Analysis of photosynthetic and fluorescence characteristics of low-light tolerant genotype potato under shade condition
-
摘要: 为探寻遮阴对马铃薯光合和荧光特性及吸收光能分配的影响,本研究采用大田试验,以马铃薯不耐弱光品种‘丽薯6号’和耐弱光品种‘中薯20’为材料,出苗后用遮光率70%的黑色遮阳网进行遮阴处理(T),以自然光照为对照(CK),测定了遮阴30 d后马铃薯叶片的光合作用、光响应曲线、CO2响应曲线、光诱导曲线和叶绿素荧光参数的变化。结果表明:1)遮阴后净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、最大净光合速率(Pmax)、光饱和点(LSP)、光补偿点(LCP)较CK显著下降;‘中薯20’的Pn、Pmax、LSP较高,LCP和暗呼吸速率(Rd)较低。2)不同基因型CO2响应参数无显著差异,但‘中薯20’的最大羧化速率(Vcmax)和最大电子传递速率(Jmax)较高,CO2补偿点(CCP)较低。3)高光诱导过程中,‘中薯20’反应较快,光合能力较强。4)初始荧光(Fo)、最大荧光(Fm)、最大光化学量子效率(Fv/Fm)较CK显著增加,PSⅡ实际光化学量子效率(ΔF/Fm')、表观电子传递速率(ETR)和光化学猝灭系数(qP)较CK显著下降,非光化学猝灭系数(NPQ)呈增加趋势。5)非光化学热耗散(ФNPQ)和荧光耗散途径(Фf,d)比例显著增加,光化学猝灭耗散途径(ФPSⅡ)比例显著减少,主要以增加热耗散为主。遮阴后,耐弱光基因型‘中薯20’的NPQ和ФNPQ均高于不耐弱光的‘丽薯6号’,说明‘中薯20’的光合机构保护能力更强。综合分析表明,遮阴后耐弱光基因型马铃薯具有较高的净光合速率、较低的光补偿点、较低的CO2补偿点、较快的光诱导反应速度和较高的非光化学热耗散能力。Abstract: With constant development of potato cultivation in winter agriculture fields in south China and in relay-intercropping systems in recent years, low light stress has been becoming the emerging limitation to potato development in these regions and it has increasingly gained considerable research attention. In order to explore the effects of low light stress on photosynthetic and chlorophyll fluorescent characteristics along with the distribution of absorbed light energy of low-light tolerant genotype potato, a field experiment was conducted with low-light sensitive potato cultivar 'Lishu 6' and low-light tolerant potato cultivar 'Zhongshu 20'. The experiment consisted of a shade treatment using black net that can filter 70% of sunlight (T) and then a light treatment with full natural sunlight (CK) after seed emergence. The variations in photosynthesis, light and CO2 response curves, light induced curve and chlorophyll fluorescence parameters of the different potato genotypes following 30 days of shade treatment were measured. The results following the shade treatment were as follows: 1) the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), maximum net photosynthetic rate (Pmax), light saturation point (LSP) and light compensation point (LCP) under T were significantly lower than those under CK. While Pn, Pmax and LSP of 'Zhongshu 20' potato cultivar were relatively higher than those of 'Lishu 6' potato cultivar, LCP and dark respiration rate (Rd) of 'Zhongshu 20' potato cultivar were lower than those of 'Lishu 6' potato cultivar. 2) The parameters of CO2 response curve were not significantly different between the shade and control treatments, but 'Zhongshu 20' potato cultivar had higher maximum carboxylation rate (Vcmax), higher maximum electron transportation rate (Jmax) and lower CO2 compensation point (CCP) than 'Lishu 6' potato cultivar. 3) Potato cultivar 'Zhongshu 20' reacted quicker to high introduction rate and performed better in terms of photosynthetic capacity than potato cultivar 'Lishu 6'. 4) Compared with the control (CK), the increases of initial fluorescence (Fo), maximum fluorescence (Fm) and maximum photochemical quantum efficiency (Fv/Fm) were significantly higher in T treatments. Also reductions in actual photochemical quantum efficiency of PSⅡ(ΔF/Fm'), apparent electron transfer rate (ETR) and photochemical quenching coefficient (qP) were significantly higher in T treatments. Furthermore, there was an increasing trend in non photochemical quenching coefficient (NPQ). 5) Compared with the control, the ratios of non-photochemical dissipation (ФNPQ) and fluorescence dissipation (Фf, d) pathways increased remarkably under shade treatment. The ratio of photochemical quenching pathway (ФPSⅡ) decreased significantly, making ФNPQ as the main pathway of dissipation. After shade treatment, the low-light tolerant potato genotype 'Zhongshu 20' overall performance for NPQ and ФNPQ was higher than the low-light sensitive potato genotype 'Lishu 6', suggesting that 'Zhongshu 20' cultivar had more stronger photosynthetic apparatus protective capability. The above comprehensive analysis indicated that low-light tolerance genotype potatoes had relatively higher Pn, lower LCP and CCP, faster light induced reaction rate and higher non-photochemical dissipation capacity under shade conditions compared with that of low-light sensitive potato cultivar.
