Research progress on the formation mechanism of subsurface flow and its eco-hydrological effects
-
摘要: 水是人类生存和经济社会发展的重要基础资源, 在气候变化和人类活动的双重影响下, 陆地水循环发生了深刻变化。壤中流是水循环的重要环节, 径流过程的重要组成部分, 河湖水的重要补给来源, 对流域径流形成、水源涵养、养分运移等过程产生重要影响, 是水文学和土壤学及生态水文学的研究热点、难点与重要科学问题。文章分析发现1990—2020年中国壤中流的发文数量和被引频次均逐渐增多,研究方向主要集中在环境、工程、水资源以及农业等方面, 主题分布在紫色土、湿地、氮素等方面。壤中流形成的主要影响因素包括土壤、地形、植被、降雨等。壤中流的几种生态水文效应包括土壤养分运移效应、水土保持、径流调节、水文预报效应等。最后文章提出了目前壤中流研究中的一些局限性, 并对未来的研究重点进行了展望,为重要生态系统修复与水源涵养功能提升提供参考。Abstract: Water is an important basic resource for human survival and economic and social development. However, the water cycle has undergone profound changes under the dual influence of climate change and human activities. Subsurface flow, a key part of the runoff process and a major replenishment source for rivers and lakes, has a critical impact on runoff formation, water conservation, and nutrient transport. The understanding of subsurface flow processes is an important and popular topic in the fields of hydrology, soil science, and ecohydrology, however, it is a complex scientific problem that is difficult to disentangle. In this article, it was found that from 1990 to 2020, the number citation frequency of published articles related to subsurface flow in China have gradually increased. The researches mainly focused on the environment, engineering, water resources, and agriculture, focusing on topics such as purplish soil, wetlands, and nitrogen. In addition, we analyzed the main factors affecting subsurface flow formation, including soil, topography, vegetation, rainfall, etc. Furthermore, we summarized several ecological and hydrological effects of interflow, including the soil nutrient transport effect, soil and water conservation, runoff regulation, and hydrological forecasting effect. Finally, we highlighted some limitations in current research on interflow and discussed future research priorities, ultimately providing an important scientific basis for crucial ecosystem restoration and water conservation improvements.
-
Keywords:
- Subsurface flow /
- Soil /
- Rainfall infiltration /
- Eco-hydrological effect
-
乡村生态景观是自然景观在人类经营活动作用下转变为村镇建筑物、道路、绿化及残存斑块等构成的空间镶嵌体[1-2]。它受自然环境条件的制约, 又是人类通过较完善的生物和技术活动, 对乡村土地长期或周期性经营利用的结果, 可以视为自然景观、农业景观、聚落景观和人文景观相互作用形成的景观环境综合体(图1)。生物多样性是指生物及其环境形成的生态复合体以及与此相关的各种生态过程的综合, 是乡村生态景观的重要组分, 无论在乡村自然景观、生产景观还是乡村聚落景观, 它都是不可缺少的, 同时也为乡村生态、生产、生活居住等方面提供了必不可少的服务功能, 如农业生物虫害控制、农作物传粉、抵抗外来入侵物种、乡村生态环境美化等[3-9]。生物多样性与乡村景观其他诸要素的协同作用维持了乡村生态景观的稳定性。
近几十年来, 乡村生物多样性由于人为干扰强度增加和重视不足而呈现快速衰退, 并导致农业病虫害增加、乡村人居环境质量下降等生态恶果[7,10]。生态大保护和城镇化的快速推进, 使自然保护地、荒野地和城市生物多样性的科学研究迅猛发展[11-13], 现有生物多样性保护和维持技术多来自于自然保护地和城市的生物多样性研究。乡村地区的生物多样性特征明显区别于城市和自然区域[14-15], 但目前对乡村景观要素和干扰因子对生物多样性的影响缺乏深入了解[4,16-20], 以生物多样性稳定维持为原则指导乡村生态景观营造的研究相对欠缺[21-23]。这些不足阻碍了生物多样性维护的优良技术在乡村振兴和美丽中国建设过程中的传承和推广。
本研究在国家重点研发计划课题“乡村生态景观生物多样性维护技术研究”的引领下, 分析了乡村生物多样性变化规律和驱动机制, 研发了面向乡村“三生(生态、生产、生活)空间”的生物多样性多尺度全链条“识别-维护-预警”技术体系。
1. 乡村生态景观生物多样性维护技术研发思路
选择典型地域代表性乡村——福建三明常口村和南京江宁牌坊社区, 采用实地调查、分子遗传标记、无人机航拍、高光谱影像等技术, 分基因、物种和生态系统3个层次调查生物多样性。针对特定乡村重要种质资源、关键物种组成以及关键生态系统要素建立生物多样性数据库, 从遗传、物种和生态系统等方面分析乡村生态景观生物多样性特征及其维持机制。通过整合现代科学和传统乡土知识, 研发乡村生态景观生物多样性维护途径与技术, 形成乡村生态景观生物多样性维护基础方法体系和技术规范。基于人口、社会和经济等多源数据, 利用大数据、遥感、信息化建模等技术手段, 构建乡村生态景观生物多样性维护监控平台并建立分层决策机制, 实现对乡村生态景观生物多样性维护监控和预警(图2)。
