全生育期UV-B辐射增强对棉花生长及光合作用的影响

祁虹, 段留生, 王树林, 王燕, 张谦, 冯国艺, 杜海英, 梁青龙, 林永增

祁虹, 段留生, 王树林, 王燕, 张谦, 冯国艺, 杜海英, 梁青龙, 林永增. 全生育期UV-B辐射增强对棉花生长及光合作用的影响[J]. 中国生态农业学报(中英文), 2017, 25(5): 708-719. DOI: 10.13930/j.cnki.cjea.160801
引用本文: 祁虹, 段留生, 王树林, 王燕, 张谦, 冯国艺, 杜海英, 梁青龙, 林永增. 全生育期UV-B辐射增强对棉花生长及光合作用的影响[J]. 中国生态农业学报(中英文), 2017, 25(5): 708-719. DOI: 10.13930/j.cnki.cjea.160801
QI Hong, DUAN Liusheng, WANG Shulin, WANG Yan, ZHANG Qian, FENG Guoyi, DU Haiying, LIANG Qinglong, LIN Yongzeng. Effect of enhanced UV-B radiation on cotton growth and photosynthesis[J]. Chinese Journal of Eco-Agriculture, 2017, 25(5): 708-719. DOI: 10.13930/j.cnki.cjea.160801
Citation: QI Hong, DUAN Liusheng, WANG Shulin, WANG Yan, ZHANG Qian, FENG Guoyi, DU Haiying, LIANG Qinglong, LIN Yongzeng. Effect of enhanced UV-B radiation on cotton growth and photosynthesis[J]. Chinese Journal of Eco-Agriculture, 2017, 25(5): 708-719. DOI: 10.13930/j.cnki.cjea.160801
祁虹, 段留生, 王树林, 王燕, 张谦, 冯国艺, 杜海英, 梁青龙, 林永增. 全生育期UV-B辐射增强对棉花生长及光合作用的影响[J]. 中国生态农业学报(中英文), 2017, 25(5): 708-719. CSTR: 32371.14.j.cnki.cjea.160801
引用本文: 祁虹, 段留生, 王树林, 王燕, 张谦, 冯国艺, 杜海英, 梁青龙, 林永增. 全生育期UV-B辐射增强对棉花生长及光合作用的影响[J]. 中国生态农业学报(中英文), 2017, 25(5): 708-719. CSTR: 32371.14.j.cnki.cjea.160801
QI Hong, DUAN Liusheng, WANG Shulin, WANG Yan, ZHANG Qian, FENG Guoyi, DU Haiying, LIANG Qinglong, LIN Yongzeng. Effect of enhanced UV-B radiation on cotton growth and photosynthesis[J]. Chinese Journal of Eco-Agriculture, 2017, 25(5): 708-719. CSTR: 32371.14.j.cnki.cjea.160801
Citation: QI Hong, DUAN Liusheng, WANG Shulin, WANG Yan, ZHANG Qian, FENG Guoyi, DU Haiying, LIANG Qinglong, LIN Yongzeng. Effect of enhanced UV-B radiation on cotton growth and photosynthesis[J]. Chinese Journal of Eco-Agriculture, 2017, 25(5): 708-719. CSTR: 32371.14.j.cnki.cjea.160801

全生育期UV-B辐射增强对棉花生长及光合作用的影响

基金项目: 

国家自然科学基金项目 31171491

现代农业产业技术体系建设专项资金 CARS-18-21

详细信息
    作者简介:

    祁虹, 主要从事棉花栽培生理研究。E-mail:qihong83@126.com

    通讯作者:

    林永增, 主要从事棉花栽培与生理生态研究。E-mail:zaipei@sohu.com

  • 中图分类号: S562

Effect of enhanced UV-B radiation on cotton growth and photosynthesis

Funds: 

the National Natural Science Foundation of China 31171491

the Special Fund for the Industrail Technology System Construction of Modem Agriculture CARS-18-21

