +-N were 3%–39%, 17%–59%, 4%–43%, 18%–54%, and 2%–17%, respectively. The removal rate of pollutants from pig farm wastewater increased with an increase in TS and a decrease in mesh size. The removal rate increased with increasing mesh size. The mesh size of 15 µm had the highest removal rates of 68% for TS, 40% for turbidity, 59% for COD, 42% for TN, and 54% for TP. There was a significant difference in treatment capacity between all mesh sizes (P<0.01). The treatment capacity of 50 µm mesh size was 14‒19 m3∙h−1 and that of 15 and 25 µm mesh size was 2‒7 m3∙h−1. The operational costs of centrifugal microfiltration machine using the screen sizes of 15, 25, and 50 µm in a pig farm having stock of 10 000 pigs as an example were estimated to be 2.44, 2.06, and 1.08 ¥∙m−3, respectively. The optimal mesh size and TS for treating pig farm wastewater were 50 µm and 5%, respectively, when considering removal rate and treatment capacity. Compared with traditional solid-liquid separators, the new separator has good application prospects because of its high separation effect and low energy consumption.
  • 随着人们对蛋、奶、肉类需求的不断增加, 畜禽养殖业得以快速发展, 同时也产生了大量畜禽废水。畜禽养殖废水主要包含畜禽粪尿、饲料残渣、少量漏洒的畜禽饮用水, 具有高悬浮物、高有机物、高氨氮(ammonia nitrogen, ${\rm{NH}}_4^ + $-N)等特点, 导致其处理难度大、处理效果稳定性差。大量的畜禽废水若不进行有效处理, 不仅对环境造成污染, 也造成粪便中有机肥和养分的损失[1-2]。据《全国第二次污染源普查公报》结果显示, 2017年畜禽养殖业排放化学需氧量(chemical oxygen demand, COD) 1000.53万t、总氮(total nitrogen, TN) 59.63万t, 分别占农业污染排放的93.76%和42.14%。

    现有的各种畜禽废水处理工艺, 固液分离起关键作用: 一方面可去除畜禽废水中的悬浮性固体物质, 降低后续处理负荷; 另一方面, 分离得到的固体可以堆肥制作有机肥等, 实现资源化利用[3-4]。目前, 固液分离技术主要包括重力沉降和机械分离, 重力沉降是利用颗粒物自身的重力实现固体和液体的分离[5-7], 不添加絮凝剂的条件下对总固体(total solid, TS)、挥发性固体(volatile solid, VS)、TN、总磷(total phosphorus, TP)的去除率分别为55%、70%、20%和40%[8]。重力沉降技术操作简单、运行成本低, 早期被大量推广, 但因其工作周期长, 占地面积大, 并伴有恶臭气体, 逐渐被高效的机械分离所替代。机械分离包含筛分、压滤和离心。目前, 螺旋挤压机在处理养殖废水过程的应用最为广泛。如Riaño等[9]研究了螺旋挤压机作为硝化反应前处理可行性, 可实现TS和COD的去除率分别为33.4%和24.7%。关正军等[10]研究表明, 螺旋挤压机在处理牛粪尿过程中呈现较好的分离效果, 固体去除率可达49.84%。螺旋挤压机分离后的固体含水率可以达到堆肥的要求, 但是分离后的液体仍含有大量的悬浮性物质, 不利于后续处理。离心分离机的产水效果优于螺旋挤压机, 可使废水中总固体去除率为50%~65%, COD去除率约为45%~55%, 氮、磷元素的去除率为30%~50%, 但是存在投资和运行成本较高的问题[11]。因此, 开发一种高效固液分离技术有助于提升畜禽废水处理工艺。

    离心微滤机是一种新型的固液分离设备, 与传统的只利用单一技术设计的固液分离设备相比, 离心微滤机是将离心和微滤技术相结合研制的新型固液分离机, 可在一定程度上提高固液分离效率且节省能耗。其中离心的作用是为固液分离提供穿透微滤机筛网的作用力, 筛网则是拦截大颗粒物实现固液分离的关键环节, 尤其是筛网孔径可直接影响固液分离效果。在固液分离过程中物料种类(TS浓度、粒径分布和黏度)和分离设备的运行参数(筛网孔径和电机转速)是影响固液分离效果的主要因素[12-14]。本研究针对离心微滤机处理猪场废水过程中的效果不明确问题, 以污水水质指标(TS、COD等)去除率和处理效率为参考指标, 探讨猪场废水TS浓度和筛网孔径对离心微滤机固液分离效果的影响, 优选离心微滤机的运行参数, 为新型猪场污水高效固液分离技术提供科学支撑。

    试验地点为河北省某生猪养殖场, 该养殖场存栏量4000头, 清粪工艺采用水泡粪, 日产生量约50 m3。试验时间在2020年10月至2021年4月, 取样次数共计45次, 通过抽粪车抽取储存池中不同深度的废水, 保证总固体浓度的不同, 范围在0.5%~8.0%, 其他水质指标如表1所示。

    表  1  原始猪场废水的特性
    Table  1.  Properties of the raw pig farm wastewater
    指标 Index数值 Value
    总固体浓度 Total solid concentration (%)0.5~8.0
    pH5.73~7.31
    电导率 Electrical conductivity (µS·cm−1)4360~9307
    浊度 Turbidity (NTU)5595~39 720
    化学需氧量 Chemical oxygen demand (mg·L−1)6720~72 650
    总氮 Total nitrogen (mg·L−1)464~2460
    总磷 Total phosphorus (mg·L−1)442~4500
    氨氮 Ammonia nitrogen (mg·L−1)300~1248
    下载: 导出CSV 
    | 显示表格

    图1为试验的工艺流程图, 猪场废水通过抽粪车从养殖场运输到试验现场储水桶(4), 然后打开搅拌泵(3)使物料得到充分搅拌, 经过螺杆泵(6)进入离心微滤机(7)实现固液分离, 分离后的固体和液体分别排放到固体储存池(8)和液体储存池(9)。