2. 乡村生态景观多尺度生物多样性识别与乡村植被制图技术
乡村生物多样性通常与地方习俗、传统文化紧密相关, 体现着独特的乡村生态观, 蕴含着一方水土一方人的人地依恋关系。现有民族植物和乡村植物的研究多聚焦于某一领域的单一类别物种, 未能将乡村景观涉及的乡土植物及其土著知识进行合理分类, 导致乡土物种筛选困难。同时, 由于乡村景观破碎化严重, 生态系统分布零散且分类困难, 导致现有乡村生态系统空间分布图精度不高, 难以满足乡村生态景观保护的现实需求。为此, 本课题以基因、物种和生态系统为对象, 构建了多尺度乡村生态景观生物多样性检测、筛选、分类和植被空间制图的方法。
2.1 基因多样性检测与评价方法
综合利用形态和ISSR (inter-simple sequence repeat)分子标记技术, 构建了一套适用于乡村生态景观基因多样性检测与评价方法(图3)。具体流程为: 1)测定分析乡村生态景观关键种表型特征数据; 2)依据国际公用核酸序列数据库筛选通用ISSR分子标记引物; 3) ISSR-PCR反应体系优化与多态性位点扩增; 4)基于形态标记和ISSR分子标记多态性位点数据, 计算表型多样性指数和基因多样性指数; 5)依据基因多样性水平评价标准, 对乡村生态景观关键种基因多样性水平进行评价。该方法适用于乡村生态景观基因多样性检测与评价, 具有准确、快速和实用的特点。
2.2 关键物种归类及定量评价方法
根据乡村物种资源特点, 构建了一套适用于乡村生态景观的目标物种筛选方法体系, 具体流程为: 1)关键物种文献研究; 2)开展乡村社区调查, 包括参与式研究、半结构访谈; 3)地方知识整理、语言转换和科学询证; 4)关键物种筛选(图4)。根据目标物种与乡村景观生态利用关系, 将乡村物种划分为3大类24小类。3大类分别为生计功能型植物、文化赋予型植物和生态保护型植物, 其中生计功能型划分为地方生活型和地方生产型。进一步细分小类, 得到24种乡村关键植物物种类型。
2.3 乡村植被分类体系
充分考虑乡村“三生空间”的不同特点, 构建了1套包含9个分类等级单位的乡村植被分类系统(图5)。该系统将乡村植被划分为自然与半自然植被、农业植被、绿地植被3个植被类型, 每类植被进一步划分为植被型组、植被型、植被亚型、群系组、群系、亚群系、群丛组、群丛8个分类等级单位; 确定了农业植被中级和低级分类单位划分方案, 界定了绿地植被的概念, 提出了一套对农业植被和绿地植被各分类单位的命名方法。
2.4 乡村植被空间制图技术
提出了一种基于特征组合实现高分辨率遥感影像植被信息提取的技术, 开发了面向对象的多光谱影像乡村植被制图技术并在示范点成功应用(图6)。该植被制图技术提取的乡村植被精度优于支持向量机分类、K最近邻分类和单纯用波段特征分类等方法, 很好地诠释了乡村生态景观植被型组、植被型和群系之间的空间联系。
3. 乡村生态景观多尺度生物多样性维护技术体系
通过对典型乡村生物多样性的调查研究, 揭示了人为和自然因素在乡村生物多样性维持中的重要作用。在此基础上, 针对乡村“三生空间”生物多样性, 系统总结提炼了乡村生态景观基因、物种和生态系统3个层次生物多样性维护技术要求和具体方法, 形成3套生物多样性维护技术规范。
3.1 基因多样性维护技术
提出了乡村生态景观关键种种质资源保存的3类保护方法(即原地保存、迁地保存和设施保存), 制定了乡村生态景观关键种基因多样性5类维护技术措施(即种群规模的维护、种群遗传结构的维护、种群间基因流的维护、避免种群内近交衰退和避免种群遗传漂变)以及对稀有关键种和古树名木的保护方法, 形成乡村生态景观关键种基因多样性维护技术规范(图7)。该技术规定了乡村生态景观关键种基因多样性维护内容和指标、种质资源保存方法和技术措施等内容, 适用于乡村生态景观关键种种质资源保存和基因多样性维护和提升。
3.2 物种多样性维护技术
系统性提出乡村生态景观营造中的物种多样性维护技术(图8)。1)在村域尺度上, 从城乡空间规划、村域物种多样性保护空间格局、乡村生态空间、乡村生产空间、乡村生活空间5个层面总结了乡村物种多样性维护总体技术要求。2)在村域内, 针对乡村生态景观不同要素分别提出物种多样性维护技术, 具体包括乡村农田的景观空间格局优化、农业生产技术优化、生态农业发展等, 乡村居民点的合理布局、四旁绿化提升等, 乡村园地的复合生态系统构建、园地林木管理等, 乡村水域的空间管控、河道护岸的生态环境优化、滨水动植物多样性维护、污水排放控制等, 乡村林地的林分结构优化、林地连通性提升、高价值林地维护、天然林保育、人工林的科学种植、荒地利用强化等。3)从相关传统生态知识调查与保护、乡村文化景观整体保护、乡村文化林物种多样性维护、乡村关键物种的可持续利用等4个层面提炼了乡村物种相关传统文化知识的维护技术。本技术适用于亚热带气候区以村为单位的乡村物种多样性维护。
3.3 生态系统多样性维护技术
通过对生态保护型和休闲旅游型两类乡村的生态系统多样性调查分析, 总结出乡村生态景观生态系统多样性维护具体技术要求、实现途径和方法, 形成生态系统多样性维护技术(图9)。具体包括: 景观设计中乡村的三生空间优化布局和景观格局网络化配置; 在乡村生态区对自然生态系统保护、半自然生态系统培育、人工林多重经营和受损生态系统恢复的技术要求; 生产区的农田集中经营、蔬菜种植园及池塘水体的综合利用、农业生产道路系统的设计与持续利用; 生活区宅旁庭院、村旁、聚落的绿地和散生木的管护以及水旁生态系统的配置; 乡土政策适应性管理和村规民约传承要求。该技术详细规定了乡村生态景观各种类型生态系统维护技术要求、注意事项, 主要适用于亚热带气候区乡村的生态系统多样性维护。
4. 乡村生态景观生物多样性监控预警机制
在融合乡村生态景观生物多样性影响机制和维护技术成果基础上, 通过多源数据处理技术对多源异构数据开展归一化处理, 建成乡村生态景观生物多样性预警数据库; 采用国产自主研发的云GIS服务GMServer, 使用跨平台开发语言JAVA和vue node.js、element-ui技术, 搭建了乡村生态景观生物多样性监控预警平台; 构建了基于“驱动力-压力-状态-影响-响应”概念框架生物多样性预警机制模型, 制定了多层次生物多样性维护预警指标体系及其评价方法, 采用阈值法对乡村生态景观生物多样性维护开展分级预警, 根据预警等级建立了分层决策机制, 从而形成具有自主知识产权的生物多样性监控预警机制(图10)。
5. 乡村生态景观生物多样性“识别-维护-预警”技术体系集成及其应用展望
面向“山水林田湖草+人居”的生命综合体, 针对乡村“三生空间”中生物多样性维持缺乏可复制和推广的技术规范和方法体系问题, 在多尺度生物多样性的识别与分类、保存与维护、监控与预警等技术基础上进行集成, 形成乡村生态景观生物多样性多尺度全链条“识别-维护-预警”技术体系(图11), 系统性解决了乡村生态景观营造中生物多样性的鉴别、配置和维护技术缺失问题, 实现了乡村生态景观生物多样性的可监控、可预警。
