The relationship between farmers’ cognitions, landscape heterogeneity and surface arthropods: based on the mediation effect model
-
摘要: 目前人类活动逐渐增强, 农户活动也成为耕地和耕地景观保护过程中研究的热点问题。本研究以辽宁省建平县540份农户调查数据为实证, 探究农户认知对耕地景观中地表节肢动物生物多样性的影响, 以及景观异质性在其中发挥的中介效应。通过构建中介效应模型, 研究农户认知、农业景观异质性与地表节肢动物多样性三者间的逻辑关系, 为耕地景观保护提供理论依据。研究结果表明: 1)农户的不同认知对耕地景观中地表节肢动物多样性产生不同的影响, 其中农户对农药化肥施用认知、农业机械认知、耕地景观生态特征认知对地表节肢动物多样性具有正向影响, 表现为认知程度越好则耕地景观中地表节肢动物的多样性越高; 规模经营方式认知、农户耕地保护相关政策认知对其具有负向影响, 表现为认知程度越好则地表节肢动物的多样性越低, 此结论与预期有所不同, 进一步证实了农户“效果预期”对行为的重要影响。2)农业景观异质性在农户认知影响地表节肢动物多样性过程中的中介效应显著, 即农户认知通过影响农业景观异质性会间接影响地表节肢动物的多样性。基于此, 政府应加强农村教育投入, 进行农业生态保护知识科普, 提升农户对于耕地保护认知的水平; 重视耕地景观格局的优化, 适当增加非耕作生境, 最终保护地表节肢动物多样性, 增强耕地系统生态效益。Abstract: At present, human activities are gradually increasing, and farmers’ activities have become a hot issue in research of protecting cultivated land and cultivated landscapes. The study encompassed survey data from 540 farmers in Jianping County, Liaoning Province to explore the impact of farmers’ cognition on the biodiversity of surface arthropods in farmland landscapes. Furthermore, it also examined the mediating effects of landscape heterogeneity. By constructing a mediation effect model, the logical relationship between farmers’ cognition, agricultural landscape heterogeneity, and surface arthropod diversity was studied aiming to provide a theoretical basis for landscape protection of farmland. The results showed that: 1) Differing cognition of farmers had varied effects on the diversity of surface arthropods in cultivated landscapes. Farmers’ cognition of pesticide and chemical fertilizer application, agricultural machinery, and ecological characteristics of cultivated landscapes had positive impacts on surface arthropod diversity. The better their cognition, the higher the diversity of surface arthropods in the farmland landscape is. Cognition of scale management and farmland protection policies had a negative impact. This manifested as better cognition leading to lower arthropod diversity. This conclusion differed from that which was expected. This further confirmed the important influence of farmers’ “effect expectations” on behavior. 2) Agricultural landscape heterogeneity had a significant mediating effect on farmers’ cognition affecting surface arthropod diversity. Farmers’ cognition could indirectly affect the diversity of surface arthropods by influencing the heterogeneity of agricultural landscapes. Based on this, the government should increase investment in rural education, build knowledge about agro-ecological protection, and improve awareness among farmers about cultivated land protection. It is also important to pay attention to optimization of cultivated land landscape patterns, appropriately increase non-farming habitats, to ultimately protect surface arthropod diversity, and enhance the ecological benefits of cultivated land.