    图  1  离心微滤工艺流程图
    1. 进料口; 2. 滤网; 3. 搅拌泵; 4. 储水桶; 5. 止水阀; 6. 螺杆泵; 7. 微滤机; 8. 固体储存池; 9. 液体储存池。1. feed inlet; 2. screen; 3. mixing pump; 4. water storage bucket; 5. water stop valve; 6. screw pump; 7. microfiltration machine; 8. solid storage pool; 9. liquid storage pool.
    Figure  1.  Flow chart of the centrifugal microfiltration process

    图2为离心微滤机结构(左: 主视图; 右: 左视图), 主要由筛网(6)和驱动单元(7)组成, 自动加油脂器(5)起到润滑电机的作用, 使设备保持良好的运行状态。物料通过螺杆泵从下端口(1)进入, 通过离心和螺旋挤压的作用实现固液分离, 固体物质从上端端口(3)排出, 分离液透过筛网从下端口(2)排出, 微滤机运行过程无需清洗。离心微滤机3种筛网孔径可供选择, 分别为15 µm、25 µm和50 µm, 其他主要设备参数见表2所示。

    设计不同TS浓度(1%、2%、3%、4%和5%)与不同筛网孔径(15 µm、25 µm和50 µm)的交叉试验, 共15个处理, 每个处理设置3个重复。猪场废水通过加水稀释调节合适TS的浓度。记录储水桶体积变化, 计算其单位时间内处理量。并对原废水、分离液和固体部分进行采样, 采样点分别为图2中的点1、点2和点3。在设备运行过程中每间隔5 min采一次样, 设置3个平行, 并检测水质指标, 分析其去除率。

    图  2  离心微滤机的示意图
    1. 进料口; 2. 微滤液体出口; 3. 浓缩污泥出口; 4. 流量调节器; 5.自动加油脂器; 6. 筛网; 7. 电机; 8. 支撑脚。1. feed inlet; 2. microfiltration liquid outlet; 3. concentrated sludge outlet; 4. flow regulator; 5. automatic greaser; 6. filter mesh; 7. motor; 8. support foot.
    Figure  2.  Schematic diagram of centrifugalmicrofiltration
    表  2  猪粪固液分离主要试验仪器的设备参数
    Table  2.  Parameters of equipment used for the solid-liquid separation of pig farm wastewater
    设备仪器
    Equipment instrument
    参数
    Parameter
    数值
    Value
    搅拌泵 Mixing pump功率 Power3 kW
    储水桶 Water storage bucket体积 Volume8 m3
    滤网 Screen孔径 Mesh size1 cm
    螺杆泵 Screw pump功率 Power4 kW
    微滤机 Microfiltration machine功率 Power7.5 kW
    下载: 导出CSV 
    | 显示表格

    TS测定采用重量法(NY/T 302—1995); pH和EC的测定分别采用便携式pH计(Five Go F2, 梅特勒, 瑞士)和便携式电导率仪(METTLER TOLEDO FE38); 浊度测定采用哈希便携式浊度仪(2100Q, 哈希, 美国); COD测定采用重铬酸钾快速消解分光光度法(DR 6000, 哈希, 美国, 量程: 0~1500 mg∙L−1); TN测定采用过硫酸盐氧化法(DR 6000, 哈希, 美国, 量程: 0~150 mg∙L−1); ${\rm{NH}}_4^ + $-N测定采用水杨酸分光光度法(DR 6000, 哈希, 美国, 量程: 0~50 mg∙L−1); TP测定采用钼酸铵分光光度法(DR 6000, 哈希, 美国, 量程: 0~100 mg∙L−1)。

    固液分离前后水质指标的变化用Ri表示去除率, 其计算公式为[15]:

    $$ R_{i}=1-C_{{\rm{L}}i}/C_{{\rm{S}}i} $$ (1)

    式中: R表示粪尿中去除化合物i到固体馏分的效率, %; CLi表示分离后液体中化合物i的浓度, mg∙L−1; CSi表示原始粪尿中化合物i的浓度, mg∙L−1

    单位时间的处理量(P, L∙h−1)反映了工艺产水效率, 其计算公式为[16]:

    $$ P=V/t $$ (2)

    式中: V为批次处理体积, L; t为批次处理时间, h。

    采用Excel (Microsoft 2016)对试验结果进行数据整理记录, 用Origin 2021b软件统计分析(显著性和相关性分析)和作图, 工艺流程图和设备结构示意图采用 AutoCAD 2021绘画。

    以该养殖场废水建立TS浓度与各项水质指标(pH、EC、浊度、COD、TN、${\rm{NH}}_4^ + $-N和TP)间的线性关系方程, 如图3所示。结果表明TS与pH和EC呈负相关, 与COD、TN、${\rm{NH}}_4^ + $-N和TP都是呈正相关。其中TS浓度与pH、COD、TP具有较好相关性, 决定系数(R2)分别为0.57、0.53和0.66, 与其他指标(浊度、EC、TN和${\rm{NH}}_4^ + $-N)的相关性较差, R2分别为0.33、0.02、0.10和0.03。但Zhu等[17]研究表明妊娠猪粪便中TS与TN和TP之间的相关性较强, 其中决定系数分别为0.988和0.994。本研究决定系数较差可能是因为试验物料为实际猪场废水, 水质指标不稳定。因此建立线性方程的过程中, 不能涵盖而论, 要考虑多方面的因素, 这样可以提高水质指标估计的准确性[18-20]

    图  3  猪场废水总固体浓度与酸碱度和电导率(a)、浊度和化学需氧量(b)、总氮和氨氮(c)及总磷(d)的关系
    Figure  3.  Correlations between total solid concentration with pH and electrical conductivity (a), turbidity and chemical oxygen demand (b), total nitrogen and ammonia nitrogen contents (c) and total phosphorus content (d)