该技术为绿色宜居乡村建设中乡土植物的遴选与配置、生态景观的营造模式创建与应用提供“师法自然”的成套方案, 为乡村生物多样性维护的分级响应、精准施策和高效管理提供了信息化平台和决策支持, 在避免乡村建设“千村一面”趋势、助推生物多样性维护与乡村振兴协同发展方面将发挥应有的作用。
致谢 感谢国家重点研发项目“乡村生态景观营造关键技术”项目组各位同仁在课题执行期间提供的支持, 感谢福建三明市将乐县林业局和常口村村民委员会、江苏南京牌坊社区在野外调查过程中提供的帮助。
-
-
[1] 王浩, 王建华. 中国水资源与可持续发展[J]. 中国科学院院刊, 2012, 27(3): 352−358 doi: 10.3969/j.issn.1000-3045.2012.03.014 WANG H, WANG J H. Sustainable utilization of China’s water resources[J]. Bulletin of Chinese Academy of Sciences, 2012, 27(3): 352−358 doi: 10.3969/j.issn.1000-3045.2012.03.014
[2] 芮孝芳. 水文学原理[M]. 北京: 中国水利水电出版社, 2004 RUI X F. Principles of Hydrology[M]. Beijing: China Water Conservancy Press, 2004
[3] 刘廷玺. 壤中流形成机理的数学描述[J]. 内蒙古农牧学院学报, 1994, 15(3): 352−358 LIU T X. Mathematical description of soil water flow mechanism[J]. Journal of Inner Mongolia Institute of Agriculture and Animal Husbandry, 1994, 15(3): 352−358
[4] 肖雄, 吴华武, 李小雁. 壤中流研究进展与展望[J]. 干旱气象, 2016, 34(3): 391−402 XIAO X, WU H W, LI X Y. Research progress and prospects of subsurface flow[J]. Journal of Arid Meteorology, 2016, 34(3): 391−402
[5] 徐宗恒, 徐则民, 曹军尉, 等. 土壤优先流研究现状与发展趋势[J]. 土壤, 2012, 44(6): 905−916 doi: 10.3969/j.issn.0253-9829.2012.06.004 XU Z H, XU Z M, CAO J W, et al. Present and future research of preferential flow in soil[J]. Soils, 2012, 44(6): 905−916 doi: 10.3969/j.issn.0253-9829.2012.06.004
[6] BEVEN K, GERMANN P. Macropores and water flow in soils revisited[J]. Water Resources Research, 2013, 49(6): 3071−3092 doi: 10.1002/wrcr.20156
[7] 李勇, 王超, 汤红亮. 小流域坡地表土层营养物质输运规律研究进展[J]. 河海大学学报: 自然科学版, 2004, 32(6): 627−631 LI Y, WANG C, TANG H L. Advances in research of nutrient transfer in surface and subsurface soil on sloping land in small watersheds[J]. Journal of Hehai University: Natural Sciences, 2004, 32(6): 627−631
[8] 杨聪, 于静洁, 刘昌明, 等. 华北山区坡地产流规律试验研究[J]. 地理学报, 2005, 60(6): 1021−1028 doi: 10.3321/j.issn:0375-5444.2005.06.016 YANG C, YU J J, LIU C M, et al. Experimental study on slope runoff generation process in North China mountainous area[J]. Acta Geographica Sinica, 2005, 60(6): 1021−1028 doi: 10.3321/j.issn:0375-5444.2005.06.016
[9] 曾辰, 王全九, 樊军. 初始含水率对土壤垂直线源入渗特征的影响[J]. 农业工程学报, 2010, 26(1): 24−30 doi: 10.3969/j.issn.1002-6819.2010.01.005 ZENG C, WANG Q J, FAN J. Effect of initial water content on vertical line-source infiltration characteristics of soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1): 24−30 doi: 10.3969/j.issn.1002-6819.2010.01.005
[10] 吴发启, 赵西宁, 佘雕. 坡耕地土壤水分入渗影响因素分析[J]. 水土保持通报, 2003, 23(1): 16−18, 78 doi: 10.3969/j.issn.1000-288X.2003.01.004 WU F Q, ZHAO X N, SHE D. Analysis on affecting factors of soil infiltration in slope farmland[J]. Bulletin of Soil and Water Conservation, 2003, 23(1): 16−18, 78 doi: 10.3969/j.issn.1000-288X.2003.01.004
[11] 徐勤学, 王天巍, 李朝霞, 等. 紫色土坡地壤中流特征[J]. 水科学进展, 2010, 21(2): 229−234 XU Q X, WANG T W, LI Z X, et al. Characteristics of interflow in purple soil of hillslope[J]. Advances in Water Science, 2010, 21(2): 229−234
[12] 方堃, 陈效民, 张佳宝, 等. 红壤地区典型农田土壤饱和导水率及其影响因素研究[J]. 灌溉排水学报, 2008, 27(4): 67−69 FANG K, CHEN X M, ZHANG J B, et al. Saturated hydraulic conductivity and its influential factors of typical farmland in red soil region[J]. Journal of Irrigation and Drainage, 2008, 27(4): 67−69