-
-
表 1 遮光对马铃薯不同弱光耐受性品种的光合特征参数的影响
Table 1 Effect of shading on photosynthetic characteristics of potato cultivars with different low-light tolerance
光合特征参数
Photosynthetic parameter丽薯6号Lishu 6 中薯20 Zhongshu 20 CK T CK T 净光合速率(Pn)
Net photosynthetic rate (μmol·m-2·s-1)21.45±2.10a 12.26±0.80b 24.20±1.75a 17.52±0.24b 气孔导度(Gs)
Stomatal conductance (mol·m-2·s-1)0.40±0.08a 0.18±0.05b 0.57±0.11a 0.45±0.09b 胞间CO2浓度(Ci)
Intercellular carbon dioxide concentration (μmol·mol-1)275.96±6.81a 272.17±18.15a 286.80±10.22b 307.30±13.45a 蒸腾速率(Tr)
Transpiration rate (mmol·m-2·s-1)4.39±0.40a 2.68±0.47b 5.81±0.48a 4.64±0.41b 水分利用效率(WUE)
Water use efficiency (μmol·mmol-1)54.75±6.17b 69.49±12.22a 43.45±7.05a 41.27±9.78a 最大净光合速率(Pmax)
Maximum net photosynthetic rate (μmol·m-2·s-1)20.91±0.90a 16.31±2.05b 25.56±2.08a 20.16±0.23b 光饱和点(LSP)
Light saturation point (μmol·m-2·s-1)1 799.16±361.67a 1 163.51±148.58b 2 293.35±61.18a 1 557.37±101.35b 光补偿点(LCP)
Light compensation point (μmol·m-2·s-1)45.83±13.12a 19.05±2.52b 27.31±2.90a 17.75±1.52b 暗呼吸速率(Rd)
Dark respiration rate (μmol·m-2·s-1)-2.64±0.18a -1.30±0.13b -1.47±0.31a -1.11±0.19a 表观量子产额(AQY)
Apparent quantum yield (μmol·mol-1)0.06±0.01a 0.07±0.00a 0.05±0.01a 0.06±0.00a 羧化效率(CE)
Carboxylation efficiency (mol·mol-1)0.06±0.03a 0.09±0.00a 0.10±0.01a 0.09±0.00a 光呼吸(RL)
Photorespiration (μmol·m-2·s-1)-4.21±1.71a -5.09±0.77a -5.74±0.82a -5.31±0.50a CO2补偿点(CCP)
Carbon dioxide compensation point (μmol·mol-1)67.80±7.01a 59.92±9.13a 57.34±7.08a 57.42±5.19a 最大羧化速率(Vcmax)
Maximum carboxylation rate (μmol·m-2·s-1)67.17±37.40a 91.86±6.14a 130.78±16.74a 104.65±3.78a 最大电子传递速率(Jmax)
Maximum electron transportation rate (μmol·m-2·s-1)190.57±98.16a 255.72±28.24a 399.83±61.21a 294.64±16.23b CK:自然光照处理; T:遮光70%处理。数据表示为平均值±标准差。不同小写字母表示5%水平差异显著。CK: normal light; T: light decreased by 70%. ‘Lishu 6’ is low-light sensitive cultivar, ‘Zhongshu 20’ is low-light tolerant cultivar. The data is expressed as mean ± standard deviation. Values followed by different lowercase letters are significantly different at 5% level. 表 2 遮阴对马铃薯不同弱光耐受性品种光合诱导参数的影响
Table 2 Effect of shading on photoinduction parameters of potato cultivars with different low-light tolerance
光合诱导参数
Photoinduction parameter丽薯6号Lishu 6 中薯20Zhongshu 20 CK T CK T T50%P(s) 361.76±205.93a 275.30±129.46a 123.35±22.99a 156.98±29.61a T90%P(s) 1 354.08±780.29a 879.27±455.32a 381.88±83.01a 469.29±116.88a IS1 min(%) 5.17±0.61a 2.43±1.17b 6.93±0.65a 3.12±0.26b IS5 min(%) 24.29±7.42a 19.69±1.73a 29.06±4.70a 20.18±1.68b IS10 min(%) 26.98±8.42a 18.30±2.04a 26.71±3.07a 17.74±1.39b T50%P、T90%P:暗适应后达到最大净光合速率50%、90%所需的时间; IS1 min、IS5 min、IS10 min:暗适应后1 min、5 min、10 min所达到的最大净光合速率百分比。CK:自然光照处理; T:遮光70%处理。数据表示为平均值±标准差。不同小写字母表示5%水平差异显著。T50%P, T90%P: the time to reach 50% and 90% of maximum photosynthetic rate of dark adaptation; IS1 min, IS5 min, IS10 min: the maximum photosynthetic rate within 1 min, 5 min and 10 min, respectively, after dark adaptation. CK: normal light; T: light decreased by 70%. ‘Lishu 6’ is low-light sensitive cultivar, ‘Zhongshu 20’ is low-light tolerant cultivar. The data is expressed as mean ± standard deviation. Values followed by different lowercase letters are significantly different at 5% level. 表 3 遮阴对马铃薯不同弱光耐受性品种叶绿素荧光参数的影响