More Information
  • 摘要: 植物光合系统是UV-B辐射最初和最重要的作用靶标。本文在大田条件下进行紫外灯照射处理,研究全生育期UV-B辐射增强(高于环境20%和40%)对棉花形态、干物质积累、光合色素和产量的影响,并通过分析棉花主茎功能叶片的气体交换参数和叶绿素荧光参数,探讨UV-B辐射增强影响棉花光合作用的机制。结果表明,UV-B辐射增强抑制了棉花生长和干物质积累,籽棉产量显著降低,且UV-B辐射越强,抑制作用越明显。随UV-B辐射的增强,棉花主茎功能叶的净光合速率(Pn)在各生育期均显著降低,叶绿素含量呈先升高后降低趋势,气孔导度(Gs)和蒸腾速率(Tr)未发生变化,胞间CO2浓度(Ci)反而升高,说明Pn下降主要由非气孔限制因素造成。对叶绿素荧光参数的分析表明,PSⅡ的最大光化学量子产率(Fv/Fm)、实际光化学量子效率(ΦPSII)、线性电子传递速率(ETR)和光化学淬灭系数(qP)随着UV-B辐射的增强而降低,非光化学猝灭系数(NPQ)则显著升高,且各叶绿素荧光参数与Pn变化均显著相关;慢速弛豫NPQ(NPQS)及其在NPQ中的比例均随UV-B辐射的增强而显著提高,表明PSⅡ反应中心受损,光化学效率降低。以上结果证明,全生育期UV-B辐射增强降低了棉花的光合叶面积、叶绿素含量和净光合速率,引起棉花生长与物质积累受抑,产量降低。UV-B辐射增强引起的光合速率下降与PSⅡ反应中心遭到破坏密切相关。
    Abstract: It has been shown that the thinning of ozone layer continuously enhances ambient ultraviolet-B (UV-B) radiation. Enhanced UV-B radiation influences the growth, development and metabolism of crops, of which photosystem is the initial and most important target. In this study, UV-B radiation was increased by 20% and 40% by using ultraviolet lamp during the whole growth period of cotton under field condition, and its effect on cotton morphology, dry matter accumulation, photosynthetic pigment content and seed cotton yield were analyzed. The influencing mechanism of enhanced UV-B radiation on photosynthesis was also investigated by determining gas exchange parameters and chlorophyll fluorescence parameters in functional leaves. The results showed that the growth of cotton stems, leaves and dry matter accumulation were significantly inhibited by enhanced UV-B radiation. The inhibition effects of enhanced UV-B radiation on cotton were more obvious at seedling stage than that at later growth stages. Seed cotton yield also remarkably decreased with increasing UV-B radiation. The contents of chlorophyll a (Chla) and chlorophyll b (Chlb) increased under the treatment of 20% above ambient UV-B radiation and there was no change in Chla/Chlb. When UV-B radiation increased to 40% above ambient UV-B radiation, Chla, Chlb and Chla/Chlb significantly decreased. With increasing UV-B radiation, net photosynthetic rate (Pn) of functional leaves on cotton main stem significantly decreased. Although there were no change in stomatal conductance (Gs) and transpiration rate (Tr) under 40% increase in UV-B radiation, while intercellular CO2 concentration (Ci) increased, which indicated that the decline in photosynthesis was mainly caused by non-stomatal limitation factors. The results of chlorophyll fluorescence parameters analysis showed that with increasing UV-B radiation, maximum quantum efficiency (Fv/Fm), operating efficiency (ΦPSⅡ), linear electron transport rate (ETR) and photochemical quenching (qP) of PSII remarkably decreased, but non-photochemical quenching (NPQ) increased. All the chlorophyll fluorescence parameters were significantly correlated with Pn changes. Slowly relaxing NPQ (NPQS) and its proportion in NPQ significantly increased under enhanced UV-B radiation, which indicated that the photochemical efficiency of PSⅡ decreased as its reaction center was damaged by elevated UV-B radiation. The results demonstrated that photosynthetic leaf area, chlorophyll content and photosynthetic rate of cotton dropped under enhanced UV-B radiation during the cotton growth period. This inhibited cotton growth, material accumulation and seed cotton yield. Decrease in Pn due to enhanced UV-B radiation was closely related with the destruction of PSⅡ reaction center.
  • 图  1   不同程度UV-B辐射增强对棉花主茎功能叶气体交换参数的影响

    Pn:净光合速率; Gs:气孔导度; Ci:胞间CO2浓度; Tr:蒸腾速率。

    Figure  1.   Effects of enhanced UV-B radiation at different levels on gas exchange parameters of functional leaves on cotton main stem

    Pn:net photosynthetic rate; Gs: stomatal conductance; Ci:intercellular CO2 concentration; Tr: transpiration rate.

    图  2   不同程度UV-B辐射增强对棉花主茎功能叶叶绿素荧光参数的影响

    Fv/Fm: PSⅡ的最大光化学量子产率, 反映 PSⅡ的潜在量子效率;ΦPSⅡ: PSⅡ的实际光化学量子效率, 反映被用于光化学途径激发能占进入 PSⅡ总激发能的比例; qP: 光化学淬灭系数, 反映 PSⅡ反应中心的开放程度; ETR: 线性电子传递速率, 代表了植物叶片的总光合速率; NPQ: 非光化学淬灭系数, 反映了植物热耗散的能力。

    Figure  2.   Effects of enhanced UV-B radiation at different levels on chlorophyll fluorescence parameters of functional leaves of cotton main stem

    Fv/Fm: maximum quantum efficiency of PSⅡ photochemistry, reflecting the intrinsic efficiency of PSⅡ; ΦPSⅡ: PSⅡ operating efficiency, reflecting the proportion of absorbed light that is actually used in PSⅡ photochemistry; qP: photochemical quenching, reflecting the open proportion of PS Ⅱ reaction center; ETR: linear electron transport rate, an indicator of overall photosynthesis of plant leaf; NPQ: non-photochemical quenching, reflecting the rate of heat loss from PSⅡ.

    表  1   不同棉花生育期各处理的UV-B辐射强度

    Table  1   UV-B intensity of each treatment in different cotton growth periods

    处理Treatment 生育期及其时间 (月-日) Growth period and date (month-day)
    苗期—蕾期
    Seedling to bud
    stage
    (05-15—06-15)
    蕾期—盛花期
    Bud to full-bloom
    stage
    (06-15—07-15)
    盛花期—盛铃期
    Full-bloom to full-boll
    stage
    (07-15—08-15)
    盛铃期—吐絮期
    Full-boll to boll opening
    stage
    (08-15—09-15)
    U0 UV-B强度UV-B intensity (kJ·m-2·d-1) 8.75 12.72 10.64 9.61
    UV-B增强UV-B enhancement (%)
    U1 UV-B强度UV-B intensity (kJ·m-2·d-1) 10.51 15.28 12.80 11.53
    UV-B增强UV-B enhancement (%) 20.10 20.10 20.30 20.00
    U2 UV-B强度UV-B intensity (kJ·m-2·d-1) 12.27 17.92 14.96 13.37
    UV-B增强UV-B enhancement (%) 40.20 40.90 40.60 39.10
    下载: 导出CSV

    表  2   不同程度UV-B辐射增强对不同生育期棉花生长的影响

    Table  2   Effects of enhanced UV-B radiation at different levels on cotton growth at different growth stages