[13] 徐铭泽, 杨洁, 刘窑军, 等. 不同母质红壤坡面产流产沙特征比较[J]. 水土保持学报, 2018, 32(2): 34−39 XU M Z, YANG J, LIU Y J, et al. The characteristics of runoff and sediment yield of red soil slope with different parent materials[J]. Journal of Soil and Water Conservation, 2018, 32(2): 34−39
[14] 卢全中, 彭建兵, 陈志新, 等. 黄土高原地区黄土裂隙发育特征及其规律研究[J]. 水土保持学报, 2005, 19(5): 193−196 LU Q Z, PENG J B, CHEN Z X, et al. Research on characteristics and regularity of loess fissure development in the loess plateau area[J]. Journal of Soil and Water Conservation, 2005, 19(5): 193−196
[15] DENG L Z, ZHANG L P, FAN X J, et al. Effects of rainfall intensity and slope gradient on runoff and sediment yield from hillslopes with weathered granite[J]. Environmental Science and Pollution Research, 2019, 26(31): 32559−32573 doi: 10.1007/s11356-019-06486-z
[16] 曹建生, 刘昌明, 张万军, 等. 太行山区坡地水文地质特性与渗流集蓄技术研究[J]. 水科学进展, 2005, 16(2): 216−221 doi: 10.3321/j.issn:1001-6791.2005.02.011 CAO J S, LIU C M, ZHANG W J, et al. Slope hydrogeology and collecting seepage water techniquesin gneiss area in the Taihang mountains[J]. Advances in Water Science, 2005, 16(2): 216−221 doi: 10.3321/j.issn:1001-6791.2005.02.011
[17] 赵思远, 苏辉东, 贾仰文, 等. 北方土石山区典型坡面优先流特征研究[J]. 水土保持学报, 2018, 32(6): 9−15 ZHAO S Y, SU H D, JIA Y W, et al. Characteristics of preferential flow on typical slope in northern rocky mountain area[J]. Journal of Soil and Water Conservation, 2018, 32(6): 9−15
[18] 杨振华, 宋小庆, 苏维词. 西南喀斯特地区坡地产流过程及其利用技术[J]. 地球科学, 2019, 44(9): 2931−2943 YANG Z H, SONG X Q, SU W C. Slope runoff process and its utilization technology in southwest Karst area[J]. Earth Science, 2019, 44(9): 2931−2943
[19] FU Z Y, CHEN H S, ZHANG W, et al. Subsurface flow in a soil-mantled subtropical dolomite Karst slope: a field rainfall simulation study[J]. Geomorphology, 2015, 250: 1−14 doi: 10.1016/j.geomorph.2015.08.012
[20] 王峰. 红壤丘陵区坡地降雨产流规律试验研究[D]. 武汉: 华中农业大学, 2007 WANG F. Experimental investigation on rules of rainfall runoff on sloping land in red soil hilly region[D]. Wuhan: Huazhong Agricultural University, 2007
[21] RIDLEY J C H, SCHLESINGER C A, BULL C M. Location of long-term communal burrows of a threatened arid-zone lizard in relation to soil and vegetation[J]. Austral Ecology, 2020, 45(4): 444−453 doi: 10.1111/aec.12656
[22] LE MER G, JOUQUET P, CAPOWIEZ Y, et al. Age matters: Dynamics of earthworm casts and burrows produced by the anecic Amynthas khami and their effects on soil water infiltration[J]. Geoderma, 2021, 382: 114709 doi: 10.1016/j.geoderma.2020.114709
[23] 闫加亮, 赵文智, 张勇勇. 绿洲农田土壤优先流特征及其对灌溉量的响应[J]. 应用生态学报, 2015, 26(5): 1454−1460 YAN J L, ZHAO W Z, ZHANG Y Y. Characteristics of the preferential flow and its response to irrigation amount in oasis cropland[J]. Chinese Journal of Applied Ecology, 2015, 26(5): 1454−1460
[24] 李文凤, 张晓平, 梁爱珍, 等. 不同耕作方式下黑土的渗透特性和优先流特征[J]. 应用生态学报, 2008, 19(7): 1506−1510 LI W F, ZHANG X P, LIANG A Z, et al. Characters of infiltration and preferential flow of black soil in Northeast China under different tillage patterns[J]. Chinese Journal of Applied Ecology, 2008, 19(7): 1506−1510
