Effects of different proportions of organic carbon input on nitrogen pool activity of tobacco-growing soil under fertilizer reduction
-
摘要:
为探究化肥减量下不同比例有机碳输入影响植烟土壤供氮能力的长期效应, 基于连续11 a的田间定位试验, 设置了4种处理: 不施肥(CK)、当地常规推荐施肥(100%化肥, CF)、化肥减量20%配施3 000 kg·hm−2有机肥(OF-1)以及化肥减量40%配施6 000 kg·hm−2有机肥(OF-2)。通过分析比较各处理植烟土壤可溶性氮组分含量、土壤氮库活度(NL)、土壤氮库管理指数(NPMI)、烟叶产量及经济性状, 探讨连续化肥减量条件下, 不同比例有机碳输入对植烟土壤氮库活度的影响。结果表明, 不施肥(CK)处理显著降低烟叶产量、中上等烟叶比例及土壤可溶性氮组分含量和氮库管理指数。连续化肥减量条件下, 不同比例有机碳输入(OF-1和OF-2)显著提高烟叶产量、土壤可溶性氮组分含量、土壤氮库活度和氮库管理指数。与CF处理相比, 不同比例有机碳输入的OF-1和OF-2处理, 植烟土壤可溶性总氮(TDN)含量分别显著增加52.11%和57.36%, 土壤可溶性有机氮(DON)含量分别显著增加99.25%和102.64%; 土壤铵态氮(NH4+-N)含量分别显著增加18.08%和19.22%, 土壤硝态氮(NO3−-N)含量分别显著增加48.09%和54.61%; 植烟土壤氮库活度分别显著提高53.58%和50.36%, 土壤氮库管理指数分别显著提高48.21%和50.57%; 烟叶产量分别显著提高18.69%和19.22%, 上等烟叶比例分别显著提高94.95%和67.61%, 中上等烟叶比例分别显著提高13.91%和12.25%。OF-1和OF-2处理对土壤氮库活度和氮库管理指数的影响无显著差异。相关分析结果显示, 植烟土壤氮组分、氮库活度、氮库管理指数与烟叶产量及经济性状呈显著正相关。随机森林分析表明, 土壤氮库管理指数、土壤可溶性氮含量和土壤氮库活度是影响烟叶产量发生变化的重要预测因子。综上, 连续化肥减量条件下, 有机碳输入通过增加土壤可溶性氮含量以及提高土壤氮库活度和氮库管理指数, 促进烟叶产量提升。这可作为实现化肥减施增效的一种绿色生态施肥途径, 并能提升土壤供氮能力, 实现烟叶优质生产。
Abstract:In order to explore the long-term effects of different proportions of organic carbon input on nitrogen supply capacity of tobacco-planting soil under fertilizer reduction, four treatments were set up based on 11 consecutive years of field location experiments: no fertilizer (CK), local conventional recommended fertilizer (100% fertilizer, CF), 20% chemical fertilizer reduction with 3 000 kg·hm−2 organic fertilizer (OF-1), and 40% chemical fertilizer reduction with 6 000 kg·hm−2 organic fertilizer (OF-2).By analyzing and comparing the contents of soluble nitrogen components, soil nitrogen pool activity (NL), soil nitrogen pool management index (NPMI), tobacco yield and economic traits, the effects of different proportion of organic carbon input on soil nitrogen pool activity of tobacco planting soil under continuous fertilizer reduction were investigated. The results showed that continuous years of no fertilizer (CK) significantly reduced the tobacco yield, the proportion of medium and top-grade tobacco, and soil soluble nitrogen fraction content and nitrogen pool management index. Under continuous fertilizer reduction conditions, different proportions of organic carbon inputs (OF-1 and OF-2) significantly increased flue-cured tobacco yield, soil soluble nitrogen content, soil nitrogen pool activity and nitrogen pool management index. Compared to the CF treatment, the OF-1 and OF-2 treatments with different organic carbon input ratios significantly increased the content of total dissolved nitrogen (TDN) in tobacco-planted soil by 52.11% and 