-
-
表 1 耕地景观保护相关变量分类及含义描述
Table 1 Classification and description of variables related to cultivated land landscape protection
变量类型
Variable type变量名称
Variable name具体变量名称
Specific variable name变量含义及赋值
Explanation of variable and assignment因变量
Dependent variable地表节肢动物生物多样性
Surface arthropod diversity物种个体数
Number of species物种个体的数目, PAST软件计算得到
Number of species calculated by PAST自变量
Independent variable农户生产经营方式认知
Cognition of farmers’ production and management methods农药化肥施用认知
Pesticide and fertilizer application awareness被调查者关于过量使用农药化肥对耕地生态的影响认知程度: 不好=1, 不太好=2, 比较好=3, 很好=4
Awareness of the impact of excessive use of pesticides and fertilizers on farmland ecology: poor=1, normal=2, better=3, best=4农业机械认知
Agricultural machinery awareness被调查者关于农机对耕地生态的影响认知程度: 不好=1, 不太好=2, 比较好=3, 很好=4
Awareness of the impact of agricultural machinery on cultivated land ecology: poor=1, normal=2, better=3, best=4规模经营方式认知
Scale operation awareness被调查者规模经营方式认知: 不好=1, 不太好=2, 比较好=3, 很好=4
Perception of scale operation: poor=1, normal=2, better=3, best=4耕地保护相关政策认知
Relevant policy awareness of cultivated land protection惠农政策补贴认知
Benefit farming policy subsidy awareness被调查者对惠农政策补贴的满意情况: 非常不满意=1, 不太满意=2, 比较满意=3, 非常满意=4
Satisfaction with the benefits of agricultural policy subsidies: dissatisfied=1, less dissatisfied=2, satisfied=3, very satisfied=4耕地保护政策认知
Cultivated land protection policy awareness被调查者对土地用途管制制度、耕地总量动态平衡政策、耕地保护目标责任制度、基本农田保护政策的了解程度: 非常不了解=1, 比较不了解=2, 比较了解=3, 非常了解=4
Understanding of the land use control system, the dynamic balance policy of the total amount of arable land, the responsibility system of the arable land protection target, and the basic farmland protection policy: unclear=1, a little clear=2, clear=3, very clear=4耕地景观生态特征认知
Cognition of ecological characteristics of cultivated land landscape景观异质性认知
Landscape heterogeneity awareness被调查者对农田非耕作生境了解程度: 非常不了解=1, 比较不了解=2, 比较了解=3, 非常了解=4
Understanding of farmland non-cultivation habitat: unclear=1, a little clear=2, clear=3, very clear=4地表节肢动物认知
Arthropod biodiversity awareness被调查者对农田中地表动物的了解程度: 非常不了解=1, 比较不了解=2, 比较了解=3, 非常了解=4
Knowledge of arthropod in farmland: unclear=1, a little clear=2, clear=3, very clear=4中介变量
Mediating variable农业景观异质性
Agricultural landscape heterogeneity斑块密度指数
Patch density index单位面积上的斑块数, Fragstats计算得到
Number of patches per unit area calculated with Fragstats控制变量
Control
variable农户特征
Farmer characteristics年龄
Age被调查者的年龄 Age of the respondent:
≤40=1, 41~50=2, 51~60=3, ≥60=4受教育程度
Education level被调查者的受教育水平: 小学及以下=1, 初中=2, 高中及以上=3
Education level: primary school and below=1, middle school=2, high school and above=3户主
Head of household被调查者是否为户主: 是=1, 否=2
Whether the respondent is the head of the household: yes=1, no=2非农收入占比
Proportion of non-agricultural income被调查者的家庭非农收入占比
The proportion of non-agricultural income of the surveyed households:
0−25%=1, 25%−50%=2, 50%−75%=3, 75%−100%=4家庭劳动力比例
Family labor ratio被调查者的家庭劳动力占比情况