Table 3 Effect of shading on chlorophyll fluorescence parameters of potato cultivars with different low-light tolerance
叶绿素荧光参数Chlorophyll fluorescence parameter 丽薯6号Lishu 6 中薯20Zhongshu 20 CK T CK T Fo 171.79±2.24b 174.58±1.42a 177.15±3.26b 182.30±3.53a Fm 1 041.34±29.43b 1 109.82±20.99a 1 042.45±45.71b 1 130.21±31.61a Fv/Fm 0.83±0.00b 0.84±0.00a 0.83±0.01b 0.84±0.00a Fv′/Fm′ 0.57±0.04a 0.57±0.01a 0.57±0.02a 0.55±0.01b ∆F/Fm′ 0.29±0.04a 0.20±0.01b 0.32±0.03a 0.20±0.02b ETR 182.70±22.92a 128.33±8.76b 199.92±21.71a 125.76±14.42b NPQ 1.74±0.31a 1.75±0.09a 1.74±0.14a 1.84±0.11a qP 0.51±0.04a 0.36±0.02b 0.56±0.05a 0.36±0.04b Fo:暗适应下的初始荧光; Fm:暗适应下最大荧光; Fv/Fm:暗适应下最大光化学量子效率; Fv′/Fm′:光适应下PSⅡ最大光化学量子效率; ∆F/Fm′: PSⅡ实际光化学量子效率; ETR:表观电子传递速率; NPQ:非光化学猝灭系数; qP:光化学猝灭系数。CK:自然光照处理; T:遮光70%处理。数据表示为平均值±标准差。相同品种同一处理之间不同小写字母表示5%水平差异显著。Fo: initial fluorescence under dark adaptation; Fm: maximum fluorescence under dark adaptation; Fv/Fm: maximal photochemical quantum efficiency under dark adaptation; Fv′/Fm′: maximum photochemical efficiency of PSⅡ under light adaptation; ∆F/Fm′: actual photochemical quantum efficiency of PSII under light adaptation; ETR: apparent electron transfer rate; NPQ: non-photochemical quenching; qP: photochemical quenching. CK: normal light; T: light decreased by 70%. ‘Lishu 6’ is low-light sensitive cultivar, ‘Zhongshu 20’ is low-light tolerant cultivar. The data is expressed as mean ± standard deviation. Values followed by different lowercase letters are significantly different at 5% level. 表 4 遮阴对马铃薯不同弱光耐受性品种光能分配的影响
Table 4 Effect of shading on energy distribution of potato cultivars with different low-light tolerance
光能分配参数
energy distribution parameter丽薯6号Lishu 6 中薯20Zhongshu 20 CK T CK T ФPSII 0.29±0.04a 0.20±0.01b 0.32±0.03a 0.20±0.02b ФNPQ 0.45±0.05b 0.51±0.02a 0.43±0.03b 0.52±0.02a Фf, d 0.26±0.02b 0.29±0.01a 0.25±0.01b 0.28±0.28a ФPSⅡ:光化学耗散比例; ФNPQ:非光化学猝灭耗散比例; Фf, d:荧光耗散比例。CK:自然光照处理; T:遮光70%处理。数据表示为平均值±标准差。不同小写字母表示5%水平差异显著。ФPSⅡ: quantum yield of photochemical dissipation; ФNPQ: quantum yield of non-photochemical quenching dissipation; Фf, d: quantum yield of fluorescence quenching dissipation. CK: normal light; T: light decreased by 70%. ‘Lishu 6’ is low-light sensitive cultivar, ‘Zhongshu 20’ is low-light tolerant cultivar. The data is expressed as mean ± standard deviation. Values followed by different lowercase letters are significantly different at 5% level. -
[1] 屈冬玉, 谢开云, 金黎平, 等.中国马铃薯产业发展与食物安全[J].中国农业科学, 2005, 38(2): 358-362 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK20050200L.htm Qu D Y, Xie K Y, Jin L P, et al. Development of potato industry and food security in China[J]. Scientia Agricultura Sinica, 2005, 38(2): 358-362 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK20050200L.htm