    年份
    Year
    生育期
    Growth stage
    处理
    Treatment
    株高
    Plant height
    (cm)
    果枝总长
    Overall length of
    fruit branches
    (cm)
    节数
    Node number
    子叶节茎粗
    Stem diameter of
    cotyledonay node
    (cm)
    LAI
    2012 苗期
    Seedling stage
    U0 27.3±1.3j 8.5±0.8c 0.471±0.031g 0.43±0.05h
    U1 24.5±1.2k 7.0±0.8c 0.327±0.024h 0.31±0.03i
    U2 19.0±2.7l 6.7±0.6d 0.269±0.032i 0.18±0.02j
    蕾期
    Bud stage
    U0 66.6±2.9fg 148.4±12.6h 12.6±0.6b 1.142±0.044e 1.20±0.16f
    U1 58.5±4.2h 112.0±18.0i 12.0±0.9b 1.020±0.052f 0.87±0.10g
    U2 43.8±5.0i 64.5±15.3j 11.7±1.0b 0.920±0.069f 0.45±0.02h
    盛花期Full-bloom stage U0 84.5±3.5bc 326.0±20.6de 19.1±1.0a 1.543±0.041ab 3.22±0.26d
    U1 76.5±3.4de 272.1±16.7f 18.6±0.8a 1.458±0.062bc 2.54±0.18e
    U2 62.0±7.4gh 189.5±21.6g 18.5±1.2a 1.264±0.103de 1.90±0.11f
    盛铃期Full-boll stage U0 85.2±4.2bc 417.4±16.5b 18.7±1.0a 1.662±0.094a 4.58±0.38a
    U1 81.9±3.7bcd 373.5±19.9c 19.1±0.6a 1.638±0.083a 3.97±0.16bc
    U2 72.0±5.1ef 310.8±15.2e 18.2±0.8a 1.442±0.064c 2.44±0.27e
    吐絮期Boll opening stage U0 97.7±5.2a 478.9±26.3a 19.1±1.1a 1.658±0.081a 4.20±0.38ab
    U1 87.2±3.2b 454.0±18.1a 18.2±0.9a 1.588±0.096ab 3.46±0.31cd
    U2 78.9±5.0cde 341.4±14.2cd 19.0±0.8a 1.352±0.129cd 2.55±0.35e
    2013 苗期Seedling stage U0 25.9±2.0h 8.2±0.7c 0.442±0.051g 0.36±0.03h
    U1 23.4±1.8h 7.1±0.9c 0.351±0.038h 0.24±0.01i
    U2 16.7±2.5i 6.7±0.5d 0.257±0.034i 0.19±0.02j
    蕾期Bud stage U0 62.8±3.5e 129.3±9.4g 12.7±0.8b 1.094±0.042de 1.66±0.13e
    U1 55.4±3.7f 104.6±12.4h 12.6±0.7b 0.993±0.051e 1.14±0.21f
    U2 43.9±5.8g 75.1±17.0i 11.9±1.3b 0.819±0.081f 0.73±0.05g
    盛花期Full-bloom stage U0 86.1±4.6bc 295.3±15.3d 18.7±1.1a 1.592±0.062b 3.39±0.46c
    U1 72.7±5.3d 266.4±13.2e 19.4±0.9a 1.384±0.079c 2.62±0.37d
    U2 60.4±4.9ef 172.7±23.9f 18.3±1.2a 1.139±0.101d 2.12±0.19d
    盛铃期Full-boll stage U0 89.2±3.1ab 369.8±20.5b 18.6±1.1a 1.684±0.043a 5.13±0.49a
    U1 82.2±3.8c 335.0±18.7bc 18.8±1.3a 1.601±0.039b 4.39±0.44b
    U2 73.6±4.1 d 292.6±21.9de 18.9±1.3a 1.407±0.078c 3.27±0.27c
    吐絮期Boll opening stage U0 96.3±6.0a 469.1±27.1a 18.4±1.4a 1.669±0.077ab 4.86±0.39ab
    U1 90.8±4.4ab 452.8±22.4a 18.6±1.0a 1.614±0.091ab 3.68±0.35c
    U2 81.4±4.0c 323.8±26.0cd 19.2±1.4a 1.424±0.069c 3.38±0.29c
     同一年份数字标注不同字母表示差异显著 (P<0.05)。The data with different letters in the same year are significantly different (P<0.05).
    下载: 导出CSV

    表  3   不同程度UV-B辐射增强对棉花干物质积累和分配的影响

    Table  3   Effects of enhanced UV-B radiation at different levels on dry matter accumulation and distribution of cotton