The proportion of the respendent’s household labor force:
0−25%=1, 25%−50%=2, 50%−75%=3, 75%−100%=4表 2 受访农户基本特征描述
Table 2 Description of basic characteristics of interviewed farmers
基本特征
Basic feature类别
Category频数
Number频率
Frequency (%)基本特征
Basic feature类别
Category频数
Number频率
Frequency (%)年龄 Age <40 80 14.81 非农收入占比
Non-agricultural income level (%)0~25 86 15.93 41~50 45 8.33 25~50 198 36.67 51~60 73 13.52 50~75 150 27.78 >60 342 63.33 75~100 106 19.63 受教育程度
Education level小学及以下
Primary school and below413 76.48 家庭劳动力比例
Family labor ratio (%)0~25 63 11.67 25~50 128 23.70 初中
Middle school87 16.11 50~75 120 22.22 75~100 229 42.41 高中及以上
High school and above40 7.41 户主
Head of household是 Yes 263 48.70 否 No 277 51.30 表 3 农业景观斑块密度(PD)、农户生产经营方式认知对地表节肢动物特种个体数(Individuals)影响的回归结果
Table 3 Regression results of the impact of patch density of agricultural landscape and farmers’ perceptions of production and management methods on individuals number of surface arthropods (Individuals)
变量
Variable回归1
Regression 1回归2
Regression 2回归3
Regression 3回归4
Regression 4回归5
Regression 5回归6
Regression 6回归7
Regression 7回归8
Regression 8回归9
Regression 9农药化肥施用
Pesticide and fertilizer application0.550*** 0.389** 0.680*** — — — — — — 农业机械
Agricultural machinery— — — 0.541*** 0.441** 0.686*** — — — 规模经营方式
Scale operation— — — — — — −0.570*** −0.361* −0.684*** 斑块密度
Patch density— — −0.352* — — −0.335* — — −0.317* 卡方值
LR chi2472.500 — 594.000 573.750 — 486.000 546.750 — 573.750 R2 — 0.169 — — 0.151 — — 0.130 — 回归1、4、7为农户生产经营方式认知对Individuals的影响; 回归2、5、8为农户生产经营方式认知对农业景观斑块密度影响的估计结果; 回归3、6、9为农户生产经营方式认知、农业景观斑块密度对Individuals影响的估计结果。*、**和***分别表示在P<10%、P<5%和P<1%水平显著。Regressions 1, 4, and 7 are the impact of farmers’ perceptions of production and management methods on Individuals; Regressions 2, 5, and 8 are the estimated results of the impact of farmers’ perceptions of production and management methods on patch density of agricultural landscape (PD); Regressions 3, 6, and 9 are the estimated results of the impact of farmers’ production and management methods and PD on Individuals. *, **, *** mean significant at P<10%, P<5% and P<1% levels, respectively. 表 4 农业景观斑块密度、耕地保护相关政策认知对地表节肢动物个体数(Individuals)影响的回归结果
Table 4 Regression results of the impact of patch density of agricultural landscape and farmland protection related policy cognition on individuals number of surface arthropods (Individuals)
变量
Variable回归10
Regression 10回归11
Regression 11回归12
Regression 12回归13
Regression 13回归14
Regression 14回归15
Regression 15惠农政策补贴政策
Favorable farming policy subsidy policy−0.456** −0.434** −0.600*** — — — 耕地保护政策
Cultivated land protection policy— — — −0.470** −0.518*** −0.693*** 斑块密度
Patch density— — −0.331* — — −0.430** 卡方值