[2] 肖继坪, 颉炜清, 郭华春.马铃薯与玉米间作群体的光合及产量效应[J].中国马铃薯, 2011, 25(6): 339-341 http://www.cnki.com.cn/Article/CJFDTOTAL-MLSZ201106007.htm Xiao J P, Xie W Q, Guo H C. Characteristics of photosynthesis and yield in potato intercropping with maize[J]. Chinese Potato Journal, 2011, 25(6): 339-341 http://www.cnki.com.cn/Article/CJFDTOTAL-MLSZ201106007.htm
[3] 黄承建, 赵思毅, 王季春, 等.马铃薯/玉米不同行比套作对马铃薯生理特性和群体产量的影响[J].草业学报, 2013, 22(6): 117-128 doi: 10.11686/cyxb20130615 Huang C J, Zhao S Y, Wang J C, et al. Effects of a potato/maize intercropping system on physiological characteristics and total yield with two potato varieties at different row ratios[J]. Acta Prataculturae Sinica, 2013, 22(6): 117-128 doi: 10.11686/cyxb20130615
[4] 桂富荣, 普雁翔, 王平华.马铃薯与玉米不同套种模式的经济效益评价[J].云南农业大学学报, 2005, 20(6): 792-794 http://www.cnki.com.cn/Article/CJFDTOTAL-YNDX200506009.htm Gui F R, Pu Y X, Wang P H. Economic evaluation of different intercrop pattern of corn and potato[J]. Journal of Yunnan Agricultural University, 2005, 20(6): 792-794 http://www.cnki.com.cn/Article/CJFDTOTAL-YNDX200506009.htm
[5] 秦玉芝, 邢铮, 邹剑锋, 等.持续弱光胁迫对马铃薯苗期生长和光合特性的影响[J].中国农业科学, 2014, 47(3): 537-545 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201403014.htm Qin Y Z, Xing Z, Zou J F, et al. Effects of sustained weak light on seedling growth and photosynthetic characteristics of potato seedlings[J]. Scientia Agricultura Sinica, 2014, 47(3): 537-545 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201403014.htm
[6] 李彩斌, 郭华春.遮光处理对马铃薯生长的影响[J].西南农业学报, 2015, 28(5): 1932-1935 http://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201505014.htm Li C B, Guo H C. Effect of shading treatment on growing of potato[J]. Southwest China Journal of Agricultural Sciences, 2015, 28(5): 1932-1935 http://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201505014.htm
[7] 秦玉芝, 覃丽, 何长征, 等.遮光处理对马铃薯农艺性状和产量的影响[J].湖南农业大学学报:自然科学版, 2017, 43(1): 1-6 http://www.cnki.com.cn/Article/CJFDTOTAL-HNND201701001.htm Qin Y Z, Qin L, He C Z, et al. Effect of shading treatment on the agronomic traits and yield of potato (Solanum tuberosum L.)[J]. Journal of Hunan Agricultural University: Natural Sciences, 2017, 43(1): 1-6 http://www.cnki.com.cn/Article/CJFDTOTAL-HNND201701001.htm
[8] 李佩华, 彭徐.马铃薯遮光处理的效应研究[J].中国农学通报, 2007, 23(4): 220-227 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200704053.htm Li P H, Peng X. Study on photosynthesis effect of shading potato light[J]. Chinese Agricultural Science Bulletin, 2007, 23(4): 220-227 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200704053.htm
[9] 肖特, 马艳红, 于肖夏, 等.温光处理对不同马铃薯品种块茎形成发育影响的研究[J].内蒙古农业大学学报, 2011, 32(4): 110-115 http://www.cnki.com.cn/Article/CJFDTOTAL-NMGM201104022.htm Xiao T, Ma Y H, Yu X X, et al. Study on effect of temperature and light treatments on growth and formation of potato (Solanum tuberosum L.) varieties tuber[J]. Journal of Inner Mongolia Agricultural University, 2011, 32(4): 110-115 http://www.cnki.com.cn/Article/CJFDTOTAL-NMGM201104022.htm