    年份
    Year
    生育期
    Growth period
    处理
    Treatment
    根系
    Roots
    (g)
    地上部
    Aboveground part
    (g)
    蕾铃
    Buds & bolls
    (g)
    总重
    Total weight
    根冠比
    Root cap ratio
    PGR
    2012 苗期
    Seedling stage
    U0 1.83±0.20h 7.42±0.76j 9.25±0.87j 0.247±0.010c 166.7±5.4a
    U1 1.45±0.19h 5.35±0.69k 6.80±1.04k 0.271±0.012b 151.3±8.9b
    U2 1.05±0.14i 3.25±0.47l 4.30±0.72l 0.323±0.021a 128.4±11.9c
    蕾期
    Bud stage
    U0 5.02±0.32e 28.07±3.62h 1.20±0.18h 33.09±4.21h 0.179±0.011e 63.7±5.6d
    U1 4.29±0.28f 19.65±4.51i 0.65±0.12i 23.94±4.08i 0.218±0.016d 62.9±4.2d
    U2 2.90±0.31g 9.63±1.59j 0.52±0.12i 12.53±3.19j 0.313±0.024a 53.5±5.0e
    盛花期
    Full-bloom stage
    U0 13.30±0.72c 78.22±8.91f 11.75±1.34e 91.52±7.81f 0.170±0.014e 50.9±5.2e
    U1 10.60±1.07d 56.70±9.22g 8.23±0.83f 67.30±9.40g 0.187±0.007e 51.7±4.3e
    U2 6.37±1.06e 26.37±5.90h 6.69±0.62g 32.74±5.22h 0.203±0.008d 48.0±7.6ef
    盛铃期
    Full-boll stage
    U0 19.14±0.87a 171.08±10.93b 52.52±4.95b 190.22±8.01b 0.112±0.009gh 36.6±3.7g
    U1 17.21±1.00b 130.17±7.20d 36.41±4.17c 147.38±10.97d 0.132±0.008f 39.2±4.2fg
    U2 12.50±1.47cd 85.47±12.33f 27.54±4.08d 97.97±13.14f 0.146±0.008f 54.8±8.4de
    吐絮期
    Boll opening stage
    U0 19.22±0.66a 189.97±14.96a 71.28±6.91a 209.19±11.20a 0.101±0.004h 4.8±0.7i
    U1 17.02±1.21b 149.78±9.77c 55.04±5.40b 166.80±8.15c 0.114±0.005g 6.2±0.7i
    U2 12.81±1.12c 115.55±7.01e 42.51±6.22c 128.36±7.52e 0.111±0.007gh 13.5±2.2h
    2013 苗期
    Seedling stage
    U0 1.66±0.16i 5.78±0.86k 7.44±0.61k 0.287±0.026b 164.0±6.9a
    U1 1.54±0.17i 4.15±0.80k 5.69±0.75l 0.371±0.041a 150.6±7.1b
    U2 1.11±0.16j 2.87±0.46l 3.98±0.40m 0.387±0.038a 132.7±9.4c
    蕾期
    Bud stage
    U0 5.03±0.31f 33.95±4.27h 2.36±0.38h 38.98±4.93h 0.148±0.007ef 82.8±7.4d
    U1 4.25±0.41g 22.78±4.10i 0.81±0.10i 27.03±4.26i 0.187±0.016cd 77.9±4.8d
    U2 2.56±0.33h 13.20±3.45j 0.52±0.07i 15.76±3.41j 0.194±0.027c 68.8±5.9e
    盛花期
    Full-bloom stage
    U0 11.75±1.21cd 86.03±7.46f 9.87±1.48f 97.78±7.58f 0.137±0.009fgh 46.0±3.6f
    U1 8.51±0.94e 59.65±6.90g 7.61±1.90fg 68.16±5.43g 0.143±0.004fg 46.2±4.8f
    U2 5.19±0.47f 32.28±5.01h 5.77±1.22g 37.47±5.16h 0.161±0.012de 43.3±4.0fg
    盛铃期
    Full-boll stage
    U0 19.36±2.06b 195.36±16.74b 61.03±3.29b 214.72±22.74b 0.099±0.006j 39.3±3.1gh
    U1 13.87±1.43c 128.16±10.82d 35.41±4.97d 142.03±11.02d 0.108±0.006ij 36.7±3.2h
    U2 9.22±1.64de 75.50±8.40f 24.85±4.07e 84.72±9.27f 0.122±0.013hi 40.8±6.3fgh
    吐絮期
    Boll opening stage
    U0 24.91±2.24a 268.41±36.01a 73.93±5.63a 293.32±14.94a 0.093±0.013j 15.6±2.2i
    U1 18.74±3.30b 151.82±11.42c 52.47±4.32c 170.56±13.70c 0.123±0.010hi 9.2±1.5j
    U2 13.50±1.66c 105.24±11.94e 38.21±6.84d 118.74±8.16e 0.128±0.011gh 16.9±2.8i
     地上部干重为棉花茎、叶和蕾铃的干物重之和。同一年份数字标注不同字母表示差异显著 (P<0.05)。Dry matter of the aboveground part is the total dry weight of stems, leaves, buds and bolls. The data with different letters in the same year are significantly different (P<0.05).
    下载: 导出CSV

    表  4   不同程度UV-B辐射增强对棉花籽棉产量及其构成因素的影响

    Table  4   Effects of enhanced UV-B radiation at different levels on seed cotton yields and its components

    年份
    Year
    处理
    Treatment
    单铃重
    Single boll weight
    (g)
    单株铃数
    Boll number per plant
    籽棉产量
    Seed cotton yield
    (kg×hm-2)
    2012 U0 5.42±0.11a 18.8±1.8a 5184.4±122.5a
    U1 4.95±0.24b 16.4±1.4a 4140.6±172.7b
    U2 4.47±0.21c 14.0±1.1a 3201.1±229.3c
    2013 U0 5.40±0.14a 17.7±1.7a 4887.0±167.2a
    U1 4.68±0.23b 14.9±1.2a 3547.9±199.3b
    U2 4.48±0.21b 12.9±0.7b 2942.8±267.1c
    2014 U0 5.44±0.20a 18.4±1.5a 5098.0±137.5a
    U1 5.02±0.17b 14.3±1.3b 3652.7±173.1b
    U2 4.64±0.17c 12.6±1.6b 2981.1±180.7c
     同一年份数字标注不同字母表示差异显著 (P<0.05)。The data with different letters in the same year are significantly different (P<0.05).
    下载: 导出CSV

    表  5   不同程度UV-B辐射增强对棉花叶片叶绿素含量及组成的影响

    Table  5   Effects of enhanced UV-B radiation at different levels on chlorophyll content and composition of cotton leaves

    mg·g-1(FW)
    生育期
    Growth period
    处理
    Treatment
    Chla Chlb Chla+b Chla/Chlb
    蕾期
    Bud stage
    U0 1.395±0.048bc 0.252±0.010ef 1.647±0.048cd 5.54±0.24b
    U1 1.475±0.055b 0.264±0.017e 1.739±0.060bc 5.59±0.37b
    U2 1.028±0.070f 0.218±0.016gh 1.246±0.092g 4.72±0.56cd
    盛花期
    Full-bloom stage
    U0 1.475±0.047b 0.230±0.012fg 1.705±0.059bcd 6.41±0.23a
    U1 1.620±0.076a 0.248±0.014ef 1.868±0.063a 6.53±0.37a
    U2 1.184±0.055e 0.206±0.011h 1.390±0.043f 5.75±0.41b
    盛铃期
    Full-boll stage
    U0 1.466±0.077b 0.297±0.009bc 1.762±0.054b 4.94±0.23c
    U1 1.595±0.061a 0.326±0.009a 1.922±0.092a 4.89±0.41c
    U2 1.219±0.104de 0.290±0.016cd 1.508±0.073e 4.21±0.49d
    吐絮期
    Boll opening stage
    U0 1.304±0.059cd 0.301±0.013bc 1.605±0.049cde 4.34±0.32d
    U1 1.396±0.061bc 0.319±0.014ab 1.715±0.071bcd 4.38±0.44cd
    U2 0.907±0.067g 0.272±0.015de 1.179±0.089g 3.33±0.36e
     不同字母表示差异显著 (P < 0.05)。The data with different letters are significantly different (P < 0.05).
    下载: 导出CSV