    离心微滤处理后液体部分水质指标如表3所示。其中对TS的去除效果较好, 去除率为17%~68%, 对浊度、COD、TN、TP和${\rm{NH}}_4^ + $-N的去除率分别为3%~39%、17%~59%、4%~43%、18%~54%和2%~17%。对COD和TP去除效果较好的原因在于养殖废水中90%的TP和COD存在于固相之中[21]。对于TN和${\rm{NH}}_4^ + $-N去除效果较差的原因为养殖废水中氮元素主要以无机盐、氨基酸及多肽等形式存在, 含氮元素化合物的溶解速率较高、更易于溶解, 从而转化为溶解态的${\rm{NH}}_4^ + $-N, 该微滤机的筛网孔径为微米级别, 因此不能对${\rm{NH}}_4^ + $-N进行有效截留[22], 并且出现分离液中${\rm{NH}}_4^ + $-N浓度升高的现象。相关研究表明在储存过程中有机氮会发生分解, 造成${\rm{NH}}_4^ + $-N的浓度增加[15]表4所示, 筛网孔径对TS、浊度、COD、TN的去除率有显著影响(P<0.05); TS浓度对TS、浊度、TN和TP的去除率存在显著影响(P<0.05)。但筛网孔径和TS浓度对各水质指标去除率无交互作用。

    表  3  离心微滤机进水和产水水质指标
    Table  3.  Water quality indexes of inlet and produced water of centrifugal microfiltration machine
    指标
    Index
    进水
    Raw pig farm wastewater
    出水 Separated wastewater
    15 µm筛网
    15 µm mesh
    25 µm筛网
    25 µm mesh
    50 µm筛网
    50 µm mesh
    总固体浓度 Total solid (%)0.5~8.00.3~1.70.6~2.20.6~2.8
    pH5.73~7.315.88~6.956.1~7.226.32~7.27
    电导率 Electrical conductivity (µS∙cm−1)4360~93076001~77465077~11 5004339~10 870
    浊度 Turbidity (NTU)5595~39 7208490~18 4504695~26 7504920~32 340
    化学需氧量 Chemical oxygen demand (mg·L−1)6720~72 6509740~35 0806720~45 48012 350~46 360
    总氮 Total nitrogen (mg·L−1)464~2460312~1950640~2000620~2440
    总磷 Total phosphorus (mg·L−1)442~4500456~1602208~3780396~3220
    氨氮 Ammonia nitrogen (mg·L−1)300~1248432~970340~1167276~1504
    下载: 导出CSV 
    | 显示表格
    表  4  猪场废水总固体浓度和离心微滤机筛网孔径对于水质指标去除率影响的显著性分析(P值)
    Table  4.  Significance analysis of total solid concentration and mesh size on wastewater characters (removal rates of wastewater indexes) of pig farm wastewater after solid-liquid separation (P value)
    变异来源
    Variation source
    总固体浓度
    Total solid
    浊度
    Turbidity
    化学需氧量
    Chemical oxygen demand
    总氮
    Total nitrogen
    总磷
    Total phosphorus
    氨氮
    Ammonia nitrogen
    孔径 Mesh size (MA)<0.05<0.05<0.05<0.050.260.11
    总固体浓度 Total solid (TS)<0.05<0.050.09<0.05<0.050.11
    MA×TS0.940.160.950.540.870.26
      P<0.05水平上因素之间相关性显著; P>0.05水平上因素之间相关性不显著。 There was significant correlation between the factors at the level of P<0.05; there was no significant correlation between the factors at the level of P>0.05.
    下载: 导出CSV 
    | 显示表格

    TS浓度对固液分离效果的影响如图4所示, 当筛网孔径一定时, 不同TS浓度下COD、TP和${\rm{NH}}_4^ + $-N的去除率均无显著性差异(P>0.05), TS、浊度和TN的去除率有显著性差异(P<0.05)。当筛网孔径为15 µm时, TS、COD和TP的去除率基本随着TS浓度增加而增加。浊度的去除率随着TS浓度的升高呈先减小后增加的趋势; TN的去除率随着TS浓度增加呈先增加后减小的趋势; ${\rm{NH}}_4^ + $-N去除率呈无规则变化。当筛网孔径为25 µm时, TS、TN和${\rm{NH}}_4^ + $-N的去除率基本随着TS浓度增加而增加; 随着TS浓度的增加TP呈先增加后减小的趋势; 而浊度、COD和TP的去除率呈不规律变化。当筛网孔径为50 µm时, TS的去除率随着TS浓度增加而增加; 浊度、COD、TN、TP和${\rm{NH}}_4^ + $-N去除率呈不规则变化。综上所述, 当筛网孔径一定时, TS的去除率随着进料浓度增加而增加。这与相关研究结果一致, Sneath等[23]研究离心机处理猪场废水过程中, 当TS浓度从2%增加到8%时, TS去除率从43%增加到61%。但其他水质指标呈现出不规则变化, 这与相关研究的结论存在差异, 如杨迪等[24]选取3种不同筛网孔径, 研究不同浓度和筛网孔径对于分离率的影响, 结果表明当筛网孔径一定时, 随着污水浓度的升高, COD、TN和TP的去除率均有升高的趋势。研究结论不一致的原因在于本试验采取有实际猪场的废水, 物料特性存在差异, 从而造成去除率的不规则变化。

    图  4  总固体浓度和筛网孔径下离心微滤机的猪场废水总固体(a)、浊度(b)、化学需氧量(c)、总氮(d)、总磷(e)和氨氮(f)的去除效果
    不同小写字母表示筛网孔径对去除率在P<0.05水平影响显著; 不同大写字母表示总固体浓度对去除率在P<0.05水平影响显著。Different lowercase letters represent significant differences in the removal rate with different mesh sizes at P<0.05 level; and different capital letters represent significant differences in the removal rate with different total solid concentrations at P<0.05 level.
    Figure  4.  Separation efficiencies of total solid (a), turbidity (b), chemical oxygen demand (c), total nitrogen (d), total phosphorus (e), and ammonia nitrogen (f) of centrifugal microfiltration with different sizes under different total solid concentration of pig farm wastewater