[10] 刘钟, 薛英利, 杨圆满, 等.人工遮阴条件下3个马铃薯品种耐阴性研究[J].云南农业大学学报, 2015, 30(4): 566-574 http://www.cnki.com.cn/Article/CJFDTOTAL-YNDX201504014.htm Liu Z, Xue Y L, Yang Y M, et al. Study on shade tolerance of three potato varieties under the artificial shading[J]. Journal of Yunnan Agricultural University, 2015, 30(4): 566-574 http://www.cnki.com.cn/Article/CJFDTOTAL-YNDX201504014.htm
[11] 秦玉芝, 陈珏, 邢铮, 等. CIP引进马铃薯资源光合作用特性研究[C]//马铃薯产业与科技扶贫. 银川: 中国作物学会马铃薯专业委员会, 2011: 178-183 Qin Y Z, Chen J, Xing Z, et al. Study on the photosynthetic characteristics of potato resources introduced by CIP[C]//Potato Industry and Science and Technology Poverty Alleviation. Yinchuan: Chinese Crop Society Potato Specialized Committee, 2011: 178-183
[12] 李冬梅, 赵奎华, 王延波, 等.不同耐密性玉米品种光合特性对弱光响应的差异[J].玉米科学, 2013, 21(5): 52-56 http://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201305010.htm Li D M, Zhao K H, Wang Y B, et al. Responses of photosynthesis characters to low-light stress for maize hybrids with different density tolerances[J]. Journal of Maize Sciences, 2013, 21(5): 52-56 http://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201305010.htm
[13] 李瑞, 文涛, 唐艳萍, 等.遮阴对大豆幼苗光合和荧光特性的影响[J].草业学报, 2014, 23(6): 198-206 doi: 10.11686/cyxb20140624 Li R, Wen T, Tang Y P, et al. Effect of shading on photosynthetic and chlorophyll fluorescence characteristics of soybean[J]. Acta Prataculturae Sinica, 2014, 23(6): 198-206 doi: 10.11686/cyxb20140624
[14] 李宁, 郭世荣, 束胜, 等.外源24-表油菜素内酯对弱光胁迫下番茄幼苗叶片形态及光合特性的影响[J].应用生态学报, 2015, 26(3): 847-852 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201503028.htm Li N, Guo S R, Shu S, et al. Effects of exogenous 24-epibrassinolide on leaf morphology and photosynthetic characteristics of tomato seedlings under low light stress[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 847-852 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201503028.htm
[15] 付忠, 谢世清, 徐文果, 等.不同光照强度下谢君魔芋的光合作用及能量分配特征[J].应用生态学报, 2016, 27(4): 1177-1188 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201604023.htm Fu Z, Xie S Q, Xu W G, et al. Characteristics of photosynthesis and light energy partitioning in Amorphophallus xiei grown along a light-intensity gradient[J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1177-1188 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201604023.htm
[16] Webb W L, Newton M, Starr D. Carbon dioxide exchange of Alnus rubra: A mathematical model[J]. Oecologia, 1974, 17(4): 281-291 doi: 10.1007/BF00345747
[17] 许大全.光合作用效率[M].上海:上海科学技术出版社, 2002: 9-160 Xu D Q. Photosynthetic Efficiency[M]. Shanghai: Shanghai Science and Technology Press, 2002: 9-160
[18] Bernacchi C J, Singsaas E L, Pimentel C, et al. Improved temperature response functions for models of rubisco-limited photosynthesis[J]. Plant, Cell & Environment, 2001, 24(2): 253-259 https://www.researchgate.net/profile/Archie_Portis/publication/201996139_Improved_temperature_response_functions_for_models_of_Rubisco-limited_photosynthesis/links/09e415102e153a9d48000000.pdf?origin=publication_detail