    表  6   不同UV-B辐射强度下棉花叶片NPQ组成分析

    Table  6   NPQ component of cotton leaves in different UV-B radiation intensities

    处理
    Treatment
    NPQ NPQF NPQF/NPQ (%) NPQS NPQS/NPQ (%)
    U0 0.778±0.069c 0.652±0.036c 83.8 0.126±0.023c 16.2
    U1 1.766±0.102b 1.327±0.083a 75.2 0.439±0.038b 24.8
    U2 2.065±0.156a 0.821±0.066b 39.8 1.244±0.109a 60.2
     NPQ:非光化学淬灭系数; NPQF:快速弛豫NPQ; NPQS:缓慢弛豫NPQ。不同字母表示差异显著 (P < 0.05)。NPQ: non-photochemical quenching; NPQF: rapidly relaxing NPQ; NPQS: slowly relaxing NPQ. The data with different letters are significantly different (P < 0.05).
    下载: 导出CSV

    表  7   不同UV-B辐射强度下棉花叶片光合特征参数的相关性分析

    Table  7   Correlation analysis of cotton leaf photosynthetic parameters in different UV-B radiation intensities

    参数
    parameters
    Gs Ci Tr Fv/Fm ΦPSⅡ qP ETR NPQ Chla+b
    Pn 0.084 0.118 0.529 0.845** 0.830** 0.901** 0.832** -0.854** 0.708
    Gs 0.775 0.624 0.242 0.316 0.066 0.259 -0.309 0.422
    Ci 0.857** -0.054 0.447 0.350 0.425 -0.409 0.175
    Tr 0.330 0.757 0.706 0.749 -0.729 0.486
    Fv/Fm 0.661 0.583 0.640 -0.696 0.806**
    ΦPSⅡ 0.904** 0.997** -0.997** 0.512
    qP 0.921** -0.904** 0.488
    ETR -0.993** 0.494
    NPQ -0.553
    Pn:净光合速率; Gs:气孔导度; Ci:胞间CO2浓度; Tr:蒸腾速率。Fv/Fm:PSⅡ的最大光化学量子产率; ΦPSⅡ: PSⅡ的实际光化学量子效率; qP:光化学淬灭系数; ETR:线性电子传递速率; NPQ:非光化学淬灭系数。*:相关性达0.05显著水平; **:相关性达0.01显著水平。Pn: net photosynthetic rate; Gs:stomatal conductance; Ci: intercellular CO2 concentration; Tr: transpiration rate; Fv/Fm:maximum quantum efficiency of PSⅡ photochemistry; ΦPSⅡ: PSⅡ operating efficiency; qP:photochemical quenching; ETR: linear electron transport rate; NPQ: non-photochemical quenching. *: correlation significant at 0.05 level; **: correlation significant at 0.01 level.
    下载: 导出CSV
  • [1]

    Kerr J B, McElroy C T. Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion[J]. Science, 1993, 262(5136):1032-1034 doi: 10.1126/science.262.5136.1032

    [2] 倪郁, 宋超, 李加纳. UV-B辐射增强对拟南芥表皮蜡质的影响[J].生态学报, 2015, 35(5):1505-1512 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201505023.htm

    Ni Y, Song C, Li J N. Effect of enhanced ultraviolet-B radia-tion on epicuticular wax in Arabidopsis thaliana[J]. Acta Ecologica Sinica, 2015, 35(5):1505-1512 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201505023.htm

    [3]

    Taalas P, Kaurola J, Kylling A, et al. The impact of greenhouse gases and halogenated species on future solar UV radiation doses[J]. Geophysical Research Letters, 2000, 27(8):1127-1130 doi: 10.1029/1999GL010886

    [4]

    Kakani V G, Reddy K R, Zhao D, et al. Field crop responses to ultraviolet-B radiation:A review[J]. Agricultural and Forest Meteorology, 2003, 120(1/4):191-218 http://www.academia.edu/3268793/Field_crop_responses_to_ultraviolet-B_radiation_a_review

    [5]

    Tripathi R, Sarkar A, Rai S P, et al. Supplemental ultraviolet-B and ozone:Impact on antioxidants, proteome and genome of linseed (Linum usitatissimum, L. cv. Padmini)[J]. Plant Biology, 2011, 13(1):93-104 doi: 10.1111/plb.2010.13.issue-1

    [6]

    Strid Å. Alteration in expression of defence genes in Pisum sativum after exposure to supplementary ultraviolet-B radia-tion[J]. Plant & Cell Physiology, 1993, 34(6):949-953

    [7] 韩雯, 韩榕.不同时间的UV-B辐射对拟南芥幼苗生长的影响[J].植物学报, 2015, 50(1):40-46 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXT201501005.htm

    Han W, Han R. Effect of different times of UV-B radiation on seedling growth of Arabidopsis thaliana[J]. Chinese Bulletin of Botany, 2015, 50(1):40-46 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXT201501005.htm

    [8]