[25] RUBIN J. Theory of rainfall uptake by soils initially drier than their field capacity and its applications[J]. Water Resources Research, 1966, 2(4): 739−749 doi: 10.1029/WR002i004p00739
[26] 常宝. 降雨强度、坡度和植被覆盖度对紫色土坡面水文过程的影响[D]. 重庆: 西南大学, 2016 CHANG B. Effect of slope gradients & rainfall intensity & vegetation coverage on hydrological process on land-slope for purple soil[D]. Chongqing: Southwest University, 2016
[27] 陈晓安, 杨洁, 汤崇军, 等. 雨强和坡度对红壤坡耕地地表径流及壤中流的影响[J]. 农业工程学报, 2017, 33(9): 141−146 doi: 10.11975/j.issn.1002-6819.2017.09.018 CHEN X A, YANG J, TANG C J, et al. Effects of rainfall intensity and slope on surface and subsurface runoff in red soil slope farmland[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 141−146 doi: 10.11975/j.issn.1002-6819.2017.09.018
[28] 苏辉东, 贾仰文, 龚家国, 等. 土石山区山坡壤中流汇流界面研究−以太行山崇陵流域为研究区[J]. 水利水电技术, 2018, 49(12): 52−58 SU H D, JIA Y W, GONG J G, et al. Study on confluence interface of subsurface flow of hillslope in rocky mountainous area — a study case of Chongling Watershed in Taihang Mountains[J]. Water Resources and Hydropower Engineering, 2018, 49(12): 52−58
[29] 徐佩, 王玉宽, 傅斌, 等. 紫色土坡耕地壤中产流特征及分析[J]. 水土保持通报, 2006, 26(6): 14−18 doi: 10.3969/j.issn.1000-288X.2006.06.004 XU P, WANG Y K, FU B, et al. Interflow occurrence characters and their analysis on slope cropland with purple soil[J]. Bulletin of Soil and Water Conservation, 2006, 26(6): 14−18 doi: 10.3969/j.issn.1000-288X.2006.06.004
[30] 尹忠东, 左长清, 高国雄, 等. 江西红壤缓坡地壤中流影响因素分析[J]. 西北林学院学报, 2006, 21(5): 1−6, 64 doi: 10.3969/j.issn.1001-7461.2006.05.001 YIN Z D, ZUO C Q, GAO G X, et al. Factors affecting interflow of gentle hill in Jiangxi Province[J]. Journal of Northwest Forestry University, 2006, 21(5): 1−6, 64 doi: 10.3969/j.issn.1001-7461.2006.05.001
[31] 吴泽, 蒋勇军, 姜光辉, 等. 中梁山岩溶槽谷区不同土地利用方式坡地产流规律[J]. 生态学报, 2019, 39(16): 6072−6082 WU Z, JIANG Y J, JIANG G H, et al. Characteristics of different land-use types of slope runoff in a Karst trough valley located in Zhongliang Mountain, Chongqing[J]. Acta Ecologica Sinica, 2019, 39(16): 6072−6082
[32] DUAN J, YANG J, TANG C J, et al. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in Southern China[J]. PLoS One, 2017, 12(8): e0182706 doi: 10.1371/journal.pone.0182706
[33] LI X H, ZHANG Z Y, YANG J, et al. Effects of bahia grass cover and mulch on runoff and sediment yield of sloping red soil in Southern China[J]. Pedosphere, 2011, 21(2): 238−243 doi: 10.1016/S1002-0160(11)60123-9
[34] FULLEN M A. Effects of grass ley set-aside on runoff, erosion and organic matter levels in sandy soils in East Shropshire, UK[J]. Soil and Tillage Research, 1998, 46(1/2): 41−49
[35] 刘士余, 左长清. 植被对径流影响的研究综述[J]. 国土与自然资源研究, 2005(1): 42–44 LIU S Y, ZUO C Q. A review of vegetation impacts on runoff[J]. Territory & Natural Resources Stuty, 2005(1): 42–44
[36] ZHAO N N, YU F L, LI C Z, et al. Investigation of rainfall-runoff processes and soil moisture dynamics in grassland plots under simulated rainfall conditions[J]. Water, 2014, 6(9): 2671−2689 doi: 10.3390/w6092671
