大气CO2浓度升高对谷子生长发育及玉米螟发生的影响

刘紫娟, 李萍, 宗毓铮, 董琦, 郝兴宇

刘紫娟, 李萍, 宗毓铮, 董琦, 郝兴宇. 大气CO2浓度升高对谷子生长发育及玉米螟发生的影响[J]. 中国生态农业学报(中英文), 2017, 25(1): 55-60. DOI: 10.13930/j.cnki.cjea.160687
引用本文: 刘紫娟, 李萍, 宗毓铮, 董琦, 郝兴宇. 大气CO2浓度升高对谷子生长发育及玉米螟发生的影响[J]. 中国生态农业学报(中英文), 2017, 25(1): 55-60. DOI: 10.13930/j.cnki.cjea.160687
LIU Zijuan, LI Ping, ZONG Yuzheng, DONG Qi, HAO Xingyu. Effect of elevated[CO2] on growth and attack of Asian corn borers (Ostrinia furnacalis) in foxtail millet (Setaria italica)[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 55-60. DOI: 10.13930/j.cnki.cjea.160687
Citation: LIU Zijuan, LI Ping, ZONG Yuzheng, DONG Qi, HAO Xingyu. Effect of elevated[CO2] on growth and attack of Asian corn borers (Ostrinia furnacalis) in foxtail millet (Setaria italica)[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 55-60. DOI: 10.13930/j.cnki.cjea.160687
刘紫娟, 李萍, 宗毓铮, 董琦, 郝兴宇. 大气CO2浓度升高对谷子生长发育及玉米螟发生的影响[J]. 中国生态农业学报(中英文), 2017, 25(1): 55-60. CSTR: 32371.14.j.cnki.cjea.160687
引用本文: 刘紫娟, 李萍, 宗毓铮, 董琦, 郝兴宇. 大气CO2浓度升高对谷子生长发育及玉米螟发生的影响[J]. 中国生态农业学报(中英文), 2017, 25(1): 55-60. CSTR: 32371.14.j.cnki.cjea.160687
LIU Zijuan, LI Ping, ZONG Yuzheng, DONG Qi, HAO Xingyu. Effect of elevated[CO2] on growth and attack of Asian corn borers (Ostrinia furnacalis) in foxtail millet (Setaria italica)[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 55-60. CSTR: 32371.14.j.cnki.cjea.160687
Citation: LIU Zijuan, LI Ping, ZONG Yuzheng, DONG Qi, HAO Xingyu. Effect of elevated[CO2] on growth and attack of Asian corn borers (Ostrinia furnacalis) in foxtail millet (Setaria italica)[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 55-60. CSTR: 32371.14.j.cnki.cjea.160687

大气CO2浓度升高对谷子生长发育及玉米螟发生的影响

基金项目: 

国家重点基础研究发展计划(973计划)课题 2012CB955904

国家科技支撑计划项目 2013BAD11B03-8

山西省科技攻关计划项目 20150311006-2

国家自然科学基金项目 31601212

国家自然科学基金项目 31501276

山西农业大学博士引进人才项目 2013YT05

详细信息
    作者简介:

    刘紫娟, 主要从事植物生理生态方面研究。E-mail:1019313693@qq.com

    通讯作者:

    郝兴宇, 主要从事农业气象及气候变化对农业影响研究。E-mail:haoxingyu1976@126.com

  • 中图分类号: S162.5

Effect of elevated[CO2] on growth and attack of Asian corn borers (Ostrinia furnacalis) in foxtail millet (Setaria italica)

