施氮和根间互作对密植大麦间作豌豆氮素利用的协同效应

王利立, 朱永永, 赵彦华, 殷文, 柴强

王利立, 朱永永, 赵彦华, 殷文, 柴强. 施氮和根间互作对密植大麦间作豌豆氮素利用的协同效应[J]. 中国生态农业学报(中英文), 2017, 25(2): 200-210. DOI: 10.13930/j.cnki.cjea.160530
引用本文: 王利立, 朱永永, 赵彦华, 殷文, 柴强. 施氮和根间互作对密植大麦间作豌豆氮素利用的协同效应[J]. 中国生态农业学报(中英文), 2017, 25(2): 200-210. DOI: 10.13930/j.cnki.cjea.160530
WANG Lili, ZHU Yongyong, ZHAO Yanhua, YIN Wen, CHAI Qiang. Response of nitrogen utilization to root interaction and plant density in barley-pea intercropping system[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 200-210. DOI: 10.13930/j.cnki.cjea.160530
Citation: WANG Lili, ZHU Yongyong, ZHAO Yanhua, YIN Wen, CHAI Qiang. Response of nitrogen utilization to root interaction and plant density in barley-pea intercropping system[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 200-210. DOI: 10.13930/j.cnki.cjea.160530
王利立, 朱永永, 赵彦华, 殷文, 柴强. 施氮和根间互作对密植大麦间作豌豆氮素利用的协同效应[J]. 中国生态农业学报(中英文), 2017, 25(2): 200-210. CSTR: 32371.14.j.cnki.cjea.160530
引用本文: 王利立, 朱永永, 赵彦华, 殷文, 柴强. 施氮和根间互作对密植大麦间作豌豆氮素利用的协同效应[J]. 中国生态农业学报(中英文), 2017, 25(2): 200-210. CSTR: 32371.14.j.cnki.cjea.160530
WANG Lili, ZHU Yongyong, ZHAO Yanhua, YIN Wen, CHAI Qiang. Response of nitrogen utilization to root interaction and plant density in barley-pea intercropping system[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 200-210. CSTR: 32371.14.j.cnki.cjea.160530
Citation: WANG Lili, ZHU Yongyong, ZHAO Yanhua, YIN Wen, CHAI Qiang. Response of nitrogen utilization to root interaction and plant density in barley-pea intercropping system[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 200-210. CSTR: 32371.14.j.cnki.cjea.160530

施氮和根间互作对密植大麦间作豌豆氮素利用的协同效应

基金项目: 

国家自然科学基金项目 31160265, 31360323

甘肃农业大学“伏羲杰出人才培育计划” 

详细信息
    作者简介:

    王利立,主要从事多熟种植研究。E-mail:wll@gsau.edu.cn

    通讯作者:

    柴强,主要从事多熟种植、节水农业研究。E-mail:chaiq@gsau.edu.cn

  • 中图分类号: S314;S344.2;S512.3

Response of nitrogen utilization to root interaction and plant density in barley-pea intercropping system

Funds: 