LR chi2438.750 — 465.750 420.750 — 432.000 R2 — 0.188 — — 0.269 — 回归10、13为耕地保护相关政策认知对Individuals的影响; 回归11、14为耕地保护相关政策认知对农业景观斑块密度(PD)影响的估计结果; 回归12、15为耕地保护相关政策认知、PD对Individuals影响的估计结果。*、**和***分别表示在P<10%、P<5%和P<1%水平显著。Regressions 10 and 13 are the impact of farmland protection related policy perceptions on Individuals; Regressions 11 and 14 are the estimated results of the impact of farmland protection related policy perceptions on patch density of agricultural landscape (PD); Regressions 12 and 15 are the estimated results of the impact of the cognition of farmland protection related policies and PD on Individuals. *, **, *** mean significant at P<10%, P<5% and P<1% levels, respectively. 表 5 农业景观斑块密度(PD)、耕地景观生态特征认知对地表节肢动物个体数(Individuals)影响的回归结果
Table 5 Regression results of the impact of patch density of agricultural landscape and cognition of ecological characteristics of cultivated land system on individuals number of surface arthropods (Individuals)
变量
Variable回归16
Regression 16回归17
Regression 17回归18
Regression 18回归19
Regression 19回归20
Regression 20回归21
Regression 21景观异质性构成
Composition of landscape heterogeneity0.537*** 0.372* 0.653*** — — — 地表节肢动物认知
Arthropod biodiversity awareness— — — 0.536*** 0.364* 0.647*** 斑块密度
Patch density (PD)— — −0.313* — — −0.306* 卡方值
LR chi2648.000 — 675.000 648.000 — 675.000 R2 — 0.138 — — 0.132 — 回归16、19为耕地景观生态特征认知对Individuals的影响; 回归17、20为耕地保护认知对农业景观斑块密度(PD)影响的估计结果; 回归18、21为耕地景观生态特征认知、PD对Individuals影响的估计结果。*、**和***分别表示在P<10%、P<5%和P<1%水平显著。Regressions 16 and 19 are the impact of farmland landscape ecological characteristics cognition on Individuals; Regressions 17 and 20 are the estimated results of the impact of farmland protection cognition on patch density of agricultural landscape (PD); Regressions 18 and 21 are the estimated results of the impact of farmland landscape ecological characteristics cognition, and PD on Individuals. *, **, *** mean significant at P<10%, P<5% and P<1% levels, respectively. -
[1] 彭建, 刘志聪, 刘焱序, 等. 京津冀地区县域耕地景观多功能性评价[J]. 生态学报, 2016, 36(8): 2274−2285 PENG J, LIU Z C, LIU Y X, et al. Assessment of farmland landscape multifunctionality at county level in BeijingTianjin-Hebei area[J]. Acta Ecologica Sinica, 2016, 36(8): 2274−2285
[2] 毕继业, 朱道林, 王秀芬. 耕地保护中农户行为国内研究综述[J]. 中国土地科学, 2010, 24(11): 77−81 BI J Y, ZHU D L, WANG X F. Literature review on farmer behaviors during the farmland preservation process based on domestic studies in China[J]. China Land Science, 2010, 24(11): 77−81
[3] 王利敏, 欧名豪. 粮食主产区农户耕地保护现状及认知水平分析−基于全国10个粮食主产区1198户农户的问卷调查[J]. 干旱区资源与环境, 2013, 27(3): 14−19 WANG L M, OU M H. Analysis on present condition and level of cognition of the farmers to the cultivated land protection in the prime production area of grain[J]. Journal of Arid Land Resources and Environment, 2013, 27(3): 14−19
[4] 张化楠, 葛颜祥, 接玉梅, 等. 生态认知对流域居民生态补偿参与意愿的影响研究−基于大汶河的调查数据[J]. 中国人口·资源与环境, 2019, 29(9): 109−116 ZHANG H N, GE Y X, JIE Y M, et al. The impact of ecological cognition on the willingness to participate in ecological compensation of river basin residents — Based on the survey data of Dawen River[J]. China Population, Resources and Environment, 2019, 29(9): 109−116