    Bhandari R R, Sharma P K. Photosynthetic and biochemical characterization of pigments and UV-absorbing compounds in Phormidium tenue due to UV-B radiation[J]. Journal of Applied Phycology, 2011, 23(2):283-292 doi: 10.1007/s10811-010-9621-8

    [9]

    Karsten U, Dummermuth A, Hoyer K, et al. Interactive effects of ultraviolet radiation and salinity on the ecophysiology of two Arctic red algae from shallow waters[J]. Polar Biology, 2003, 26(4):249-258 http://core.ac.uk/display/11750078

    [10]

    Allen D J, Mckee I F, Farage P K, et al. Analysis of limitations to CO2 assimilation on exposure of leaves of two Brassica napus cultivars to UV-B[J]. Plant Cell & Environment, 1997, 20(5):633-640 https://www.researchgate.net/publication/229527093_Analysis_of_limitations_to_CO2_assimilation_on_exposure_of_leaves_of_two_Brassica_napus_cultivars_to_UV-B

    [11]

    Ambasht N K, Agrawal M. Physiological and biochemical responses of Sorghum vulgare plants to supplemental ultraviolet-B radiation[J]. Canadian Journal of Botany, 1998, 76(7):1290-1294 doi: 10.1139/b98-137

    [12] 刘景玲, 齐志鸿, 郝文芳, 等. UV-B辐射和干旱对丹参生长和叶片中酚酸类成分的影响[J].生态学报, 2015, 35(14):4642-4650 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201514009.htm

    Liu J L, Qi Z H, Hao W F, et al. The effects of drought and UV-B radiation on the growth and the phenolic compounds of the Salvia miltiorrhiza Bunge leaf[J]. Acta Ecologica Sinica, 2015, 35(14):4642-4650 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201514009.htm

    [13]

    Mohammed A R, Tarpley L. Morphological and physiological responses of nine southern U.S. rice cultivars differing in their tolerance to enhanced ultraviolet-B radiation[J]. Envi-ronmental and Experimental Botany, 2011, 70(2/3):174-184 https://www.researchgate.net/publication/251507392_Morphological_and_physiological_responses_of_nine_southern_US_rice_cultivars_differing_in_their_tolerance_to_enhanced_ultraviolet-B_radiation

    [14] 吴能表, 洪鸿.细胞内IP3-Ca2+途径对UV-B辐射下玉米幼苗光合特性的调控机制[J].作物学报, 2013, 39(2):373-379

    Wu N B, Hong H. Regulation mechanism of intracellular IP3-Ca2+ on photosynthesis in maize seedlings under UV-B stress[J]. Acta Agronomica Sinica, 2013, 39(2):373-379

    [15] 常阿丽, 毛晓芳, 韩榕. He-Ne激光和增强UV-B辐射对小麦幼叶叶绿素荧光和Rubisco活化酶的影响[J].西北植物学报, 2013, 33(9):1823-1829 http://cdmd.cnki.com.cn/Article/CDMD-10118-1013202860.htm

    Chang A L, Mao X F, Han R. Effects of He-Ne laser and UV-B radiation on chlorophyll fluorescence and Rubisco activase of wheat leaves[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(9):1823-1829 http://cdmd.cnki.com.cn/Article/CDMD-10118-1013202860.htm

    [16]

    Schmidt É C, dos Santos R W, de Faveri C, et al. Response of the agarophyte Gelidium floridanum after in vitro exposure to ultraviolet radiation B:Changes in ultrastructure, pigments, and antioxidant systems[J]. Journal of Applied Phycology, 2012, 24(6):1341-1352 doi: 10.1007/s10811-012-9786-4

    [17]

    Booij-James I S, Dube S K, Jansen M A K, et al. Ultraviolet-B radiation impacts light-mediated turnover of the photosystem Ⅱ reaction center heterodimer in Arabidopsis mutants altered in phenolic metabolism[J]. Plant Physiology, 2000, 124(3):1275-1284 doi: 10.1104/pp.124.3.1275

    [18]

    Nogués S, Allen D J, Morison J I L, et al. Ultraviolet-B radi-ation effects on water relations, leaf development, and pho-tosynthesis in droughted pea plants[J]. Plant Physiology, 1998, 117(1):173-181 doi: 10.1104/pp.117.1.173

    [19]

    Alexieva V, Sergiev I, Mapelli S, et al. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat[J]. Plant Cell & Environment, 2001, 24(12):1337-1344 https://www.researchgate.net/publication/227728742_The_effect_of_drought_and_ultraviolet_radiation_on_growth_and_stress_markers_in_pea_and_wheat

    [20] 董铭, 李海涛, 廖迎春, 等.大田条件下模拟UV-B辐射滤减对水稻生长及内源激素含量的影响[J].中国生态农业学报, 2006, 14(3):122-125 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2006336&flag=1

    Dong M, Li H T, Liao Y C, et al. Influences of reduced UV-B radiation on growth and endogenesis hormone contents of rice (Oryza sativa L.) under field conditions[J]. Chinese Journal of Eco-Agriculture, 2006, 14(3):122-125 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2006336&flag=1

    [21] 王燕, 李茂营, 张明才, 等.增强UV-B辐射对棉花幼苗氮代谢生理特性的影响[J].棉花学报, 2013, 25(6):525-532 http://www.cnki.com.cn/Article/CJFDTOTAL-MHXB201306008.htm

    Wang Y, Li M Y, Zhang M C, et al. Effects of enhanced ul-traviolet-B radiation on physiological characteristics of ni-trogen metabolism in cotton seedlings (Gossypium hirsutum L.)[J]. Cotton Science, 2013, 25(6):525-532 http://www.cnki.com.cn/Article/CJFDTOTAL-MHXB201306008.htm

    [22]

    Kakani V G, Reddy K R, Zhao D, et al. Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy[J]. Annals of Botany, 2003, 91(7):817-826 doi: 10.1093/aob/mcg086

    [23]