the National Natural Science Foundation of China 31160265, 31360323

the Outstanding Talent Culture Project of Gansu Agriculture University 

More Information
  • 摘要: 针对禾豆间作密植机理研究薄弱问题,以大麦间作豌豆为研究对象,设施氮[不施氮:0 mg(N)·kg-1(土);施氮:100 mg(N)·kg-1(土)]、隔根(不隔根、隔根)和密度[低密度:15株(大麦)·盆-1;高密度:25株(大麦)·盆-1]3个参试因子,通过盆栽试验探讨了施氮和根系分隔对密植间作群体氮素竞争互补关系和利用效率的影响,以期为禾豆间作密植和氮素高效利用提供调控依据。结果表明:1)施氮、根间互作和增加大麦密度均可提高大麦||豌豆间作群体的吸氮量,其中施氮较不施氮处理提高33.8%,不隔根处理较隔根处理提高81.1%,高密度较低密度处理提高4.2%;根间互作在低氮条件下对间作吸氮量的贡献相对较高,不施氮和施氮条件下,根间互作提高间作吸氮量的比例分别为92.4%和11.0%;根间互作条件下增大大麦种植密度可显著提高间作群体吸氮量。2)大麦为氮素竞争优势种,密植使大麦氮素竞争比率显著提高,施氮能弱化大麦氮素竞争比率,抽穗期大麦相对于豌豆的氮素竞争优势达到最大值。3)根间互作使大麦、豌豆籽粒氮含量在施氮条件下分别提高126.7%、26.9%,不施氮时分别提高188.5%、46.5%,且施氮水平和根间作用方式对间作籽粒氮含量有显著的交互作用。4)高密度大麦和根间互作可显著提高间作群体的氮肥利用率,根间互作条件下增加大麦密度使间作群体氮肥利用率提高59.8%;大麦相对于豌豆的氮素竞争比率与间作群体氮肥利用率呈显著正相关关系。本研究表明,施氮、根间作用与大麦密度对大麦||豌豆间作氮素利用呈显著的交互作用,适宜的施氮量和充分的根间作用是支撑间作密植、优化种间对氮素的竞争关系,最终提高群体吸氮量和氮肥利用率的重要途径。
    Abstract: To investigate the mechanism of high planting density in cereal-legume intercropping system, a pot experiment of barley-pea intercropping system was carried out and the effects of nitrogen (N) application and root barrier on nitrogen and fertilizer use efficiency under high planting density of barley were determined. In the experiment, three factors, each with two treatment levels-N fertilizer application[no N application and N application with 100 mg(N)·kg-1], root barrier[no barrier with root interaction and root barrier without root interaction) and planting density (low density with 15 barley plants per pot and high density with 25 barley plants per pot) were set up. The results showed that:1) N application, plant root interaction and high barley planting density improved N uptake of barley-pea intercropping system. Compared with no N application treatment, N uptake increased by 33.8% in N application treatment. There was also 81.1% increase in N uptake under no root barrier treatment over root barrier treatment. N uptake under high planting density treatment increased by 4.2% compared with low planting density treatment. Plant root interaction improved N uptake by 92.4% and 11.0%, respectively, under no N application and N application treatments. Increasing planting density with root interaction significantly increased N uptake of the intercropping system. 2) Barely plant performed better for N competition, and its' N competition ratio significantly increased under high planting density. However, N application reduced barley N competition ratio. Compared with pea, barley was highest in competitive advantage at heading stage. 3) Root interaction improved grain N content of barley and pea, respectively, by 126.7% and 26.9% under N application treatment. Also barley and pea kernel N content increased, respectively, by 188.5% and 46.5% under no N treatment. There was a significant interaction between N application and root interaction for kernel N content. 4) High barley planting density significantly improved N use efficiency by 59.8% under root interaction treatment of the intercropping system. N competition between barley and pea was positively correlated with N use efficiency in the intercropping plant population. In conclusion, interactions of N application, root barrier and barley planting density enhanced crop productivity of barley-pea intercropping system. Proper N application and sufficient root interaction made feasible high planting density intercropping system, optimized competition between barley and pea, and improved N uptake and use efficiency.
  • 图  1   大麦||豌豆间作系统不同处理下大麦相对于豌豆的氮素竞争比率

    N0和N1分别代表不施氮和施氮; D1和D2代表大麦低和高种植密度。N0: no nitrogen applied; N1: 100 mg(N)×kg-1applied; D1: low barley planting density; D2: high barley planting density.

    Figure  1.   Dynamics on N competitive ratios of barley to pea in the barley-pea intercropping system under different treatments

    图  2   大麦||豌豆间作氮肥利用率对不同密度和施氮水平的响应

    N1代表施氮; P代表根系分隔; D1和D2代表大麦低和高种植密度。N1: 100 mg(N)×kg-1 applied; P: root barrier; D1: low barley planting density; D2: high barley planting density.

    Figure  2.   Response of N use efficiency of barly-pea intercropping to different treatments of barley planting densitiesy of barly and nitrogen application treatments

    表  1   不同施氮、根间作用和密度处理下大麦||豌豆间作系统不同大麦生育时期植株吸氮量

    Table  1   N uptake of the baeley-pea intercropping system at different barley growth stages under different treatments of N application, root barrier and barley planting density mg(N)·pot-1

    下载: 导出CSV

    表  2   大麦||豌豆间作系统不同处理下大麦、豌豆籽粒氮素含量及氮素收获指数

    Table  2   Grain N contents and N harvest indexes of barley and pea in the barley-pea intercropping system under different treatments