    筛网孔径对固液分离效果的影响如图4所示。当TS浓度一定时, 不同筛网孔径下TS、COD、TP和${\rm{NH}}_4^ + $-N的去除率均无显著差异。当TS浓度为1%时, TS、浊度、COD和TN的去除率随筛网孔径减小而增加; TP和${\rm{NH}}_4^ + $-N的去除率先减小后增加。当TS浓度为2%时, TS、浊度、COD和TN的去除率均随筛网孔径减小而增加; TP的去除率先减小后增加; ${\rm{NH}}_4^ + $-N的去除率呈减小趋势。当TS浓度为3%时, TS、浊度、COD和TN的去除率均随筛网孔径减小而增加; TP的去除率先增加后减小; ${\rm{NH}}_4^ + $-N的去除率先减小后增加。当TS浓度为4%时, 随着筛网孔径减小, TS、浊度、COD、TN和TP的去除率增加; ${\rm{NH}}_4^ + $-N的去除率呈减小趋势。当TS浓度为5%时, TS、浊度、COD和TN的去除率均随筛网孔径减小而增加; TP和${\rm{NH}}_4^ + $-N的去除率先减小后增加。综上所述, 当TS浓度一定时, TS、浊度、COD和TN的去除率随着筛网孔径的减小而增加。因此筛网孔径对于各项水质指标的去除效果为15 µm处理>25 µm处理>50 µm处理。这与杨迪等[24]研究结果相同, 当筛网孔径减小时, 固液分离机对污染物的去除率得到提高, 其中 TN去除率由13.9%增加到31.4%; TP去除率由10.4%增加到18.7%。王明等[25]得到相同的研究结果, 随筛网孔径减小分离效果提高, 当筛网孔径从0.7 mm减小到0.3 mm, 对固体物质的去除率提高20%。其中TP和${\rm{NH}}_4^ + $-N出现不规则变化, 主要原因在于物料间存在差异性和${\rm{NH}}_4^ + $-N的水溶性造成。综上所述, 随着总固体浓度的升高和筛网孔径的减小, 对于水质指标的去除率有升高的趋势。当废水浓度为5%和筛网孔径15 µm时, 对于TS、浊度、COD、TN和TP的去除率可达最大值, 分别为68%、39%、59%、42%和54%。

    TS浓度和筛网孔径的变化对于离心微滤机处理量的影响如图5所示。当筛网孔径为15 µm和50 µm时, 随着TS浓度升高, 单位时间处理量呈升高趋势。筛网孔径越大, 单位时间内的处理效率越高(P<0.01)。 当筛网孔径为50 µm时处理量为14~19 m3∙h−1; 15 µm和25 µm的处理量为2~7 m3∙h−1。杨迪等[24]得到相同结果, 筛网孔径越大, 处理效率越高。

    图  5  猪场废水总固体浓度和筛网孔径对处理量的影响
    Figure  5.  Effects of total solid concentration of pig farm wastewater and mesh size on treatment capacity

    以万头猪场为例, 该养殖场每天需处理废水量约150 m3。离心微滤机的筛网孔径为15 µm和25 µm时处理量按5 m3∙h−1, 50 µm的处理量按15 m3∙h−1; 所以当处理相同的废水量时15 µm和25 µm需要购置3台相同型号的设备。依据使用手册该设备每天运行10 h, 使用年限为15年, 因此每台设备的折旧费用约0.18元∙m−3。离心微滤机运行需人工1人, 人工费用按100 元∙d−1, 处理一方废水的人工费为0.67元。通过调节变频器控制微滤机转速, 当筛网孔径为15 µm、25 µm和50 µm时, 转速的控制范围分别为1500 r∙min−1、1050~1500 r∙min−1和450~1200 r∙min−1。运行过程中耗电设备为微滤机、螺杆泵和搅拌泵, 处理1 m3的废水能耗分别为1.46~3.38 kWh、1.36~1.95 kWh和0.40~0.48 kWh。当地电费按0.50 元∙kWh−1计算, 筛网孔径为50 µm时能耗成本最低, 范围在0.20~0.26 元∙m−3; 当筛网孔径为15 µm和25 µm时能耗成本分别在0.73~1.69元∙m−3和0.68~0.98元∙m−3。离心微滤机的能耗成本选取中间值分别为1.21元∙m−3、0.83元∙m−3和0.23元∙m−3。综合核算可知, 离心微滤机筛网孔径为15 µm、25 µm和50 µm时, 运行成本分别为2.44元∙m−3、2.06元∙m−3和1.08元∙m−3(表5)。

    表  5  不同筛网孔径的离心微滤机处理猪场废水的经济性分析
    Table  5.  Economic analysis of solid-liquid separation of pig farm wastewater with centrifugal microfiltration with different size
    项目 Project筛网孔径 Mesh size (µm)
    152550
    处理量 Processing amount (m3∙h−1)5515
    离心微滤机的购置费 Cost of centrifugal microfiltration equipment (×104 ¥)454515
    离心微滤机折旧费用 Depreciation cost of centrifugal microfiltration (¥∙m−3)0.560.560.18
    离心微滤机能耗 Electricity consumption of centrifugal microfiltration (¥∙m−3)1.210.830.23
    人工费 Cost of labor (¥∙m−3)0.670.670.67
    处理成本 Treatment cost (¥∙t−1)2.442.061.08
    下载: 导出CSV 
    | 显示表格