    Reddy K R, Kakani V G, Zhao D, et al. Cotton responses to ultraviolet-B radiation:Experimentation and algorithm de-velopment[J]. Agricultural and Forest Meteorology, 2003, 120(1/4):249-265 https://www.researchgate.net/publication/222413335_Cotton_responses_to_ultraviolet-B_radiation_Experimentation_and_algorithm_development

    [24] 宋玉芝, 郑有飞, 万长建, 等.紫外线辐射增加对棉花生长的影响[J].南京气象学院学报, 1999, 22(2):269-273 http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX199902019.htm

    Song Y Z, Zheng Y F, Wan C J, et al. Impact of intensified ultraviolet on cotton growth[J]. Journal of Nanjing Institute of Meteorology, 1999, 22(2):269-273 http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX199902019.htm

    [25] 王进, 张静, 樊新燕, 等.干旱区UV-B辐射增强对棉花生理、品质和产量的影响[J].棉花学报, 2010, 22(2):125-131 http://www.cnki.com.cn/Article/CJFDTOTAL-MHXB201002009.htm

    Wang J, Zhang J, Fan X Y, et al. The effect of enhanced UV-B radiation on the physiological indicator, quality and yield of cotton[J]. Cotton Science, 2010, 22(2):125-131 http://www.cnki.com.cn/Article/CJFDTOTAL-MHXB201002009.htm

    [26] 李强, 马晓君, 程秋博, 等.氮肥对不同耐低氮性玉米品种花后物质生产及叶片功能特性的影响[J].中国生态农业学报, 2016, 24(1):17-26 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016103&flag=1

    Li Q, Ma X J, Cheng Q B, et al. Effects of nitrogen fertilizer on post-silking dry matter production and leaves function characteristics of low-nitrogen tolerance maize[J]. Chinese Journal of Eco-Agriculture, 2016, 24(1):17-26 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016103&flag=1

    [27]

    Haapala J K, Mörsky S K, Saarnio S, et al. Long-term effects of elevated UV-B radiation on photosynthesis and ultrastructure of Eriophorum russeolum and Warnstorfia exannulata[J]. Science of the Total Environment, 2010, 409(2):370-377 doi: 10.1016/j.scitotenv.2010.09.044

    [28]

    Scholes J D, Press M C, Zipperlen S W. Differences in light energy utilisation and dissipation between dipterocarp rain forest tree seedlings[J]. Oecologia, 1996, 109(1):41-48 https://www.researchgate.net/publication/227337604_Differences_in_light_energy_utilisation_and_dissipation_between_dipterocarp_rain_forest_tree_seedlings

    [29]

    Griffiths H, Maxwell K. In memory of C. S. Pittendrigh:Does exposure in forest canopies relate to photoprotective strate-gies in epiphytic bromeliads?[J]. Functional Ecology, 1999, 13(1):15-23 doi: 10.1046/j.1365-2435.1999.00291.x

    [30]

    Cambrollé J, Mateos-Naranjo E, Redondo-Gómez S, et al. Growth, reproductive and photosynthetic responses to copper in the yellow-horned poppy, Glaucium flavum Crantz[J]. Environmental and Experimental Botany, 2011, 71(1):57-64 doi: 10.1016/j.envexpbot.2010.10.017

    [31]

    Lichtenthaler H K. Chlorophylls and carotenoids:Pigments of photosynthetic biomembranes[J]. Methods in Enzymology, 1987, 148:350-382 doi: 10.1016/0076-6879(87)48036-1

    [32]

    Murchie E H, Lawson T. Chlorophyll fluorescence analysis:A guide to good practice and understanding some new appli-cations[J]. Journal of Experimental Botany, 2013, 64(13):3983-3998 doi: 10.1093/jxb/ert208

    [33]

    Liu Q, Yao X Q, Zhao C Z, et al. Effects of enhanced UV-B radiation on growth and photosynthetic responses of four species of seedlings in subalpine forests of the eastern Tibet plateau[J]. Environmental and Experimental Botany, 2011, 74:151-156 doi: 10.1016/j.envexpbot.2011.05.013

    [34] 方兴, 钟章成, 闫明, 等.增强UV-B辐射与不同水平氮素对谷子[Setaria italica (L.) Beauv.]叶片保护物质及保护酶的影响[J].生态学报, 2008, 28(1):284-291 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200801033.htm

    Fang X, Zhong Z C, Yan M, et al. Effects of enhanced UV-B radiation and different nitrogen conditions on protective matter and protective enzymes in millet (Setaria italica (L.) Beauv.) leaves[J]. Acta Ecologica Sinica, 2008, 28(1):284-291 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200801033.htm

    [35]

    Chimphango S B M, Musil C F, Dakora F D. Response of purely symbiotic and NO3-fed nodulated plants of Lupinus luteus and Vicia atropurpurea to ultraviolet-B radiation[J]. Journal of Experimental Botany, 2003, 54(388):1771-1784 doi: 10.1093/jxb/erg190

    [36]

    Ros J, Tevini M. Interaction of UV-radiation and IAA during growth of seedlings and hypocotyl segments of sunflower[J]. Journal of Plant Physiology, 1995, 146(3):295-302 doi: 10.1016/S0176-1617(11)82057-2

    [37] 高天鹏, 安黎哲, 冯虎元.增强UV-B辐射和干旱对不同品种春小麦生长、产量和生物量的影响[J].中国农业科学, 2009, 42(6):1933-1940 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK200906009.htm

    Gao T P, An L Z, Feng H Y. Effects of enhanced UV-B irra-diance and drought stress on the growth, production, and biomass of spring wheat[J]. Scientia Agricultura Sinica, 2009, 42(6):1933-1940 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK200906009.htm

    [38] 曲颖, 王弋博, 冯虎元, 等. UV-B辐射对豌豆伸长生长和细胞壁多糖组分的影响[J].辐射研究与辐射工艺学报, 2012, 30(5):303-308 http://www.cnki.com.cn/Article/CJFDTOTAL-FYFG201205009.htm