    年份 Year 处理 Treatment 籽粒氮含量 Grain N content (mg×pot-1) 氮素收获指数 N harvest index (NHI)
    大麦 Barley 豌豆 Pea 间作 Intercropping 大麦 Barley 豌豆 Pea 间作 Intercropping
    2012 N0D1 300.2±19.7 b 407.5±6.0ab 707.7±14.1 b 0.775±0.04a 0.619±0.01 b 0.676±0.05a
    N0D2 318.9±15.7b 352.0±9.4bc 670.9±16.8 b 0.781±0.08a 0.555±0.02 b 0.642±0.09a
    N0PD1 117.1±17.9d 247.2±6.1d 364.3±23.3c 0.620±0.06ab 0.618±0.02b 0.620±0.04a
    N0PD2 98.0±7.5d 277.7±46.4cd 375.6±45.3c 0.542±0.07b 0.702±0.06 ab 0.653±0.04a
    N1D1 450.8±86.2a 475.1±87.5a 926.0±59.2 a 0.800±0.04a 0.690±0.14ab 0.738±0.13a
    N1D2 513.9±53.9 a 473.6±97.3a 987.5±43.6a 0.752±0.06ab 0.625±0.09b 0.685±0.08a
    N1PD1 219.4±8.0 c 385.1±38.4ab 604.4±45.2b 0.721±0.02ab 0.817±0.03a 0.775±0.02a
    N1PD2 227.5±28.3c 372.8±53.3abc 600.4±73.0b 0.722±0.05ab 0.784±0.14a 0.759±0.16a
    2013 N0D1 260.5±23.2bc 411.0±39.4b 672.1±26.3b 0.734±0.04bc 0.595±0.05de 0.643±0.04e
    N0D2 294.2±3.1b 357.5±21.3c 651.7±18.5b 0.785±0.08abc 0.531±0.00e 0.621±0.08e
    N0PD1 113.6±10.2e 251.6±10.1d 365.2±7.3d 0.697±0.06c 0.743±0.06ab 0.728±0.11bcd
    N0PD2 85.9±5.1e 273.7±23.8d 359.5±18.7d 0.504±0.07d 0.803±0.07a 0.701±0.00d
    N1D1 511.3±46.2a 506.6±27.0a 1017.9±23.9a 0.888±0.04a 0.699±0.02bc 0.783±0.04ab
    N1D2 527.5±13.3a 466.1±24.8a 993.7±14.2a 0.806±0.06ab 0.627±0.05cd 0.711±0.04cd
    N1PD1 212.2±35.9d 369.3±45.8bc 581.5±11.3c 0.688±0.02c 0.807±0.03a 0.759±0.01abc
    N1PD2 224.9±11.4cd 388.1±23.3bc 612.9±29.6c 0.734±0.05bc 0.823±0.04a 0.788±0.09a
    显著性检验 Significance due to:
    年际 Year NS NS NS NS NS NS
    施氮 N application (N) *** *** *** ** *** ***
    密度 Planting density (D) NS NS NS NS NS NS
    根系分隔 Root barrier (B) *** *** *** *** *** *
    施氮×密度 N × D NS NS NS NS NS NS
    施氮×根系分隔 N × B *** NS * NS NS NS
    密度×根系分隔 D × B * * NS NS * NS
    施氮×密度×根系分隔 N × D × B NS NS NS * NS NS
     N0和N1分别代表不施氮和施氮; P代表根系分隔; D1和D2代表大麦低种植密度和高种植密度。显著性检验是分作物和年份进行; 各处理每年数据3次重复的平均值进行比较。同列不同字母表示差异显著。NS表示不显著; ***表示P<0.001显著; **表示P<0.01显著; *表示P<0.05显著。N0: no N applied; N1: 100 mg(N)×kg-1 applied; P: root barrier; D1: low barley planting density; D2: high barley planting density. The test of significance was performed on the same plant and year; Values are means of three triplicates of one treatments in every year. Different letters within the same column indicate significant differences at P < 0.05 level. NS: not significant; ***: significant at P < 0.001 level; **: significant at P < 0.01 level; *: significant atP < 0.05 level.
    下载: 导出CSV

    表  3   大麦||豌豆间作系统大麦不同生育期氮素竞争比率与间作籽粒氮含量的关联度排序

    Table  3   Degrees of association between seasonal N competitive ratio and grain nitrogen content of the barly-pea intercropping system at different barley growth stages under different treatments