Funds: 

the National Program of Key Basic Research Project of China (973 Program) 2012CB955904

the National Key Technology R & D Program of China 2013BAD11B03-8

Shanxi Province Scientific and Technological Projects 20150311006-2

the National Natural Science Foundation of China 31601212

the National Natural Science Foundation of China 31501276

Shanxi Agricultural University Doctor Introduce Talents Projects 2013YT05

More Information
  • 摘要: 人类活动导致全球大气CO2浓度持续升高,研究大气CO2浓度升高对C4作物谷子(Setaria italica)生长发育及虫害发生的影响,可以为谷子等C4作物制订应对气候变化栽培措施提供理论依据。本研究利用OTC(Open Top Chamber)系统,设两个CO2浓度梯度(正常大气CO2浓度、正常CO2浓度+200 μmol·mol-1)模拟CO2浓度升高对谷子生长发育的影响。结果表明:大气CO2浓度升高后,谷子净光合速率(Pn)、气孔导度(gs)、叶片蒸腾速率(Tr)和水分利用率(WUE)分别增加38.73%、27.53%、6.93%和40.56%;谷子叶片光系统Ⅱ最大光化学量子产量(Fv/Fm)和非光化学淬灭系数(NPQ)显著下降,光系统Ⅱ实际光化学量子产量(ΦPSII)和表观电子传递效率(ETR)显著增加,而对光化学淬灭系数(qP)无显著影响;此外,谷子株高、茎粗和小穗数分别增加3.41%、13.28%和13.11%;而叶重、茎重、千粒重、单株粒数和产量无显著变化,穗重和地上部分生物量分别显著下降12.8%和7.44%;大气CO2浓度升高后,谷子灌浆期和收获期玉米螟(Ostrinia furnacalis)发生数量显著增加。大气CO2浓度升高将有利于谷子的生长发育,但会增加玉米螟危害。
    Abstract: Since industrial revolution, global atmospheric carbon dioxide (CO2) concentration ([CO2]) has risen from 280 μmol·mol-1 to the current level of about 392 μmol·mol-1. Foxtail millet (Setaria italica) is one of the most important C4 crops in the semiarid regions of North China, yet there is lack of sufficient information on how the crop responds to climate change in China. Here, we studied the effects of elevated atmospheric[CO2] on foxtail millet in order to understand the changes in foxtail millet production under future CO2 concentrations along with the response of C4 crops to climate change. An open top chamber (OTC) system was used to test the effect of elevated[CO2] on foxtail millet. One OTC was used as the control chamber, which maintained the ambient[CO2]. In another OTC, elevated[CO2] (ambient[CO2]+200 μmol·mol-1) was constantly maintained from crop emergence to harvest. Foxtail millet was sown in 40 cm×60 cm pots (28 cm depth). Ten plants were grown in each pot and 10 pots were put in every OTC. Leaf photosynthesis was measured using a portable gas exchange system. Chlorophyll fluorescence parameter was assessed using a miniaturized pulse-amplitude modulated fluorescence analyzer with a leaf clip holder. The changes in morphological parameters, biomass, yield and damage of Asian corn borer (Ostrinia furnacalis) in response to elevated[CO2] were also determined. The results showed that elevated[CO2] increased the net photosynthesis rate (Pn), stomatal conductance (gs), transpiration rate (Tr) and water use efficiency (WUE) of foxtail millet by 38.73%, 27.53%, 6.93% and 40.56%, respectively. The maximal photochemical quantum yield (Fv/Fm) and non-photochemical quenching coefficient (NPQ) of foxtail millet leaf photosystem Ⅱ significantly decreased under elevated[CO2]. Photosystem Ⅱ quantum yield (ΦPSII) and apparent electron transfer rate (ETR) increased, but the change in photochemical quenching destruction coefficient (qP) was not significant. Elevated[CO2] increased foxtail millet plant height, stem diameter and spikelet number by 3.41%, 13.28% and 13.11%, respectively. Elevated[CO2] did not significantly affect leaf mass, stem mass, thousand-seed weight or the number of grain per plant at harvest, but the mass of panicle and aboveground per m2 significantly decreased by 12.8% and 7.44%, respectively. Furthermore, Asian corn borer damage aggravated at filling-stage and harvest under elevated[CO2]. However, yield did not significantly change under elevated[CO2]. In conclusion, elevated atmospheric[CO2] promoted the growth and development of foxtail millet, but increased the risk of insect damage.
  • 图  1   CO2浓度升高对谷子玉米螟危害影响情况

    A、B为对照, C、D为高CO2浓度处理。红色箭头所指处为明显危害状。A, B are CK treatments; C and D are elevated CO2 concentration treatments. Red arrows show damage caused by Asian corn borer of foxtail millet.