    综上所述, 该离心微滤机最优的处理组为筛网孔径为50 µm和TS浓度为5%, 此时水质指标TS、COD和TP的去除率分别为57%、29%和43%, 处理量可以达到最大值19 m3∙h−1。该离心微滤机是一种将离心和微滤相结合的固液分离设备, 对其进行研究的目的是为提高猪场废水固液分离效果的同时降低运行成本。与前人的研究结果[23-27]相比(表6), 该离心微滤机对TS和COD的去除率高于水力筛、滤网和螺旋挤压机等设备, 与沉降离心机的去除效果相当, 但其具有处理效率高且能耗低的优点, 因此在处理猪场废水时具有较好的应用前景。

    表  6  不同固液分离技术的效果与能耗
    Table  6.  Different solid-liquid separation of separation effect and energy consumption
    废水类型
    Wastewater type
    水质指标
    Water quality index
    固液分离类型Solid-liquid
    separation type
    筛网孔径
    Mesh aperture (mm)
    去除率Removal
    rate (%)
    处理量Treatment
    amount (m3·h−1)
    能耗Power
    consumption
    参考文献
    Reference
    猪场废水
    Pig farm wastewater
    COD: 10 086~19 051 mg∙L−1振动筛
    Vibrating screen
    0.93, 1.20, 1.519.26~23.240~801.5 kW[24]
    TN: 2350~1367 mg∙L−113.9~31.4
    ${\rm{NH}}_4^ + $-N: 528~250 mg∙L−10.3~1.2
    TP: 197~107 mg∙L−110.4~18.7
    猪场废水
    Pig farm wastewater
    COD: 12 000~18 000 mg∙L−1滤网
    Filter screen
    NA25~30NANA[26]
    牛场废水
    Cattle farm wastewater
    TS: 13%螺旋挤压机
    Screw extractor
    0.3, 0.5, 0.741.5~60.915~20NA[25]
    VS: 83.1%7.3~11.6
    ${\rm{NH}}_4^ + $-N: 790 mg∙L−1
    猪场废水
    Pig farm wastewater
    TS, TP, TN: 5.6 mg∙L−1螺旋挤压机
    Screw extractor
    0.5, 0.75, 1, 3TS 19.2~49.4TP 12.8~49.4
    TN 4.4~19.2
    NANA[27]
    猪场废水
    Pig farm wastewater
    TS: 2.0%~8%沉降离心机
    Sedimentation centrifuge
    NATS 43~61
    SS 73
    4~1015 kW[23]
    猪场废水
    Pig farm wastewater
    TS: 0.5%~8.0%离心微滤机
    Centrifugal microfiltration
    0.015, 0.025, 0.055714~197.5 kW本研究
    This study
    COD: 6720~72 650 mg∙L−129
    TP: 442~4500 mg∙L−143
      COD: 化学需氧量; TN: 总氮; NH4+-N: 氨氮; TP: 总磷; TS: 总固体含量; VS: 挥发型固体; NA: 无相关参数。COD: chemical oxygen demand; TN: total nitrogen; NH4+-N: ammonia nitrogen; TP: total phosphorus; TS: total solids; VS: volatile solid; NA: not available
    下载: 导出CSV 
    | 显示表格

    离心微滤机是将离心技术和微滤技术相结合设计研制的固液分离机, 其中离心的作用是为固液分离提供穿透筛网的作用力, 筛网则是拦截大颗粒物实现固液分离, 将两者结合可在一定程度上提高固液分离效率且节省能耗。本研究明确了该离心微滤设备处理猪场废水的效果, 具体结论如下:

    1)猪场废水各指标之间可建立关系方程, 从而使用一些简单易测的指标来评价其他水质指标, 节约检测时间和降低检测成本, 但在建立线性方程的过程中不能涵盖而论, 要考虑多方面的因素, 以提高水质指标估计的准确性。

    2) 该离心微滤机对TS、浊度、COD、TN、TP和${\rm{NH}}_4^ + $-N各项指标的去除率范围分别在17%~68%、3%~39%、17%~59%、4%~43%、18%~54%和2%~17%。随着总固体浓度的升高和筛网孔径的减小, 对于水质指标的去除率有升高的趋势。当TS浓度为5%和筛网孔径为15 µm时, TS、浊度、COD和TP的去除率达到最大值, 分别为68%、39%、59%和54%。但当筛网孔径为15 µm时, 处理效率下降、能耗增加。综合考虑, 当总固体浓度为5%和筛网孔径为50 µm时为最佳处理组, 水质指标TS、COD和TP的去除率分别为57%、29%和43%, 处理量可达19 m3∙h−1。离心微滤机与沉降离心机对水质指标的去除率相当, 但可以提高处理效率和降低能耗, 因此在处理猪场废水时具有较好的应用前景。

  • 图  1   离心微滤工艺流程图

    1. 进料口; 2. 滤网; 3. 搅拌泵; 4. 储水桶; 5. 止水阀; 6. 螺杆泵; 7. 微滤机; 8. 固体储存池; 9. 液体储存池。1. feed inlet; 2. screen; 3. mixing pump; 4. water storage bucket; 5. water stop valve; 6. screw pump; 7. microfiltration machine; 8. solid storage pool; 9. liquid storage pool.

    Figure  1.   Flow chart of the centrifugal microfiltration process

    图  2   离心微滤机的示意图

    1. 进料口; 2. 微滤液体出口; 3. 浓缩污泥出口; 4. 流量调节器; 5.自动加油脂器; 6. 筛网; 7. 电机; 8. 支撑脚。1. feed inlet; 2. microfiltration liquid outlet; 3. concentrated sludge outlet; 4. flow regulator; 5. automatic greaser; 6. filter mesh; 7. motor; 8. support foot.