[37] 王升, 包小怀, 容莹, 等. 降雨强度对西南喀斯特坡地土壤水分及产流特征的影响[J]. 农业现代化研究, 2020, 41(5): 889−898 WANG S, BAO X H, RONG Y, et al. Study on soil moisture variation and runoff characteristics on typical Karst slope under different rainfall intensities[J]. Research of Agricultural Modernization, 2020, 41(5): 889−898
[38] 段剑, 刘窑军, 汤崇军, 等. 不同下垫面红壤坡地壤中流对自然降雨的响应[J]. 水利学报, 2017, 48(8): 977−985 DUAN J, LIU Y J, TANG C J, et al. Responses of subsurface flow characteristics to natural rainfall in red soil slopes of different surface covers[J]. Journal of Hydraulic Engineering, 2017, 48(8): 977−985
[39] DENG L Z, SUN T, FEI K, et al. Effects of erosion degree, rainfall intensity and slope gradient on runoff and sediment yield for the bare soils from the weathered granite slopes of SE China[J]. Geomorphology, 2020, 352: 106997 doi: 10.1016/j.geomorph.2019.106997
[40] ALAOUI A, GERMANN P, JARVIS N, et al. Dual-porosity and kinematic wave approaches to assess the degree of preferential flow in an unsaturated soil[J]. Hydrological Sciences Journal, 2003, 48(3): 455−472 doi: 10.1623/hysj.48.3.455.45289
[41] STONE W W, WILSON J T. Preferential flow estimates to an agricultural tile drain with implications for glyphosate transport[J]. Journal of Environmental Quality, 2006, 35(5): 1825−1835 doi: 10.2134/jeq2006.0068
[42] 夏军, 李天生. 生态水文学的进展与展望[J]. 中国防汛抗旱, 2018, 28(6): 1−5, 21 XIA J, LI T S. Advances and prospects of eco-hydrology research[J]. China Flood & Drought Management, 2018, 28(6): 1−5, 21
[43] WANG T, ZHU B, XIA L Z. Effects of contour hedgerow intercropping on nutrient losses from the sloping farmland in the Three Gorges Area, China[J]. Journal of Mountain Science, 2012, 9(1): 105−114 doi: 10.1007/s11629-012-2197-9
[44] GIRMAY G, SINGH B R, NYSSEN J, et al. Runoff and sediment-associated nutrient losses under different land uses in Tigray, Northern Ethiopia[J]. Journal of Hydrology, 2009, 376(1/2): 70−80
[45] 朱浩宇, 贾安都, 王子芳, 等. 化肥减量对紫色土坡耕地磷素流失的影响[J]. 中国环境科学, 2021, 41(1): 342−352 doi: 10.3969/j.issn.1000-6923.2021.01.040 ZHU H Y, JIA A D, WANG Z F, et al. Effects of chemical fertilizer reduction on phosphorus loss in slope purple soil farmland[J]. China Environmental Science, 2021, 41(1): 342−352 doi: 10.3969/j.issn.1000-6923.2021.01.040
[46] 常龙飞, 王晓龙, 李恒鹏, 等. 巢湖典型低山丘陵区不同土地利用类型壤中流养分流失特征[J]. 生态与农村环境学报, 2012, 28(5): 511−517 doi: 10.3969/j.issn.1673-4831.2012.05.007 CHANG L F, WANG X L, LI H P, et al. Characteristics of soil nutrient loss with interflow from uplands as affected by land uses in low hill region of Chaohu basin[J]. Journal of Ecology and Rural Environment, 2012, 28(5): 511−517 doi: 10.3969/j.issn.1673-4831.2012.05.007
[47] HUANG R, GAO X S, WANG F H, et al. Effects of biochar incorporation and fertilizations on nitrogen and phosphorus losses through surface and subsurface flows in a sloping farmland of Entisol[J]. Agriculture, Ecosystems & Environment, 2020, 300: 106988
[48] 张小娜, 冯杰, 刘方贵, 等. 土壤大孔隙对坡地产汇流和溶质运移影响研究[J]. 水电能源科学, 2009, 27(1): 32−36 doi: 10.3969/j.issn.1000-7709.2009.01.009 ZHANG X N, FENG J, LIU F G, et al. Analysis of effect of soil macropore on slope runoff yield and concentration and solute transport[J]. Water Resources and Power, 2009, 27(1): 32−36 doi: 10.3969/j.issn.1000-7709.2009.01.009