[5] 仇相玮. 减施农药: 农户行为及其效应研究[D]. 泰安: 山东农业大学, 2020 QIU X W. Pesticide reduction: a study on farmers’ behavior and its effects[D]. Tai’an: Shandong Agricultural University, 2020
[6] BAGHERI A, EMAMI N, DAMALAS C A. Farmers’ behavior towards safe pesticide handling: an analysis with the theory of planned behavior[J]. Science of the Total Environment, 2021, 751: 141709 doi: 10.1016/j.scitotenv.2020.141709
[7] DOBBS T L, PRETTY J. Case study of agri-environmental payments: The United Kingdom[J]. Ecological Economics, 2007, 65(4): 765−775
[8] MOYER W, JOSLING T. Agricultural Policy Reform: Politics and Process in the EU and US in the 1990s[M]. Abingdon: Taylor and Francis, 2017
[9] JONGENEEL R A, SLANGEN L H G. Multifunctionality in agriculture and the contestable public domain; theory and evidence about on-farm and off-farm activities in the Netherlands[M]/BORUWER F M. Sustaining Agriculture and Rural Environment; Governance, Policy and Multifunctionality. Cheltenham, UK: Edward Elgar, 2004
[10] 边振兴, 杨祎博, 果晓玉, 张宇飞, 于淼. 农田防护林对田间地表节肢动物分布的影响−以昌图县为例[J]. 中国生态农业学报(中英文), 2020, 28(12): 1835−1846 BIAN Z X, YANG Y B, GUO X Y, ZHANG Y F, YU M. The influence of farmland shelterbelts on the distribution of arthropods on the field surface: Taking Changtu County as an example[J]. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1835−1846
[11] TURNER M G. Spatial and temporal analysis of landscape patterns[J]. Landscape Ecology, 1990, 4(1): 21−30 doi: 10.1007/BF02573948
[12] 孙玉芳, 李想, 张宏斌, 等. 农业景观生物多样性功能和保护对策[J]. 中国生态农业学报, 2017, 25(7): 993−1001 SUN Y F, LI X, ZHANG H B, et al. Functions and countermeasures of biodiversity conservation in agricultural landscapes: A review[J]. Chinese Journal of Eco-Agriculture, 2017, 25(7): 993−1001
[13] 边振兴, 张宇飞, 杨祎博, 等. 农业景观格局对玉米害虫-捕食性天敌定性食物网结构的影响[J]. 中国生态农业学报(中英文), 2020, 28(10): 1475−1487 BIAN Z X, ZHANG Y F, YANG Y B, et al. The effect of agricultural landscape pattern on the qualitative food web structure of corn pests and predatory natural enemies[J]. Chinese Journal of Eco-Agriculture, 2020, 28(10): 1475−1487
[14] FU S L, XOU X M, COLEMAN D. Highlights and perspectives of soil biology and ecology research in China[J]. Soil Biology and Biochemistry, 2009, 41(5): 868−876
[15] 卢训令, 刘俊玲, 丁圣彦. 农业景观异质性对生物多样性与生态系统服务的影响研究进展[J]. 生态学报, 2019, 39(13): 4602−4614 LU X L, LIU J L, DING S Y. Impact of agricultural landscape heterogeneity on biodiversity and ecosystem services[J]. Acta Ecologica Sinica, 2019, 39(13): 4602−4614
[16] FIEDLER A K, LANDIS D A, WRATTEN S D. Maximizing ecosystem services from conservation biological control: The role of habitat management[J]. Biological Control, 2008, 45(2): 254−271
[17] KNAPP M, ŘEZÁČ M. Even the samllest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape[J]. PloS One, 2015, 10(4): e0123052 doi: 10.1371/journal.pone.0123052