    Figure  2.   Schematic diagram of centrifugalmicrofiltration

    图  3   猪场废水总固体浓度与酸碱度和电导率(a)、浊度和化学需氧量(b)、总氮和氨氮(c)及总磷(d)的关系

    Figure  3.   Correlations between total solid concentration with pH and electrical conductivity (a), turbidity and chemical oxygen demand (b), total nitrogen and ammonia nitrogen contents (c) and total phosphorus content (d)

    图  4   总固体浓度和筛网孔径下离心微滤机的猪场废水总固体(a)、浊度(b)、化学需氧量(c)、总氮(d)、总磷(e)和氨氮(f)的去除效果

    不同小写字母表示筛网孔径对去除率在P<0.05水平影响显著; 不同大写字母表示总固体浓度对去除率在P<0.05水平影响显著。Different lowercase letters represent significant differences in the removal rate with different mesh sizes at P<0.05 level; and different capital letters represent significant differences in the removal rate with different total solid concentrations at P<0.05 level.

    Figure  4.   Separation efficiencies of total solid (a), turbidity (b), chemical oxygen demand (c), total nitrogen (d), total phosphorus (e), and ammonia nitrogen (f) of centrifugal microfiltration with different sizes under different total solid concentration of pig farm wastewater

    图  5   猪场废水总固体浓度和筛网孔径对处理量的影响

    Figure  5.   Effects of total solid concentration of pig farm wastewater and mesh size on treatment capacity

    表  1   原始猪场废水的特性

    Table  1   Properties of the raw pig farm wastewater

    指标 Index数值 Value
    总固体浓度 Total solid concentration (%)0.5~8.0
    pH5.73~7.31
    电导率 Electrical conductivity (µS·cm−1)4360~9307
    浊度 Turbidity (NTU)5595~39 720
    化学需氧量 Chemical oxygen demand (mg·L−1)6720~72 650
    总氮 Total nitrogen (mg·L−1)464~2460
    总磷 Total phosphorus (mg·L−1)442~4500
    氨氮 Ammonia nitrogen (mg·L−1)300~1248
    下载: 导出CSV

    表  2   猪粪固液分离主要试验仪器的设备参数

    Table  2   Parameters of equipment used for the solid-liquid separation of pig farm wastewater

    设备仪器
    Equipment instrument
    参数
    Parameter
    数值
    Value
    搅拌泵 Mixing pump功率 Power3 kW
    储水桶 Water storage bucket体积 Volume8 m3
    滤网 Screen孔径 Mesh size1 cm
    螺杆泵 Screw pump功率 Power4 kW
    微滤机 Microfiltration machine功率 Power7.5 kW
    下载: 导出CSV

    表  3   离心微滤机进水和产水水质指标

    Table  3   Water quality indexes of inlet and produced water of centrifugal microfiltration machine

    指标
    Index
    进水
    Raw pig farm wastewater
    出水 Separated wastewater
    15 µm筛网
    15 µm mesh
    25 µm筛网
    25 µm mesh
    50 µm筛网
    50 µm mesh
    总固体浓度 Total solid (%)0.5~8.00.3~1.70.6~2.20.6~2.8
    pH5.73~7.315.88~6.956.1~7.226.32~7.27
    电导率 Electrical conductivity (µS∙cm−1)4360~93076001~77465077~11 5004339~10 870
    浊度 Turbidity (NTU)5595~39 7208490~18 4504695~26 7504920~32 340
    化学需氧量 Chemical oxygen demand (mg·L−1)6720~72 6509740~35 0806720~45 48012 350~46 360
    总氮 Total nitrogen (mg·L−1)464~2460312~1950640~2000620~2440
    总磷 Total phosphorus (mg·L−1)442~4500456~1602208~3780396~3220
    氨氮 Ammonia nitrogen (mg·L−1)300~1248432~970340~1167276~1504
    下载: 导出CSV

    表  4   猪场废水总固体浓度和离心微滤机筛网孔径对于水质指标去除率影响的显著性分析(P值)

    Table  4   Significance analysis of total solid concentration and mesh size on wastewater characters (removal rates of wastewater indexes) of pig farm wastewater after solid-liquid separation (P value)

    变异来源
    Variation source
    总固体浓度
    Total solid
    浊度
    Turbidity
    化学需氧量
    Chemical oxygen demand
    总氮
    Total nitrogen
    总磷
    Total phosphorus
    氨氮
    Ammonia nitrogen
    孔径 Mesh size (MA)<0.05<0.05<0.05<0.050.260.11
    总固体浓度 Total solid (TS)<0.05<0.050.09<0.05<0.050.11
    MA×TS0.940.160.950.540.870.26
      P<0.05水平上因素之间相关性显著; P>0.05水平上因素之间相关性不显著。 There was significant correlation between the factors at the level of P<0.05; there was no significant correlation between the factors at the level of P>0.05.
    下载: 导出CSV

    表  5   不同筛网孔径的离心微滤机处理猪场废水的经济性分析

    Table  5   Economic analysis of solid-liquid separation of pig farm wastewater with centrifugal microfiltration with different size

    项目 Project筛网孔径 Mesh size (µm)
    152550
    处理量 Processing amount (m3∙h−1)5515
    离心微滤机的购置费 Cost of centrifugal microfiltration equipment (×104 ¥)454515
    离心微滤机折旧费用 Depreciation cost of centrifugal microfiltration (¥∙m−3)0.560.560.18
    离心微滤机能耗 Electricity consumption of centrifugal microfiltration (¥∙m−3)1.210.830.23
    人工费 Cost of labor (¥∙m−3)0.670.670.67
    处理成本 Treatment cost (¥∙t−1)2.442.061.08
    下载: 导出CSV

    表  6   不同固液分离技术的效果与能耗

    Table  6   Different solid-liquid separation of separation effect and energy consumption