    Figure  1.   Effect of elevated CO2 concentration on Asian corn borer of foxtail millet

    图  2   CO2浓度升高对谷子玉米螟发生数量的影响

    *和**分别表示0.05和0.01水平上差异显著; CK:对照; ECO2:高CO2处理。* and ** mean significant differences at 0.05 and 0.01 levels, respectively. CK and ECO2 represent the control and elevated CO2 concentration treatments, respectively.

    Figure  2.   Effect of elevated CO2 concentration on the number of Asian corn borer in foxtail millet

    表  1   大气CO2浓度升高对谷子光合生理的影响

    Table  1   Effect of elevated CO2 concentration on gas exchange parameters of foxtail millet

    生育期(G)
    Growth stage
    处理(T)
    Treatment
    净光合速率
    Pn(mmol·m-2·s-1)
    气孔导度
    gs[mmol (H2O)·m-2·s-1]
    蒸腾速率
    Tr[mmol (H2O)·m-2·s-1]
    水分利用率
    WUE [mmol (CO2)·mmol (H2O)-1]
    抽穗期Heading CK 18.12±0.32 0.12±0.00 1.98±0.26 9.16±0.09
    ECO2 22.79±1.31 0.14±0.01 1.73±0.11 13.70±0.34
    灌浆期Grain-filling CK 10.40±0.08 0.06±0.00 1.86±0.00 5.61±0.05
    ECO2 16.78±0.57 0.09±0.00 2.37±0.02 7.06±0.18
    P G 0.00 0.00 0.11 0.00
    T 0.00 0.00 0.00 0.00
    G × T 0.04 0.00 0.00 0.00
    CK:对照; ECO2:高CO2处理。CK and ECO2 represent the control and elevated CO2 concentration treatments, respectively. Values are means±S.E.
    下载: 导出CSV

    表  2   大气CO2浓度升高对谷子叶绿素荧光参数的影响

    Table  2   Effect of elevated CO2 concentration on chlorophyll fluorescence parameters of foxtail millet

    生育期(G) Growth stage 处理(T) Treatment Fv/Fm ΦPS ETR qP NPQ
    抽穗期Heading stage CK 0.80±0.00 0.24±0.03 113.81±13.50 0.55±0.05 1.78±0.08
    ECO2 0.79±0.01 0.37±0.03 173.88±15.06 0.76±0.05 1.42±0.09
    灌浆期Grain-filling stage CK 0.77±0.01 0.16±0.01 76.67±3.56 1.16±0.66 1.95±0.07
    ECO2 0.72±0.01 0.25±0.01 115.16±3.00 1.57±0.95 1.68±0.05
    P G 0.00 0.00 0.00 0.19 0.01
    T 0.00 0.00 0.00 0.33 0.00
    G × T 0.06 0.31 0.31 0.42 0.60
    CK:对照; ECO2:高CO2处理; Fv/Fm:光系统Ⅱ最大光化学量子产量; ΦPS:光系统Ⅱ实际光化学量子产量; ETR:表观电子传递效率; qP:光化学淬灭系数; NPQ:非光化学淬灭系数。CK and ECO2 represent the control and elevated CO2 concentration treatments, respectively. Fv/Fm: maximal quantum yield of PSⅡ photochemistry; ΦPS: effective quantum yield of PSⅡ photochemistry; ETR: electron transport efficiency; qP: photochemical quenching coefficient; NPQ: nonphotochemical quenching. Values are means±S.E.
    下载: 导出CSV