[19] Tausz M, Warren C R, Adams M A. Dynamic light use and protection from excess light in upper canopy and coppice leaves of Nothofagus cunninghamii in an old growth, cool temperate rainforest in Victoria, Australia[J]. New Phytologist, 2005, 165(1): 143-155 https://www.researchgate.net/publication/8012072_Dynamic_light_use_and_protection_from_excess_light_in_upper_canopy_and_coppice_leaves_of_Nothofagus_cunninghamii_in_an_old_growth_cool_temperate_rainforest_in_Victoria_Australia
[20] Demmig-Adams B, Adams Ⅲ W W, Logan B A, et al. Xanthophyll cycle-dependent energy dissipation and flexible photosystem Ⅱ efficiency in plants acclimated to light stress[J]. Australian Journal of Plant Physiology, 1995, 22(2): 249-260 doi: 10.1071/PP9950249
[21] Demmig-Adams B, Adams Ⅲ W W, Barker D H, et al. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J]. Physiologia Plantarum, 1996, 98(2): 253-264 https://www.researchgate.net/publication/229743823_Using_chlorophyll_fluorescence_to_assess_the_fraction_of_absorbed_light_allocated_to_thermal_dissipation_of_excess_excitation
[22] Hendrickson L, Furbank R T, Chow W S. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence[J]. Photosynthesis Research, 2004, 82(1): 73-81 doi: 10.1023/B:PRES.0000040446.87305.f4
[23] 翁忙玲, 程慧林, 姜卫兵.弱光对园艺植物光合特性及生长发育影响研究进展[J].内蒙古农业大学学报, 2007, 28(3): 279-282 http://www.cnki.com.cn/Article/CJFDTOTAL-NMGM200703065.htm Weng M L, Cheng H L, Jiang W B. Effects of low light on photosynthetic characters, growth and development of horticultural plants[J]. Journal of Inner Mongolia Agricultural University, 2007, 28(3): 279-282 http://www.cnki.com.cn/Article/CJFDTOTAL-NMGM200703065.htm
[24] 吴亚男. 不同玉米品种耐阴性评价及高产群体结构[D]. 沈阳: 沈阳农业大学, 2014: 51-78 Wu Y N. Shade-endurance among different maize varieties and high-yielding population structure[D]. Shenyang: Shenyang Agricultural University, 2014: 51-78
[25] 黄承建, 赵思毅, 王季春, 等.马铃薯/玉米不同行数比套作对马铃薯光合特性和产量的影响[J].中国生态农业学报, 2012, 20(11): 1443-1450 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20121105&flag=1 Huang C J, Zhao S Y, Wang J C, et al. Photosynthetic characteristics and yield of potato in potato/maize intercropping systems with different row number ratios[J]. Chinese Journal of Eco-Agriculture, 2012, 20(11): 1443-1450 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20121105&flag=1
[26] 王建华, 任士福, 史宝胜, 等.遮荫对连翘光合特性和叶绿素荧光参数的影响[J].生态学报, 2011, 31(7): 1811-1817 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201107009.htm Wang J H, Ren S F, Shi B S, et al. Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Forsythia suspensa[J]. Acta Ecologica Sinica, 2011, 31(7): 1811-1817 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201107009.htm