    废水类型
    Wastewater type
    水质指标
    Water quality index
    固液分离类型Solid-liquid
    separation type
    筛网孔径
    Mesh aperture (mm)
    去除率Removal
    rate (%)
    处理量Treatment
    amount (m3·h−1)
    能耗Power
    consumption
    参考文献
    Reference
    猪场废水
    Pig farm wastewater
    COD: 10 086~19 051 mg∙L−1振动筛
    Vibrating screen
    0.93, 1.20, 1.519.26~23.240~801.5 kW[24]
    TN: 2350~1367 mg∙L−113.9~31.4
    ${\rm{NH}}_4^ + $-N: 528~250 mg∙L−10.3~1.2
    TP: 197~107 mg∙L−110.4~18.7
    猪场废水
    Pig farm wastewater
    COD: 12 000~18 000 mg∙L−1滤网
    Filter screen
    NA25~30NANA[26]
    牛场废水
    Cattle farm wastewater
    TS: 13%螺旋挤压机
    Screw extractor
    0.3, 0.5, 0.741.5~60.915~20NA[25]
    VS: 83.1%7.3~11.6
    ${\rm{NH}}_4^ + $-N: 790 mg∙L−1
    猪场废水
    Pig farm wastewater
    TS, TP, TN: 5.6 mg∙L−1螺旋挤压机
    Screw extractor
    0.5, 0.75, 1, 3TS 19.2~49.4TP 12.8~49.4
    TN 4.4~19.2
    NANA[27]
    猪场废水
    Pig farm wastewater
    TS: 2.0%~8%沉降离心机
    Sedimentation centrifuge
    NATS 43~61
    SS 73
    4~1015 kW[23]
    猪场废水
    Pig farm wastewater
    TS: 0.5%~8.0%离心微滤机
    Centrifugal microfiltration
    0.015, 0.025, 0.055714~197.5 kW本研究
    This study
    COD: 6720~72 650 mg∙L−129
    TP: 442~4500 mg∙L−143
      COD: 化学需氧量; TN: 总氮; NH4+-N: 氨氮; TP: 总磷; TS: 总固体含量; VS: 挥发型固体; NA: 无相关参数。COD: chemical oxygen demand; TN: total nitrogen; NH4+-N: ammonia nitrogen; TP: total phosphorus; TS: total solids; VS: volatile solid; NA: not available
    下载: 导出CSV
  • [1] 罗娟, 赵立欣, 姚宗路, 等. 规模化养殖场畜禽粪污处理综合评价指标体系构建与应用[J]. 农业工程学报, 2020, 36(17): 182−189 doi: 10.11975/j.issn.1002-6819.2020.17.022

    LUO J, ZHAO L X, YAO Z L, et al. Construction and application of comprehensive evaluation index system for waste treatment on intensive livestock farms[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17): 182−189 doi: 10.11975/j.issn.1002-6819.2020.17.022

    [2]

    ZHENG C H, LIU Y, BLUEMLING B, et al. Modeling the environmental behavior and performance of livestock farmers in China: An ABM approach[J]. Agricultural Systems, 2013, 122: 60−72 doi: 10.1016/j.agsy.2013.08.005

    [3]

    KUNZ A, STEINMETZ R L R, RAMME M A, et al. Effect of storage time on swine manure solid separation efficiency by screening[J]. Bioresource Technology, 2009, 100(5): 1815−1818 doi: 10.1016/j.biortech.2008.09.022

    [4] 邹细霞, 陈海旭, 李丽娟, 等. 喀斯特石漠化地区畜牧养殖场粪便固液分离一体化圈舍研究[J]. 中国沼气, 2020, 38(6): 50−56 doi: 10.3969/j.issn.1000-1166.2020.06.008

    ZOU X X, CHEN H X, LI L J, et al. Manure solid-liquid separation integrated animal house for livestock farms in Karst rocky desertification areas[J]. China Biogas, 2020, 38(6): 50−56 doi: 10.3969/j.issn.1000-1166.2020.06.008

    [5] 陈长卿, 林雪, 郑涛, 等. 规模化养殖场畜禽粪便固液分离技术与装备[J]. 农业工程, 2016, 6(3): 10−12 doi: 10.3969/j.issn.2095-1795.2016.03.005

    CHEN C Q, LIN X, ZHENG T, et al. Solid-liquid separation technology and equipment of livestock manure for large-scale farms[J]. Agricultural Engineering, 2016, 6(3): 10−12 doi: 10.3969/j.issn.2095-1795.2016.03.005

    [6] 杨柏松, 关正军. 畜禽粪便固液分离研究[J]. 农机化研究, 2010, 32(2): 223−225, 229 doi: 10.3969/j.issn.1003-188X.2010.02.065

    YANG B S, GUAN Z J. Study on the solid-liquid separation[J]. Journal of Agricultural Mechanization Research, 2010, 32(2): 223−225, 229 doi: 10.3969/j.issn.1003-188X.2010.02.065

    [7]

    FORD M, FLEMIN R. Mechanical Solid-Liquid Separation of Livestock Manure Literature Review[R]. Ridgetown, Ontario: Ridgetwon College, University of Guelph, 2002

    [8] 江滔, 温志国, 马旭光, 等. 畜禽粪便固液分离技术特点及效率评估[J]. 农业工程学报, 2016, 32(S2): 218−225

    JIANG T, WEN Z G, MA X G, et al. Characteristics and efficiency evaluation of livestock slurry separation technologies[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 218−225

    [9]

    RIAÑO B, GARCÍA-GONZÁLEZ M C. On-farm treatment of swine manure based on solid-liquid separation and biological nitrification-denitrification of the liquid fraction[J]. Journal of Environmental Management, 2014, 132: 87−93

    [10] 关正军, 李文哲, 杨柏松, 等. 牛粪螺旋压榨固液分离工艺参数优化[J]. 农业工程学报, 2010, 26(12): 276−279 doi: 10.3969/j.issn.1002-6819.2010.12.047

    GUAN Z J, LI W Z, YANG B S, et al. Optimization on parameters of solid-liquid separation process of dairy manure by screw press[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(12): 276−279 doi: 10.3969/j.issn.1002-6819.2010.12.047