[49] 张丽萍, 杨洁, 范晓娟, 等. 侵蚀性风化花岗岩坡地壤中流携氮磷流失动态模拟[J]. 水土保持通报, 2018, 38(6): 156−161 ZHANG L P, YANG J, FAN X J, et al. Dynamic simulation of nitrogen and phosphorus losses in erosive weathered granite slope[J]. Bulletin of Soil and Water Conservation, 2018, 38(6): 156−161
[50] 杜祥运, 梁永哲, 夏振尧, 等. 碎石土坡地不同植被配置下的养分流失途径[J]. 水土保持学报, 2017, 31(1): 61−67 DU X Y, LIANG Y Z, XIA Z Y, et al. Soil nutrient loss characteristic of gravel soil slope on different vegetation patterns[J]. Journal of Soil and Water Conservation, 2017, 31(1): 61−67
[51] 郑海金, 左继超, 奚同行, 等. 红壤坡地氮的径流输出通量及形态组成[J]. 土壤学报, 2018, 55(5): 1168−1178 doi: 10.11766/trxb201712200550 ZHENG H J, ZUO J C, XI T H, et al. Nitrogen output through runoff on red soil slope and its composition[J]. Acta Pedologica Sinica, 2018, 55(5): 1168−1178 doi: 10.11766/trxb201712200550
[52] DENG L Z, FEI K, SUN T Y, et al. Characteristics of runoff processes and nitrogen loss via surface flow and interflow from weathered granite slopes of Southeast China[J]. Journal of Mountain Science, 2019, 16(5): 1048−1064 doi: 10.1007/s11629-018-5253-2
[53] JIA H Y, LEI A, LEI J S, et al. Effects of hydrological processes on nitrogen loss in purple soil[J]. Agricultural Water Management, 2007, 89(1/2): 89−97
[54] 张平仓, 程冬兵. 南方坡耕地水土流失过程与调控研究[J]. 长江科学院院报, 2017, 34(3): 35−39, 49 doi: 10.11988/ckyyb.20161033 ZHANG P C, CHENG D B. Process and regulation of soil and water loss of slope farmland in South China[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(3): 35−39, 49 doi: 10.11988/ckyyb.20161033
[55] 余小芳, 肖胜生, 徐铭泽, 等. 红壤坡耕地地表径流和壤中流中可溶性有机碳的迁移特征[J]. 水土保持研究, 2020, 27(4): 16−22 YU X F, XIAO S S, XU M Z, et al. Characteristics of migration of dissolved organic carbon in overland flow and interflow in red soil sloping field[J]. Research of Soil and Water Conservation, 2020, 27(4): 16−22
[56] 张军红, 吴波. 干旱、半干旱地区土壤水分研究进展[J]. 中国水土保持, 2012(2): 40–43, 68 ZHANG J H, WU B. Research progress of soil moisture of arid and semi-arid regions[J]. Soil and Water Conservation in China, 2012(2): 40–43, 68
[57] MA H, ZHU Q K, ZHAO X N, et al. Assessing ecological conditions of microtopography for vegetation restoration on the Chinese Loess Plateau[J]. Nature Environment & Pollution Technology, 2020, 19(1): 71−82
[58] YUAN Y, LI X Y, XIONG D H, et al. Effects of restoration age on water conservation function and soil fertility quality of restored woodlands in phosphate mined-out areas[J]. Environmental Earth Sciences, 2019, 78(23): 1−14
[59] JARVIS N, KOESTEL J, LARSBO M. Understanding preferential flow in the vadose zone: recent advances and future prospects[J]. Vadose Zone Journal, 2016, 15(12): vzj2016.09. 0075
[60] PAHAR G, DHAR A. A dry zone-wet zone based modeling of surface water and groundwater interaction for generalized ground profile[J]. Journal of Hydrology, 2014, 519: 2215−2223 doi: 10.1016/j.jhydrol.2014.09.088
[61] HUA K K, ZHU B, WANG X G. Dissolved organic carbon loss fluxes through runoff and sediment on sloping upland of purple soil in the Sichuan Basin[J]. Nutrient Cycling in Agroecosystems, 2014, 98(2): 125−135 doi: 10.1007/s10705-014-9601-5