    处理 Treatment 间作作物籽粒氮含量 Grain nitrogen content of barly-pea intercropping (mg×pot-1) 氮素竞争比率 N competitive ratio
    苗期 Seeding stage 分蘖期 Tillering stage 抽穗期 Heading stage 成熟期 Maturity stage
    N0D1 689.90 -0.22 0.05 0.58 0.27
    N0D2 661.29 -0.03 0.22 0.75 0.44
    N1D1 971.93 0.00 0.21 0.62 0.32
    N1D2 990.58 0.20 0.49 0.91 0.58
    关联度 Degree of association 0.6112 0.9611 0.9874 0.9781
    排序 Ranking 4 3 1 2
     N0和N1分别代表不施氮和施氮; D1和D2代表大麦低和高种植密度。N0: no nitrogen applied; N1: 100 mg(N)×kg-1 applied; D1: low barley planting density; D2: high barley planting density.
    下载: 导出CSV

    表  4   大麦豌豆共生期不同大麦生育时期氮素竞争比率与籽粒氮含量的相关系数

    Table  4   Correlation coefficients between seasonal N competitive ratio and grain nitrogen content in barly-pea intercropping systems under different barley growth stageperieds

    参数 Parameter 生育时期 Growth stage 籽粒氮含量 Grain nitrogen content
    苗期 Seeding 分蘖期 Tillering 抽穗期 Heading 成熟期 Maturity 大麦 Barley 豌豆 Pea 间作 Intercropping
    苗 期 Seeding 1 0.649** 0.531** 0.502 0.371 -0.059 0.224
    分蘖期 Tillering 1 0.360 0.525** 0.499 -0.062 0.310
    抽穗期 Heading 1 0.635 0.091 -0.052
    成熟期 Maturity 1 0.250 -0.189 0.090
    下载: 导出CSV
  • [1] 肖焱波, 李隆, 张福锁. 小麦/蚕豆间作体系中的种间相互作用及氮转移研究[J]. 中国农业科学, 2005, 38(5):965-973 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK200505015.htm

    Xiao Y B, Li L, Zhang F S. The interspecific nitrogen facilitation and the subsequent nitrogen transfer between the intercropped wheat and fababean[J]. Scientia Agricultura Sinica, 2005, 38(5):965-973 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK200505015.htm

    [2] 肖焱波, 李隆, 张福锁. 根瘤菌菌株NM353对小麦/蚕豆间作体系中作物生长及养分吸收的影响[J]. 植物营养与肥料学报, 2006, 12(1):89-96 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF200601014.htm

    Xiao Y B, Li L, Zhang F S. The enhancement of growth and nutrients uptake by crops with inoculating rhizobium strain NM353 in wheat and faba bean intercropping system[J]. Plant Nutrition and Fertilizer Science, 2006, 12(1):89-96 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF200601014.htm

    [3] 肖焱波, 段宗颜, 金航, 等. 小麦/蚕豆间作体系中的氮节约效应及产量优势[J]. 植物营养与肥料学报, 2007, 13(2):267-271 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF200702013.htm

    Xiao Y B, Duan Z Y, Jin H, et al. Spared N response and yields advantage of intercropped wheat and fababean[J]. Plant Nutrition and Fertilizer Science, 2007, 13(2):267-271 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF200702013.htm

    [4] 雍太文, 杨文钰, 向达兵, 等. 小麦/玉米/大豆套作的产量、氮营养表现及其种间竞争力的评定[J]. 草业学报, 2012, 21(1):50-58 http://www.cnki.com.cn/Article/CJFDTOTAL-CYXB201201008.htm

    Yong T W, Yang W Y, Xiang D B, et al. Production and N nutrient performance of wheat-maize-soybean relay strip intercropping system and evaluation of interspecies competition[J]. Acta Prataculturae Sinica, 2012, 21(1):50-58 http://www.cnki.com.cn/Article/CJFDTOTAL-CYXB201201008.htm

    [5] 肖靖秀, 汤利, 郑毅, 等. 大麦/蚕豆间作条件下供氮水平对作物产量和大麦氮吸收累积的影响[J]. 麦类作物学报, 2011, 31(3):499-503 http://www.cnki.com.cn/Article/CJFDTOTAL-MLZW201103021.htm