    表  3   CO2浓度升高对谷子形态指标的影响

    Table  3   Effect of elevated CO2 concentration on growth of foxtail millet

    处理(T)
    Treatment
    株高
    Plant height (cm)
    穗长
    Panicle length (cm)
    茎粗
    Stem diameter (cm)
    分蘖数
    Tiller number
    小穗数
    Spikelets
    节数
    Number of stem node
    CK 93.76±0.76 19.56±0.35 0.51±0.02 0.48±0.08 107.46±2.07 12.85±0.20
    ECO2 96.96±0.98 20.25±0.54 0.58±0.01 0.16±0.06 121.55±4.95 12.59±0.05
    P 0.03 0.31 0.01 0.01 0.03 0.22
    CK:对照; ECO2:高CO2处理。CK and ECO2 represent the control and elevated CO2 concentration treatments, respectively. Values are means±S.E.
    下载: 导出CSV

    表  4   CO2浓度升高对谷子产量和地上部分生物量的影响

    Table  4   Effect of elevated CO2 concentration on yield and above-ground biomass of foxtail millet

    处理
    Treatment
    穗重
    Spike weight
    (g·m-2)
    叶重
    Leaf weight
    (g·m-2)
    茎重
    Stem weight
    (g·m-2)
    千粒重
    1000-seed
    weight (g)
    单株粒数
    Seeds number
    per plant
    粒重
    Seeds weight
    (g·m-2)
    地上部生物量
    Above-ground
    biomass (g·m-2)
    CK 625.07±10.77 172.19±8.12 244.43±14.82 2.65±0.04 4 180.82±432.32 415.03±25.69 1 041.69±25.16
    ECO2 549.57±17.59 170.65±2.98 243.93±2.92 2.68±0.07 4 087.94±132.03 435.89±19.69 964.15±15.69
    P 0.01 0.86 0.97 0.68 0.84 0.72 0.03
    CK:对照; ECO2:高CO2处理。CK and ECO2 represent the control and elevated CO2 concentration treatments, respectively. Values are means±S.E.
    下载: 导出CSV
  • [1]

    IPCC. Summary for policymakers[M]//Stocker T F, Qin D H, Plattner G K, et al. Climate Change 2013:The Physical Sci-ence Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom:Cambridge University Press, 2013

    [2]

    Leakey A D B, Uribelarrea M, Ainsworth E A, et al. Photo-synthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought[J]. Plant Physiology, 2006, 140(2):779-790 doi: 10.1104/pp.105.073957

    [3] 李靖涛, 居辉, 王宏富, 等.不同水分条件下CO2浓度升高对冬小麦碳氮转运的影响[J].中国生态农业学报, 2015, 23(8):954-963 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015804&flag=1

    Li J T, Ju H, Wang H F, et al. Effects of elevated CO2 concentration on accumulation and translocation of carbon and nitrogen of winter wheat under different water conditions[J]. Chinese Journal of Eco-Agriculture, 2015, 23(8):954-963 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2015804&flag=1

    [4] 郝兴宇, 李萍, 杨宏斌, 等.大气CO2浓度升高对绿豆生长及C、N吸收的影响[J].中国生态农业学报, 2011, 19(4):794-798 doi: 10.3724/SP.J.1011.2011.00794

    Hao X Y, Li P, Yang H B, et al. Effects of enriched atmos-pheric CO2 on the growth and uptake of N and C in mung bean[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4):794-798 doi: 10.3724/SP.J.1011.2011.00794

    [5] 王晓伟, 姬兰柱, 王桂清, 等.大气CO2浓度升高对森林食叶昆虫的潜在影响[J].应用生态学报, 2006, 17(4):720-726 http://www.docin.com/p-1335159437.html

    Wang X W, Ji L Z, Wang G Q, et al. Potential effects of ele-vated carbon dioxide on forest leaf-feeding insects[J]. Chi-nese Journal of Applied Ecology, 2006, 17(4):720-726 http://www.docin.com/p-1335159437.html

    [6]