[27] 范元芳, 杨峰, 何知舟, 等.套作大豆形态、光合特征对玉米荫蔽及光照恢复的响应[J].中国生态农业学报, 2016, 24(5): 608-617 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016507&flag=1 Fan Y F, Yang F, He Z Z, et al. Effects of shading and light recovery on soybean morphology and photosynthetic characteristics in soybean-maize intercropping system[J]. Chinese Journal of Eco-Agriculture, 2016, 24(5): 608-617 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016507&flag=1
[28] 张元帅, 冯伟, 张海艳, 等.遮阴和施氮对冬小麦旗叶光合特性及产量的影响[J].中国生态农业学报, 2016, 24(9): 1177-1184 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016904&flag=1 Zhang Y S, Feng W, Zhang H Y, et al. Effects of shading and nitrogen rate on photosynthetic characteristics of flag leaves and yield of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2016, 24(9): 1177-1184 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016904&flag=1
[29] 蔡仕珍, 陈其兵, 潘远智, 等.遮光对花叶细辛光合特性和荧光参数的影响[J].四川农业大学学报, 2004, 22(4): 326-331 http://www.cnki.com.cn/Article/CJFDTOTAL-SCND200404008.htm Cai S Z, Chen Q B, Pan Y Z, et al. Effects of photosynthetic characters and chlorophyll fluorescence parameters on A. splendens under different sun-shading treatments[J]. Journal of Sichuan Agricultural University, 2004, 22(4): 326-331 http://www.cnki.com.cn/Article/CJFDTOTAL-SCND200404008.htm
[30] 杜成凤, 李潮海, 刘天学, 等.遮荫对两个基因型玉米叶片解剖结构及光合特性的影响[J].生态学报, 2011, 31(21): 6633-6640 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201121037.htm Du C F, Li C H, Liu T X, et al. Response of anatomical structure and photosynthetic characteristics to low light stress in leaves of different maize genotypes[J]. Acta Ecologica Sinica, 2011, 31(21): 6633-6640 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201121037.htm
[31] Long S P, Bernacchi C J. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error[J]. Journal of Experimental Botany, 2003, 54(392): 2393-2401 doi: 10.1093/jxb/erg262
[32] 焦念元, 杨萌珂, 宁堂原, 等.玉米花生间作和磷肥对间作花生光合特性及产量的影响[J].植物生态学报, 2013, 37(11): 1010-1017 http://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201604026.htm Jiao N Y, Yang M K, Ning T Y, et al. Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants[J]. Chinese Journal of Plant Ecology, 2013, 37(11): 1010-1017 http://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201604026.htm
[33] 田耀华, 原慧芳, 龙云峰, 等.生长光强对六个橡胶树品种幼苗光合特性的影响[J].热带亚热带植物学报, 2012, 20(3): 270-276 http://www.cnki.com.cn/Article/CJFDTOTAL-RYZB201203012.htm Tian Y H, Yuan H F, Long Y F, et al. Influence of growth light intensity on photosynthetic characteristics in six varieties of Hevea brasiliensis seedlings[J]. Journal of Tropical and Subtropical Botany, 2012, 20(3): 270-276 http://www.cnki.com.cn/Article/CJFDTOTAL-RYZB201203012.htm
[34] Harley P C, Thomas R B, Reynolds J F, et al. Modelling photosynthesis of cotton grown in elevated CO2[J]. Plant, Cell & Environment, 1992, 15(3): 271-282 doi: 10.1111/j.1365-3040.1992.tb00974.x/abstract