    Xiao J X, Tang L, Zheng Y, et al. Effects of N level on yield of crops, N absorption and accumulation of barley in barley and faba bean intercropping system[J]. Journal of Triticeae Crops, 2011, 31(3):499-503 http://www.cnki.com.cn/Article/CJFDTOTAL-MLZW201103021.htm

    [6]

    Hauggaard-Nielsen H, Gooding M, Ambus P, et al. Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems[J]. Field Crops Research, 2009, 113(1):64-71 doi: 10.1016/j.fcr.2009.04.009

    [7]

    Li C J, Li Y Y, Yu C B, et al. Crop nitrogen use and soil mineral nitrogen accumulation under different crop combinations and patterns of strip intercropping in northwest China[J]. Plant and Soil, 2011, 342(1/2):221-231 http://cn.bing.com/academic/profile?id=8ad91b6347a05591d2ed3afa9f85eb0d&encoded=0&v=paper_preview&mkt=zh-cn

    [8] 肖焱波, 李隆, 张福锁. 豆科/禾本科间作系统中氮营养研究进展[J]. 中国农业科技导报, 2003, 5(6):44-49 http://www.cnki.com.cn/Article/CJFDTOTAL-NKDB200306010.htm

    Xiao Y B, Li L, Zhang F S. An outlook of the complementary nitrogen nutrition in the legume/graminaceae system[J]. Review of China Agricultural Science and Technology, 2003, 5(6):44-49 http://www.cnki.com.cn/Article/CJFDTOTAL-NKDB200306010.htm

    [9] 李玉英, 余常兵, 孙建好, 等. 蚕豆玉米间作系统经济生态施氮量及对氮素环境承受力[J]. 农业工程学报, 2008, 24(3):223-227 http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200803048.htm

    Li Y Y, Yu C B, Sun J H, et al. Nitrogen environmental endurance and economically-ecologically appropriate amount of nitrogen fertilizer in faba bean/maize intercropping system[J]. Transactions of the CSAE, 2008, 24(3):223-227 http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200803048.htm

    [10]

    Ahlawat A, Jain V, Nainawatee H S. Effect of low temperature and Rh izospheric application of naringenin on pea-rhizobium leguminosarum biovar viciae symbiosis[J]. Journal of Plant Biochemistry and Biotechnology, 1998, 7(1):35-38 doi: 10.1007/BF03263030

    [11] 焦念元, 宁堂原, 赵春, 等. 施氮量和玉米-花生间作模式对氮磷吸收与利用的影响[J]. 作物学报, 2008, 34(4):706-712 doi: 10.3724/SP.J.1006.2008.00706

    Jiao N Y, Ning T Y, Zhao C, et al. Effect of nitrogen application and planting pattern on N and P absorption and use in maize-peanut intercropping system[J]. Acta Agronomica Sinica, 2008, 34(4):706-712 doi: 10.3724/SP.J.1006.2008.00706

    [12]

    Palta J A, Fillery L R P, Rebetzke G J. Restricted-tillering wheat does not lead to greater investment in roots and early nitrogen uptake[J]. Field Crops Research, 2007, 104(1/3):52-59

    [13] 朱静. 玉米密度对间作豌豆"氮阻遏"的调控效应及机制[D]. 兰州:甘肃农业大学, 2012:6-10, 44-51

    Zhu J. The controlling effect and mechanism of maize density on the intercropping peas "N min inhibitory effect"[D]. Lanzhou:Gansu Agricultural University, 2012:6-10, 44-51

    [14]

    Neumann A, Werner J, Rauber R. Evaluation of yield-density relationships and optimization of intercrop compositions of field-grown pea-oat intercrops using the replacement series and the response surface design[J]. Field Crops Research, 2009, 114(2):286-294 doi: 10.1016/j.fcr.2009.08.013

    [15] 朱元刚, 高凤菊, 曹鹏鹏, 等. 种植密度对玉米-大豆间作群体产量和经济产值的影响[J]. 应用生态学报, 2015, 26(6):1751-1758 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201506020.htm

    Zhu Y G, Gao F J, Cao P P, et al. Effect of plant density on population yield and economic output value in maize-soybean intercropping[J]. Chinese Journal of Applied Ecology, 2015, 26(6):1751-1758 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201506020.htm