[18] 刘沛, 段建南, 刘洵, 等. 耕地系统功能评价实证研究[J]. 安徽农学通报, 2015, 21(14): 1−3, 36 doi: 10.3969/j.issn.1007-7731.2015.14.001 LIU P, DUAN J N, LIU X, et al. Empirical research on evaluation of cultivated-land’ s function[J]. Anhui Agricultural Science Bulletin, 2015, 21(14): 1−3, 36 doi: 10.3969/j.issn.1007-7731.2015.14.001
[19] 段美春, 覃如霞, 张宏斌, 等. 农田节肢动物不同取样方法的综合比较[J]. 生物多样性, 2021, 29(4): 477−487 doi: 10.17520/biods.2020034 DUAN M C, QIN R X, ZHANG H B, et al. Comprehensive comparison of different sampling methods for farmland arthropods[J]. Biodiversity Science, 2021, 29(4): 477−487 doi: 10.17520/biods.2020034
[20] MATSON P A, PATON W J, POWER A G, et al. Agricultural intensification and ecosystem properties[J]. Science, 1997, 277(5325): 504−509 doi: 10.1126/science.277.5325.504
[21] 侯笑云, 宋博, 赵爽, 等. 黄河下游封丘县不同尺度农业景观异质性对鞘翅目昆虫多样性的影响[J]. 生态与农村环境学报, 2015, 31(1): 77−81 doi: 10.11934/j.issn.1673-4831.2015.01.011 HOU X Y, SONG B, ZHAO S, et al. Effect of agro-landscape heterogeneity as affected by scale on diversity of Coleoptera in Fengqiu County in the lower reaches of the Yellow River[J]. Journal of Ecology and Rural Environment, 2015, 31(1): 77−81 doi: 10.11934/j.issn.1673-4831.2015.01.011
[22] 桑贤策, 罗小锋, 黄炎忠, 等. 政策激励、生态认知与农户有机肥施用行为−基于有调节的中介效应模型[J]. 中国生态农业学报(中英文), 2021, 29(7): 1274−1284 SONG X C, LUO X F, HUANG Y Z, et al. Policy incentives, ecological cognition and farmers’ organic fertilizer application behavior: Based on a regulated mediation effect model[J]. Chinese Journal of Eco-Agriculture, 2021, 29(7): 1274−1284
[23] 段伟. 保护区生物多样性保护与农户生计协调发展研究[D]. 北京: 北京林业大学, 2016 DUAN W. Research on the coordinated development of biodiversity protection and farmers’ livelihoods in nature reserves[D]. Beijing: Beijing Forestry University, 2016
[24] MANDER Ü, MIKK M, KÜLVIK M. Ecological and low intensity agriculture as contributors to landscape and biological diversity[J]. Landscape and Urban Planning, 1999, 46(1/2/3): 169−177
[25] 赵丽芳. 公众对生物多样性认知情况调查[J]. WTO经济导刊, 2013(8): 33–34 ZHAO L F. Survey of public awareness of biodiversity [J]. China WTO Tribune, 2013(8): 33–34
[26] 俞欢慧, 张慧, 王亮, 等. 海南农民稻田生物多样性保护认知评价及农药使用情况分析[J]. 广东农业科学, 2014, 41(11): 95−99 doi: 10.3969/j.issn.1004-874X.2014.11.021 YU H H, ZHANG H, WANG L, et al. Farmers’ knowledge and perception about biodiversity conservation and analysis of pesticide use in Hainan paddy field[J]. Guangdong Agricultural Sciences, 2014, 41(11): 95−99 doi: 10.3969/j.issn.1004-874X.2014.11.021
[27] 林世滔, 谢弟炳, 刘郁林, 等. 景观格局特征与区域生物多样性的关系研究[J]. 生态环境学报, 2017, 26(10): 1681−1688 LIN S T, XIE D B, LIU Y L, et al. Study on the relationship between landscape pattern and regional biodiversity[J]. Ecology and Environmental Sciences, 2017, 26(10): 1681−1688
[28] 陈利顶, 傅伯杰. 黄河三角洲地区人类活动对景观结构的影响分析−以山东省东营市为例[J]. 生态学报, 1996, 16(4): 337−344 CHEN L D, FU B J. Analysis of impact of human activity on landscape structure in Yellow River Delta — a case study of Dongying region[J]. Acta Ecologica Sinica, 1996, 16(4): 337−344