    Zavala J A, Nabity P D, DeLucia E H. An emerging under-standing of mechanisms governing insect herbivory under elevated CO2[J]. Annual Review of Entomology, 2013, 58(1):79-97 doi: 10.1146/annurev-ento-120811-153544

    [7] 戈峰, 陈法军, 吴刚, 等.我国主要类型昆虫对CO2升高响应的研究进展[J].昆虫知识, 2010, 47(2):229-235 http://www.oalib.com/paper/4127428

    Ge F, Chen F J, Wu G, et al. Research advance on the response of insects to elevated CO2 in china[J]. Chinese Bulletin of Entomology, 2010, 47(2):229-235 http://www.oalib.com/paper/4127428

    [8]

    Liu Z, Sun N, Yang S J, et al. Evolutionary transition from C3 to C4 photosynthesis and the route to C4 rice[J]. Biologia, 2013, 68(4):577-586

    [9]

    Ghannoum O, Evans J R, von Caemmerer S. Chapter 8 ni-trogen and water use efficiency of C4 plants[M]//Raghavendra A S, Sage R F. C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Netherlands:Springer, 2011:129-146

    [10]

    Duarte B, Santos D, Silva H, et al. Photochemical and bio-physical feedbacks of C3 and C4 Mediterranean halophytes to atmospheric CO2 enrichment confirmed by their stable isotope signatures[J]. Plant Physiology and Biochemistry, 2014, 80:10-22 doi: 10.1016/j.plaphy.2014.03.016

    [11] 胡晓雪, 杜维俊, 杨珍平, 等.大气CO2浓度和气温升高对野生大豆光合作用的影响[J].山西农业科学, 2015, 43(7):798-801

    Hu X X, Du W J, Yang Z P, et al. Effect of elevated CO2 con-centration and increased temperature on the photosynthesis of wild soybean[J]. Journal of Shanxi Agricultural Sciences, 2015, 43(7):798-801

    [12]

    Rascher U, Bobich E G, Lin G H, et al. Functional diversity of photosynthesis during drought in a model tropical rainforest-the contributions of leaf area, photosynthetic electron transport and stomatal conductance to reduction in net ecosystem carbon exchange[J]. Plant, Cell & Environment, 2004, 27(10):1239-1256 https://www.researchgate.net/publication/224026497_Functional_diversity_of_photosynthesis_during_drought_in_a_model_tropical_rainforest_-_The_contributions_of_leaf_area_photosynthetic_electron_transport_and_stomatal_conductance_to_reduction_in_net_eco

    [13]

    Wand S J E, Midgley G F, Jones M H, et al. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration:A meta-analytic test of current theories and perceptions[J]. Global Change Biology, 1999, 5(6):723-741 doi: 10.1046/j.1365-2486.1999.00265.x

    [14]

    Ainsworth E A, Long S P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2[J]. New Phytologist, 2005, 165(2):351-372 https://www.researchgate.net/publication/8012091_What_have_we_learned_from_15_years_of_free-air_CO2_enrichment_FACE_A_meta-analytic_review_of_the_responses_of_photosynthesis_canopy_properties_and_plant_production_to_rising_CO2

    [15]

    Ainsworth E A, Rogers A. The response of photosynthesis and stomatal conductance to rising[CO2]:Mechanisms and environmental interactions[J]. Plant, Cell & Environment, 2007, 30(3):258-270 https://www.researchgate.net/publication/6540288_The_Response_of_Photosynthesis_and_Stomatal_Conductance_to_Rising_CO2_Mechanisms_and_Environmental_Interactions

    [16]

    Yu J J, Sun L H, Fan N L, et al. Physiological factors involved in positive effects of elevated carbon dioxide concentration on bermudagrass tolerance to salinity stress[J]. Environmental and Experimental Botany, 2015, 115:20-27 doi: 10.1016/j.envexpbot.2015.02.003

    [17]