[62] 谢颂华, 涂安国, 莫明浩, 等. 自然降雨事件下红壤坡地壤中流产流过程特征分析[J]. 水科学进展, 2015, 26(4): 526−534 XIE S H, TU A G, MO M H, et al. Analysis on the characteristic of interflow production processes on red soil slopes in the case of natural rainfall events[J]. Advances in Water Science, 2015, 26(4): 526−534
[63] 李力, 延耀兴, 张海瑞. 水文模拟中壤中流计算方法的研究[J]. 水土保持通报, 2008, 28(1): 65−68 LI L, YAN Y X, ZHANG H R. Study of the computational method of subsurface flow in hydrology simulation[J]. Bulletin of Soil and Water Conservation, 2008, 28(1): 65−68
[64] 赵人俊. 流域水文模拟: 新安江模型与陕北模型[M]. 北京: 中国水利水电出版社, 1984 ZHAO R J. Watershed Hydrological Simulation: Xin’ anjiang Model and Northern Shaanxi Model[M]. Beijing: China Water Conservancy Press, 1984
[65] 庄一鸽, 林三益. 水文预报[M]. 北京: 水利电力出版社, 1986 ZHUANG Y G, LIN S Y. Hydrological Forecasting[M]. Beijing: Water Conservancy and Electric Power Press, 1986
[66] 雒文生, 胡春歧, 韩家田. 超渗和蓄满同时作用的产流模型研究[J]. 水土保持学报, 1992, 6(4): 6−13 doi: 10.3321/j.issn:1009-2242.1992.04.005 LUO W S, HU C Q, HAN J T. Research on a model of runoff yield reflecting excess infiltration and excess storage simultaneously[J]. Journal of Soil and Water Conservation, 1992, 6(4): 6−13 doi: 10.3321/j.issn:1009-2242.1992.04.005
[67] 于澎涛, 徐德应, 王彦辉. 应用官司河分布式水文模型模拟流域降雨—径流过程[J]. 林业科学, 2003, 39(1): 1−9 doi: 10.3321/j.issn:1001-7488.2003.01.001 YU P T, XU D Y, WANG Y H. Simulating rainfall-runoff processes by GSH model, a physically-based distributed hydrological model[J]. Scientia Silvae Sinicae, 2003, 39(1): 1−9 doi: 10.3321/j.issn:1001-7488.2003.01.001
[68] 梁钟元, 贾仰文, 李开杰, 等. 分布式水文模型在洪水预报中的应用研究综述[J]. 人民黄河, 2007, 29(2): 29−32 doi: 10.3969/j.issn.1000-1379.2007.02.014 LIANG Z Y, JIA Y W, LI K J, et al. Summary of research on the application of distributed hydrological models in flood forecasting[J]. Yellow River, 2007, 29(2): 29−32 doi: 10.3969/j.issn.1000-1379.2007.02.014
[69] 陈洋波, 任启伟, 徐会军, 等. 流溪河模型Ⅰ: 原理与方法[J]. 中山大学学报: 自然科学版, 2010, 49(1): 107−112 CHEN Y B, REN Q W, XU H J, et al. Liuxihe model Ⅰ: theory and methods[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(1): 107−112
[70] 贺玉彬, 朱畅畅, 陈在妮, 等. 大渡河流域径流预报不确定性溯源及降低控制方法[J]. 武汉大学学报: 工学版, 2021, 54(1): 65−71 HE Y B, ZHU C C, CHEN Z N, et al. Runoff forecasting uncertainty traceability analysis and control method research of Dadu River Basin[J]. Engineering Journal of Wuhan University, 2021, 54(1): 65−71
[71] KAVETSKI D, KUCZERA G, FRANKS S W. Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory[J]. Water Resources Research, 2006, 42(3), DOI: 10.1029/2005wr004368
[72] AJAMI N K, DUAN Q Y, SOROOSHIAN S. Reply to comment by B. Renard et al. on “An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction”[J]. Water Resources Research, 2009, 45(3), DOI: 10.1029/2008wr007215
[73] 钱名开, 王凯, 梁忠民, 等. 智慧洪水概率预报平台[J]. 水利信息化, 2018(6): 6–10, 43 QIAN M K, WANG K, LIANG Z M, et al. Technology and application of Smart Flood probability forecasting[J]. Water Resources Informatization, 2018(6): 6–10, 43
-
期刊类型引用(3)
1. 张蛟龙. 现代生物技术在林木培植中的应用. 造纸装备及材料. 2024(05): 125-127 . 百度学术
2. 林锦虹. 乡村振兴背景下岭南特色美丽乡村生态景观规划设计策略研究. 住宅产业. 2024(07): 7-12 . 百度学术
3. 黄晓丹. 美丽乡村生态景观建设路径分析. 居业. 2024(11): 205-207 . 百度学术
其他类型引用(0)