[35] 刘卫琴, 汪良驹, 刘晖, 等.遮阴对丰香草莓光合作用及叶绿素荧光特性的影响[J].果树学报, 2006, 23(2): 209-213 http://www.cnki.com.cn/Article/CJFDTOTAL-GSKK200602016.htm Liu W Q, Wang L J, Liu H, et al. Effects of shading on photosynthesis and chlorophyll fluorescence characteristics of Toyonoka strawberry cultivar[J]. Journal of Fruit Science, 2006, 23(2): 209-213 http://www.cnki.com.cn/Article/CJFDTOTAL-GSKK200602016.htm
[36] 付忠, 谢世清, 徐文果, 等. 3种光强环境下白魔芋生长旺盛期的光合和叶绿素a荧光特征[J].应用与环境生物学报, 2016, 22(3): 446-454 http://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201603016.htm Fu Z, Xie S Q, Xu W G, et al. Characteristics of photosynthesis and chlorophyll a fluorescence in Amorphophallus albus during vigorous growth under different light intensity[J]. Chinese Journal of Applied & Environmental Biology, 2016, 22(3): 446-454 http://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201603016.htm
[37] 熊宇, 杨再强, 薛晓萍, 等.遮光处理对温室黄瓜幼龄植株叶片光合参数的影响[J].中国农业气象, 2016, 37(2): 222-230 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201602012.htm Xiong Y, Yang Z Q, Xue X P, et al. Effect of shading on photosynthetic parameters in greenhouse cucumber leaves[J]. Chinese Journal of Agrometeorology, 2016, 37(2): 222-230 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201602012.htm
[38] 周艳虹, 黄黎锋, 喻景权.持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响[J].植物生理与分子生物学学报, 2004, 30(2): 153-160 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSI200402005.htm Zhou Y H, Huang L F, Yu J Q. Effects of sustained chilling and low light on gas exchange, chlorophyll fluorescence quenching and absorbed light allocation in cucumber leaves[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(2): 153-160 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSI200402005.htm
[39] 葛亚英, 田丹青, 俞信英, 等.光合荧光参数等指标对室内悬挂植物12个品种的耐荫性评价[J].浙江农业学报, 2013, 25(3): 483-487 http://www.cnki.com.cn/Article/CJFDTOTAL-ZJNB201303013.htm Ge Y Y, Tian D Q, Yu X Y, et al. Evaluation on shade-tolerance of twelve indoor hanging plant species by using several indexes such as chlorophyll fluorescence parameters[J]. Acta Agriculturae Zhejiangensis, 2013, 25(3): 483-487 http://www.cnki.com.cn/Article/CJFDTOTAL-ZJNB201303013.htm
[40] 宋艳霞, 杨文钰, 李卓玺, 等.不同大豆品种幼苗叶片光合及叶绿素荧光特性对套作遮荫的响应[J].中国油料作物学报, 2009, 31(4): 474-479 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW200904012.htm Song Y X, Yang W Y, Li Z X, et al. The effects of shading on photosynthetic and fluorescent characteristics of soybean seedlings under maize-soybean relay cropping[J]. Chinese Journal of Oil Crop Sciences, 2009, 31(4): 474-479 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW200904012.htm
[41] 韦金河, 闻婧, 张俊, 等.夏季遮光对3种槭树PSⅡ叶绿素荧光参数的影响[J].江苏农业学报, 2015, 31(1): 172-179 http://www.cnki.com.cn/Article/CJFDTOTAL-JSNB201501028.htm Wei J H, Weng J, Zhang J, et al. Effects of summer shading on PS Ⅱ chlorophyll fluorescence parameters in three maple trees[J]. Jiangsu Journal of Agricultural Sciences, 2015, 31(1): 172-179 http://www.cnki.com.cn/Article/CJFDTOTAL-JSNB201501028.htm
计量
- 文章访问数: 1339
- HTML全文浏览量: 163
- PDF下载量: 991