    [11] 王明, 孔威, 晏水平, 等. 猪场废水厌氧发酵前固液分离对总固体及污染物的去除效果[J]. 农业工程学报, 2018, 34(17): 235−240 doi: 10.11975/j.issn.1002-6819.2018.17.031

    WANG M, KONG W, YAN S P, et al. Effect of solid-liquid separation on removal of total solid and pollutants from pig manure wastewater before anaerobic digestion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(17): 235−240 doi: 10.11975/j.issn.1002-6819.2018.17.031

    [12]

    PETERS K, HJORTH M, JENSEN L S, et al. Carbon, nitrogen, and phosphorus distribution in particle size-fractionated separated pig and cattle slurry[J]. Journal of Environmental Quality, 2011, 40(1): 224−232 doi: 10.2134/jeq2010.0217

    [13]

    MØLLER H B, SOMMER S G, AHRING B K. Separation efficiency and particle size distribution in relation to manure type and storage conditions[J]. Bioresource Technology, 2002, 85(2): 189−196 doi: 10.1016/S0960-8524(02)00047-0

    [14] 吴军伟. 畜禽粪便固液分离技术研究[D]. 南京: 南京农业大学, 2009

    WU J W. The research on solid and liquid separation of animal manure[D]. Nanjing: Nanjing Agricultural University, 2009

    [15]

    HJORTH M, CHRISTENSEN K V, CHRISTENSEN M L, et al. Solid-liquid separation of animal slurry in theory and practice. A review[J]. Agronomy for Sustainable Development, 2010, 30(1): 153−180 doi: 10.1051/agro/2009010

    [16] 占源航. 纸带过滤与中空纤维超滤膜结合工艺预处理猪场沼液应用研究[D]. 北京: 中国农业科学院, 2019

    ZHAN Y H. The combination of paper filtration and hollow fiber ultrafiltration for the pretreatment of the digestate from swine manure[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019

    [17]

    ZHU J, NDEGWA P M, ZHANG Z J. Manure sampling procedures and nutrient estimation by the hydrometer method for gestation pigs[J]. Bioresource Technology, 2004, 92(3): 243−250 doi: 10.1016/j.biortech.2003.09.010

    [18]

    LI J G, AKDENIZ N, KIM H H M, et al. Quantification of sustainable animal manure utilization strategies in Hangzhou, China[J]. Agricultural Systems, 2021, 191: 103150 doi: 10.1016/j.agsy.2021.103150

    [19]

    SINGH A, BICUDO J R. Dairy manure nutrient analysis using quick tests[J]. Environmental Technology, 2005, 26(5): 471−478 doi: 10.1080/09593332608618541

    [20]

    SURESH A, CHOI H L, OH D I, et al. Prediction of the nutrients value and biochemical characteristics of swine slurry by measurement of EC — electrical conductivity[J]. Bioresource Technology, 2009, 100(20): 4683−4689 doi: 10.1016/j.biortech.2009.05.006

    [21]

    AZAM H M, ALAM S T, HASAN M, et al. Phosphorous in the environment: characteristics with distribution and effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in natural and engineered systems[J]. Environmental Science and Pollution Research International, 2019, 26(20): 20183−20207 doi: 10.1007/s11356-019-04732-y

    [22]

    SOMMER S G, ZHANG G Q, BANNINK A, et al. Algorithms determining ammonia emission from buildings housing cattle and pigs and from manure stores[J]. Advances in Agronomy, 2006, 89: 261−335

    [23]

    SNEATH R W, SHAW M, WILLIAMS A G. Centrifugation for separating piggery slurry 1. The performance of a decanting centrifuge[J]. Journal of Agricultural Engineering Research, 1988, 39(3): 181−190 doi: 10.1016/0021-8634(88)90095-9

    [24] 杨迪, 邓良伟, 郑丹, 等. 猪场废水固液分离及其影响因素研究[J]. 中国沼气, 2014, 32(6): 21−25 doi: 10.3969/j.issn.1000-1166.2014.06.004

    YANG D, DENG L W, ZHENG D, et al. Solid-liquid separation of swine wastewater and its influencing factors[J]. China Biogas, 2014, 32(6): 21−25 doi: 10.3969/j.issn.1000-1166.2014.06.004

    [25] 王明, 赵胜雪, 李旭荣, 等. 螺旋挤压机筛网孔径对牛粪固液分离效果的影响[J]. 太阳能学报, 2018, 39(4): 1032−1037

    WANG M, ZHAO S X, LI X R, et al. Effect of mesh size of screw extruder on solid-liquid separation of cattle manure[J]. Acta Energiae Solaris Sinica, 2018, 39(4): 1032−1037

    [26] 杨朝晖, 曾光明, 高锋, 等. 固液分离-UASB-SBR工艺处理养猪场废水的试验研究[J]. 湖南大学学报: 自然科学版, 2002, 29(6): 95−99

    YANG Z H, ZENG G M, GAO F, et al. Study on piggery wastewater treatment by screening-UASB-SBR processes[J]. Journal of Hunan University: Natural Science, 2002, 29(6): 95−99

    [27]

    MØLLER H B, LUND I, SOMMER S G. Solid-liquid separation of livestock slurry: efficiency and cost[J]. Bioresource Technology, 2000, 74(3): 223−229 doi: 10.1016/S0960-8524(00)00016-X

  • 期刊类型引用(1)

    1. 王丽丽,孙东升,许雷,张婷婷,冯子阔,姚义清. 秸秆过滤猪场废水及滤料与猪粪好氧堆肥研究. 农业工程学报. 2022(19): 180-189 . 百度学术

    其他类型引用(2)

图(5)  /  表(6)
计量
  • 文章访问数:  491
  • HTML全文浏览量:  202
  • PDF下载量:  57
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-08-25
  • 录用日期:  2021-12-29
  • 网络出版日期:  2022-02-20
  • 刊出日期:  2022-06-08

目录

/

返回文章
返回