[29] 周子杨, 黄先才, 孟玲, 等. 有机稻田埂植物上节肢动物多样性[J]. 生态学杂志, 2011, 30(7): 1347−1353 ZHOU Z Y, HUANG X C, MENG L, et al. Arthropod diversity on plants at field margins of organic farming paddy rice[J]. Chinese Journal of Ecology, 2011, 30(7): 1347−1353
[30] 林琳. 辽西半干旱小流域坡地景观格局对表土土壤动物的影响[D]. 沈阳: 沈阳农业大学, 2020 LIN L. Effects of landcape patterns of sloping land in the small watersheds on topsoil soil animals of the semi-arid region in the west of Liaoning Province[D]. Shenyang: Shenyang Agricultural University, 2020
[31] 王秀丽, 李淑丽, 张新颖. 大学生休闲观研究−基于语义差别量表的调查[J]. 河北大学成人教育学院学报, 2015, 17(1): 108−112 doi: 10.3969/j.issn.1008-6471.2015.01.022 WANG X L, LI S L, ZHANG X Y. The analysis of college students’ concept of leisure — based on the research of semantic difference scale[J]. Journal of Adult Education College of Hebei University, 2015, 17(1): 108−112 doi: 10.3969/j.issn.1008-6471.2015.01.022
[32] 陈欣, 唐建军, 王兆骞. 农业活动对生物多样性的影响[J]. 生物多样性, 1999, 7(3): 234−239 doi: 10.3321/j.issn:1005-0094.1999.03.012 CHEN X, TANG J J, WANG Z Q. The impacts of agricultural activities on biodiversity[J]. Chinese Biodiversity, 1999, 7(3): 234−239 doi: 10.3321/j.issn:1005-0094.1999.03.012
[33] CHIRON F, CHARGÉ R, JULLIARD R, et al. Pesticide doses, landscape structure and their relative effects on farmland birds[J]. Agriculture, Ecosystems & Environment, 2014, 185: 153−160
[34] TUCK S L, WINQVIST C, MOTA F, et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis[J]. The Journal of Applied Ecology, 2014, 51(3): 746−755 doi: 10.1111/1365-2664.12219
[35] 赵紫华, 贺达汉, 杭佳, 等. 设施农业景观下破碎化麦田麦蚜及寄生蜂种群的最小适生面积[J]. 应用生态学报, 2011, 22(1): 206−214 ZHAO Z H, HE D H, HANG J, et al. Minimum amounts of suitable habitat for wheat aphid, parasitoid, and hyperparasitoid in facility-based agricultural landscapes[J]. Chinese Journal of Applied Ecology, 2011, 22(1): 206−214
[36] 连纲, 郭旭东, 傅伯杰, 等. 基于参与性调查的农户对退耕政策及生态环境的认知与响应[J]. 生态学报, 2005, 25(7): 1741−1747 doi: 10.3321/j.issn:1000-0933.2005.07.030 LIAN G, GUO X D, FU B J, et al. Farmer’s perception and response towards grain-for-green program and eco-environment based on participatory rural appraisal[J]. Acta Ecologica Sinica, 2005, 25(7): 1741−1747 doi: 10.3321/j.issn:1000-0933.2005.07.030
[37] 何悦, 漆雁斌. 农户过量施肥风险认知及环境友好型技术采纳行为的影响因素分析−基于四川省380个柑橘种植户的调查[J]. 中国农业资源与区划, 2020, 41(5): 8−15 HE Y, QI Y B. Analysis on the risk cogniton of excess fertilizer application and the adoption behavior of environment-friendly technology and its reason — base on the survey of 380 citrus grower in Sichuan Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(5): 8−15
[38] 吕晓, 臧涛, 张全景. 农户规模经营意愿与行为的影响机制及差异−基于山东省3县379份农户调查问卷的实证[J]. 自然资源学报, 2020, 35(5): 1147−1159 doi: 10.31497/zrzyxb.20200511 LYU X, ZANG T, ZHANG Q J. Influencing mechanism of the willingness and behavior of farmland scale management: Evidence from Shandong Province, China[J]. Journal of Natural Resources, 2020, 35(5): 1147−1159 doi: 10.31497/zrzyxb.20200511
[39] BECKER G S. Investment in human capital: A theoretical analysis[J]. Journal of Political Economy, 1962, 70(5): 9–49