    Vu J C V, Allen Jr L H. Growth at elevated CO2 delays the adverse effects of drought stress on leaf photosynthesis of the C4 sugarcane[J]. Journal of Plant Physiology, 2009, 166(2):107-116

    [18]

    Gao J, Han X, Seneweera S, et al. Leaf photosynthesis and yield components of mung bean under fully open-air elevated[CO2] [J]. Journal of Integrative Agriculture, 2015, 14(5):977-983 doi: 10.1016/S2095-3119(14)60941-2

    [19]

    Saxe H, Ellsworth D S, Heath J. Tree and forest functioning in an enriched CO2 atmosphere[J]. New Phytologist, 1998, 139(3):395-436 doi: 10.1046/j.1469-8137.1998.00221.x

    [20]

    Ellsworth D S. CO2 enrichment in a maturing pine forest:Are CO2 exchange and water status in the canopy affected[J]. Plant, Cell & Environment, 1999, 22(5):461-472

    [21]

    Hao X Y, Li P, Feng Y X, et al. Effects of fully open-air[CO2] elevation on leaf photosynthesis and ultrastructure of isatis indigotica fort[J]. PLoS One, 2013, 8(9):e74600 doi: 10.1371/journal.pone.0074600

    [22] 郝兴宇, 韩雪, 李萍, 等.大气CO2浓度升高对绿豆叶片光合作用及叶绿素荧光参数的影响[J].应用生态学报, 2011, 22(10):2776-2780 http://www.oalib.com/paper/4378018

    Hao X Y, Han X, Li P, et al. Effects of elevated atmospheric CO2 concentration on mung bean leaf photosynthesis and chlorophyll fluorescence parameters[J]. Chinese Journal of Applied Ecology, 2011, 22(10):2776-2780 http://www.oalib.com/paper/4378018

    [23] 张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报, 1999, 16(4):444-448 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXT199904020.htm

    Zhang S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance[J]. Chinese Bulletin of Botany, 1999, 16(4):444-448 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXT199904020.htm

    [24]

    Niziolek O K, Berenbaum M R, DeLucia E H. Impact of ele-vated CO2 and increased temperature on Japanese beetle herbivory[J]. Insect Science, 2013, 20(4):513-523 doi: 10.1111/j.1744-7917.2012.01515.x

  • 期刊类型引用(5)

    1. 王腾飞,马霞,刘金龙,王斌,张译尹,李佳旺,马江萍,王小兵,兰剑. 引黄灌区复种饲用燕麦种植模式产量、品质及经济效益分析. 草业学报. 2025(04): 27-37 . 百度学术
    2. 陈志波,高山,张锐,罗立新,鲍蕊. 水氮耦合对饲用油菜干物质积累分配及产量的影响. 黑龙江农业科学. 2024(05): 70-76 . 百度学术
    3. 刘云鹏,杨正虎,马东海,张智,张邦彦,白小龙,张恩,张朝辉,武晋民,张震中,王彬. 灌水定额分配对耐盐碱水稻生育特征的影响. 灌溉排水学报. 2024(07): 66-76 . 百度学术
    4. 李禹,马建彬,代惠娟,白羽祥,王戈,王圣丰,刘波,谭宏祥,吴姝俊,沈永祥,王娜. 氮肥减施对烤烟生长及氮肥利用效率的影响. 广东农业科学. 2024(08): 92-103 . 百度学术
    5. 王平,来幸樑,刘继霞,王兆川. 播种后不同时间滴灌对麦后复种油葵农艺性状及产量的影响. 宁夏农林科技. 2024(11): 52-54+109 . 百度学术

    其他类型引用(2)

图(2)  /  表(4)
计量
  • 文章访问数:  1461
  • HTML全文浏览量:  153
  • PDF下载量:  1059
  • 被引次数: 7
出版历程
  • 收稿日期:  2016-08-06
  • 录用日期:  2016-10-04
  • 网络出版日期:  2021-05-11
  • 刊出日期:  2016-12-31

目录

    /

    返回文章
    返回