    Qu Y, Wang Y B, Feng H Y, et al. Effects of UV-B radiation on stems elongation and cell wall polysaccharides of pea seedlings[J]. Journal of Radiation Research and Radiation Processing, 2012, 30(5):303-308 http://www.cnki.com.cn/Article/CJFDTOTAL-FYFG201205009.htm

    [39]

    Jansen M A K, Van Den Noort R E. Ultraviolet-B radiation induces complex alterations in stomatal behaviour[J]. Physiologia Plantarum, 2000, 110(2):189-194 doi: 10.1034/j.1399-3054.2000.110207.x

    [40]

    Zhao D, Reddy K R, Kakani V G, et al. Growth and physio-logical responses of cotton (Gossypium hirsutum L.) to ele-vated carbon dioxide and ultraviolet-B radiation under con-trolled environmental conditions[J]. Plant Cell & Environ-ment, 2003, 26(5):771-782

    [41]

    Ziska L H, Teramura A H. CO2 Enhancement of growth and photosynthesis in rice (Oryza sativa):Modification by in-creased ultraviolet-B radiation[J]. Plant Physiology, 1992, 99(2):473-481 doi: 10.1104/pp.99.2.473

    [42] 蔡鸿昌, 崔海信, 宋卫堂, 等.黄瓜初花期叶片光合色素含量与颜色特征的初步研究[J].农业工程学报, 2006, 22(9):34-38 http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200609006.htm

    Cai H C, Cui H X, Song W T, et al. Preliminary study on photosynthetic pigment content and color feature of cucumber initial bloom stage[J]. Transactions of the CSAE, 2006, 22(9):34-38 http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200609006.htm

    [43]

    Caasi-Lit M, Whitecross M I, Nayudu M, et al. UV-B irradiation induces differential leaf damage, ultrastructural changes and accumulation of specific phenolic compounds in rice cultivars[J]. Australian Journal of Plant Physiology, 1997, 24(3):261-274 doi: 10.1071/PP96080

    [44] 周可金, 肖文娜, 官春云.不同油菜品种角果光合特性及叶绿素荧光参数的差异[J].中国油料作物学报, 2009, 31(3):316-321 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW200903008.htm

    Zhou K J, Xiao W N, Guan C Y. Analysis on photosynthetic characteristics and chlorophyll fluorescence of siliques for different winter rapeseed varieties (Brassica napus L.)[J]. Chinese Journal of Oil Crop Sciences, 2009, 31(3):316-321 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW200903008.htm

    [45]

    Subhan D, Murthy S D S. Senescence retarding effect of metal ions:Pigment and protein contents and photochemical ac-tivities of detached primary leaves of wheat[J]. Photosyn-thetica, 2001, 39(1):53-58 doi: 10.1023/A:1012487718114

    [46] 刘敏, 李荣贵, 范海, 等. UV-B辐射对烟草光合色素和几种酶的影响[J].西北植物学报, 2007, 27(2):291-296 http://www.cnki.com.cn/Article/CJFDTOTAL-DNYX200702013.htm

    Liu M, Li R G, Fan H, et al. Effects of enhanced UV-B radiation on photosynthetic pigments and some enzymes in tobacco[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(2):291-296 http://www.cnki.com.cn/Article/CJFDTOTAL-DNYX200702013.htm

    [47] 师生波, 尚艳霞, 朱鹏锦, 等.不同天气类型下UV-B辐射对高山植物美丽风毛菊叶片PSⅡ光化学效率的影响分析[J].植物生态学报, 2011, 35(7):741-750 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201107007.htm

    Shi S B, Shang Y X, Zhu P J, et al. Effects of solar UV-B ra-diation on the efficiency of PSⅡ photochemistry in the alpine plant Saussurea superba under different weather conditions in the Qinghai-Tibet Plateau of China[J]. Chinese Journal of Plant Ecology, 2011, 35(7):741-750 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201107007.htm

    [48] 苏行, 胡迪琴, 林植芳, 等.广州市大气污染对两种绿化植物叶绿素荧光特性的影响[J].植物生态学报, 2002, 26(5):599-604 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB200205013.htm

    Su X, Hu D Q, Lin Z F, et al. Effect of air pollution on the chlorophyll fluorescence characters of two afforestation plants in Guangzhou[J]. Acta Phytoecologica Sinica, 2002, 26(5):599-604 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB200205013.htm

    [49]

    Johnson G N, Young A J, Scholes J D, et al. The dissipation of excess excitation energy in British plant species[J]. Plant, Cell & Environment, 1993, 16(6):673-679 https://www.researchgate.net/publication/229951680_The_dissipation_of_excess_energy_in_British_plant_species

    [50]

    Bilger W, Björkman O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis[J]. Photosynthesis Research, 1990, 25(3):173-185 doi: 10.1007/BF00033159

    [51]

    Demmig-Adams B, Adams Ⅲ W W. Photoprotection and other responses of plants to high light stress[J]. Annual Re-view of Plant Physiology and Plant Molecular Biology, 1992, 43:599-626 doi: 10.1146/annurev.pp.43.060192.003123

    [52] 侍福梅, 孟慧敏, 王超.棉花响应UV-B辐射的信号初探[J].西北农业学报, 2011, 20(9):78-82 http://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201109017.htm

    Shi F M, Meng H M, Wang C. Research on the signals of cotton in response to UV-B radiation[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(9):78-82 http://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201109017.htm

图(2)  /  表(7)
计量
  • 文章访问数:  1470
  • HTML全文浏览量:  166
  • PDF下载量:  1302
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-06
  • 录用日期:  2017-01-18
  • 网络出版日期:  2021-05-11
  • 刊出日期:  2017-04-30

目录

    /

    返回文章
    返回