    [16] 罗照霞, 柴强. 不同供水水平下间甲酚和间作对小麦、蚕豆耗水特性及产量的影响[J]. 中国生态农业学报, 2008, 16(6):1478-1482 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2008627&flag=1

    Luo Z X, Chai Q. Effect of 3-methyl phenol at different rates of irrigation and intercropping on water consumption, and yield of wheat and faba-bean[J]. Chinese Journal of Eco-Agriculture, 2008, 16(6):1478-1482 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2008627&flag=1

    [17]

    Li L, Sun J H, Zhang F S, et al. Wheat/maize or wheat/soybean strip intercropping:Ⅰ. Yield advantage and interspecific interactions on nutrients[J]. Field Crops Research, 2001, 71(2):123-137 doi: 10.1016/S0378-4290(01)00156-3

    [18] 刘学军, 赵紫娟, 巨晓棠, 等. 基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响[J]. 生态学报, 2002, 22(7):1122-1128 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200207021.htm

    Liu X J, Zhao Z J, Ju X T, et al. Effect of N application as basal fertilizer on grain yield of winter wheat, fertilizer N recovery and N balance[J]. Acta Ecologica Sinica, 2002, 22(7):1122-1128 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200207021.htm

    [19] 施伟, 昌小平, 景蕊莲. 不同水分条件下小麦生理性状与产量的灰色关联度分析[J]. 麦类作物学报, 2012, 32(4):653-659 http://www.cnki.com.cn/Article/CJFDTOTAL-MLZW201204011.htm

    Shi W, Chang X P, Jing R L. Gray association grade analysis of physiological traits with yield of wheat under different water regimes[J]. Journal of Triticeae Crops, 2012, 32(4):653-659 http://www.cnki.com.cn/Article/CJFDTOTAL-MLZW201204011.htm

    [20] 甘银波, 本佳婉. 不同氮肥管理对毛豆共生固氮及产量的影响[J]. 中国油料, 1996, 18(1):34-37 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW601.009.htm

    Gan Y B, Ben J W. Effects of N fertilizer managements on N fixation and yield of two vegetable soybeans[J]. Chinese Journal of Oil Crop Sciences, 1996, 18(1):34-37 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW601.009.htm

    [21]

    Hauggaard-Nielsen H, Ambus P, Jensen E S. The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley[J]. Nutrient Cycling in Agroecosystems, 2003, 65(3):289-300 doi: 10.1023/A:1022612528161

    [22] 刘斌, 谢飞, 凌一波, 等. 不同间作播期和密度对甜瓜/向日葵间作系统氮素利用效率的影响[J]. 中国生态农业学报, 2016, 24(1):36-46 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016105&flag=1

    Liu B, Xie F, Ling Y B, et al. Effects of intercropping time and planting density on nitrogen use efficiency of melon-sunflower intercropping system[J]. Chinese Journal of Eco-Agriculture, 2016, 24(1):36-46 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016105&flag=1

    [23] 张金汕, 董庆国, 方伏荣, 等. 密度和施氮量对啤酒大麦氮素吸收利用及籽粒蛋白质含量的影响[J]. 麦类作物学报, 2016, 36(3):371-378 http://www.cnki.com.cn/Article/CJFDTOTAL-MLZW201603019.htm

    Zhang J S, Dong Q G, Fang F R, et al. Effect of density and N fertilizer on nitrogen uptake and protein content of beer barley[J]. Journal of Triticeae Crops, 2016, 36(3):371-378 http://www.cnki.com.cn/Article/CJFDTOTAL-MLZW201603019.htm

    [24] 齐万海, 柴强. 不同隔根方式下间作小麦玉米的竞争力及产量响应[J]. 中国生态农业学报, 2010, 18(1):31-34 doi: 10.3724/SP.J.1011.2010.00031

    Qi W H, Chai Q. Yield response to wheat/maize competitiveness in wheat/maize intercropping system under different root partition patterns[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1):31-34 doi: 10.3724/SP.J.1011.2010.00031

    [25] 殷文, 赵财, 于爱忠, 等. 秸秆还田后少耕对小麦/玉米间作系统中种间竞争和互补的影响[J]. 作物学报, 2015, 41(4):633-641 doi: 10.3724/SP.J.1006.2015.00633

    Yin W, Zhao C, Yu A Z, et al. Effect of straw returning and reduced tillage on interspecific competition and complementation in wheat/maize intercropping system[J]. Acta Agronomica Sinica, 2015, 41(4):633-641 doi: 10.3724/SP.J.1006.2015.00633

    [26] 董宛麟, 于洋, 张立祯, 等. 向日葵和马铃薯间作条件下氮素的吸收和利用[J]. 农业工程学报, 2013, 29(7):98-108 http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201307015.htm

    Dong W L, Yu Y, Zhang L Z, et al. Nitrogen uptake and utilization in sunflower and potato intercropping[J]. Transactions of the CSAE, 2013, 29(7):98-108 http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201307015.htm

    [27] 朱树秀, 季良, 阿米娜. 玉米单作及与大豆混作中氮来源的研究[J]. 西北农业学报, 1994, 3(1):59-61 http://www.cnki.com.cn/Article/CJFDTOTAL-XBNX401.012.htm

    Zhu S X, Ji L, A M N. N resource of corn plants in monoculture and mixture[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 1994, 3(1):59-61 http://www.cnki.com.cn/Article/CJFDTOTAL-XBNX401.012.htm

    [28]

    Vandermeer J H. Intercropping[M]//Carroll C R, Vandermeer J H, Rosset P M. Agroecology. New York:McGraw-Hill, 1990:481-516

    [29]

    Ofori F, Stern W R. Cereal-legume intercropping systems[J]. Advances in Agronomy, 1987, 41:41-90 doi: 10.1016/S0065-2113(08)60802-0

    [30] 周江明, 赵琳, 董越勇, 等. 氮肥和栽植密度对水稻产量及氮肥利用率的影响[J]. 植物营养与肥料学报, 2010, 16(2):274-281 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201002004.htm

    Zhou J M, Zhao L, Dong Y Y, et al. Nitrogen and transplanting density interactions on the rice yield and N use rate[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2):274-281 http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201002004.htm

    [31] 程晟, 刘晋荣. 简析氮素营养对超高产小麦的调控[J]. 山西农业科学, 2011, 39(3):291-294 http://www.cnki.com.cn/Article/CJFDTOTAL-SXLX201103031.htm

    Cheng S, Liu J R. Primary analysis of nitrogen nutrient control of super-high-yield wheat[J]. Journal of Shanxi Agricultural Sciences, 2011, 39(3):291-294 http://www.cnki.com.cn/Article/CJFDTOTAL-SXLX201103031.htm

    [32] 杨学明, 姚金保, 姚国才, 等. 不同密度及氮肥运筹对宁麦9号产量和群体质量的影响[J]. 江苏农业科学, 2002(5):11-13 http://www.cnki.com.cn/Article/CJFDTOTAL-JSNY200205004.htm

    Yang X M, Yao J B, Yao G C, et al. Effects of density and nitrogen application on the grain yield and population quality of wheat variety Ningmai 9[J]. Journal of Jiangsu Agricultural Sciences, 2002(5):11-13 http://www.cnki.com.cn/Article/CJFDTOTAL-JSNY200205004.htm

    [33] 张娟. 种植密度和氮肥水平互作对冬小麦产量和氮素利用率的调控效应研究[D]. 泰安:山东农业大学, 2014

    Zhang J. Combined effect of plant density and nitrogen level on grain yield and nitrogen use efficiency in winter wheat[D]. Tai'an:Shandong Agricultural University, 2014

  • 期刊类型引用(3)

    1. 姜坤,戴文远,胡秋凤,黄康,欧惠. 浙闽山地丘陵区地形因子对土地利用格局的影响分析:以福建省永泰县为例. 生态与农村环境学报. 2019(06): 707-715 . 百度学术
    2. 王盼盼,宋戈. 1979-2015年松嫩高平原土地利用格局变化及影响因子分析. 农业工程学报. 2018(02): 256-264 . 百度学术
    3. 许尔琪,张红旗. 喀斯特山地土地利用变化的垂直分布特征. 中国生态农业学报. 2016(12): 1693-1702 . 百度学术

    其他类型引用(4)

图(2)  /  表(4)
计量
  • 文章访问数:  1404
  • HTML全文浏览量:  99
  • PDF下载量:  769
  • 被引次数: 7
出版历程
  • 收稿日期:  2016-06-09
  • 录用日期:  2016-10-03
  • 网络出版日期:  2021-05-11
  • 刊出日期:  2017-01-31

目录

    /

    返回文章
    返回