57.36%, respectively. The content of dissolved organic nitrogen (DON) increased by 99.25% and 102.64%, respectively. Additionally, the ammonium nitrogen (NH4+-N) content rose by 18.08% and 19.22%, while the nitrate nitrogen (NO3−-N) content increased by 48.09% and 54.61%, respectively. Furthermore, the soil nitrogen pool activity improved by 53.58% and 50.36%, and the soil nitrogen pool management index increased by 48.21% and 50.57%, respectively. Tobacco leaf yield also showed significant improvements, rising by 18.69% and 19.22%. The proportion of high-grade tobacco leaves increased by 94.95% and 67.61%, while the proportion of medium-high-grade tobacco leaves increased by 13.91% and 12.25%, respectively. The effects of OF-1 and OF-2 treatments on soil nitrogen pool activity and nitrogen pool management index were not significantly different from each other. The results of correlation analysis showed that nitrogen composition, soil nitrogen pool activity and nitrogen pool management index of tobacco-planting soil were significantly positively correlated with tobacco yield and economic traits. Random forest analysis showed that soil nitrogen pool management index, soil soluble nitrogen content and soil nitrogen pool activity were important predictors of changes in yield of tobacco. In conclusion, under continuous chemical fertilizer reduction, organic carbon input enhances tobacco leaf yield by increasing soil soluble nitrogen content and improving soil nitrogen pool activity and nitrogen pool management index. This approach serves as a green and ecological fertilization strategy to achieve chemical fertilizer reduction and efficiency improvement. It also enhances soil nitrogen supply capacity and promotes high-quality tobacco production.
-
作为生态系统中重要的储存库之一, 土壤氮库是氮组分积累和分配的动态指标[1]。土壤氮库活度(NL)和氮库活度指数(NLI)均反映氮素活跃程度, NL即土壤可溶性氮与非可溶性氮的比值, 其值越高, 氮库活度指数越高, 表征土壤氮素越容易被植物和微生物利用, 土壤质量越高, 是保障农田系统作物生长和作物产量的重要因素[2-3]。土壤氮库管理指数(NPMI)是一种衡量外部环境对土壤氮库及活性氮组分影响的重要指标, 它能反映出外界条件对土壤氮素及其活性变化的影响, 并可评估土壤的供肥与保肥性能[4]。土壤可溶性总氮(TDN)通常包含可溶性有机氮(DON)和溶解性无机氮(DIN), 指土壤中植物能够直接吸收利用的氮素总量。其中, DON既包含了可以被植物直接吸收的有机氮, 也包含在土壤中通过间接转化而来的有机氮, 其含量与植物吸收利用程度正相关[5]。DIN主要由铵态氮和硝态氮构成, 能被植物直接吸收利用, 代表了土壤氮素供应能力[6-7]。土壤可溶性有机氮作为土壤中最活跃的一种氮形态, 对土壤氮素循环具有显著影响[8]。土壤中的氮素储存及其分配是决定氮素有效性的关键因素, 这进一步影响着植物的生长发育以及氮素环境效应。
提高土壤氮库是保证作物产量和培肥土壤的重要途径[9]。然而, 短期内土壤氮库不能灵敏地反映其组分含量变化[10], 因而NPMI常用来表征外界措施引起土壤活性氮素的变化, 体现土壤氮素供应能力[11]。Westerhof等[12]和Malhi等[13]将NPMI这一方法应用于土壤氮素研究。近年来, 该方法被用于评估长期施肥对华北平原小麦(Triticum aestivum)-玉米(Zea mays)种植系统中土壤氮库的影响[14], 及不同水稻(Oryza sativa)种植模式下有机无机配施对土壤氮库和氮素有效性的评价[15]。以上表明该方法具备评估管理系统改善土壤质量的能力。在农田系统中, 合理利用有机肥替代部分化肥是提高作物产量和增加土壤氮库的有效手段, 对于生态保护和农业生产中氮肥的合理投入具有重要意义[16-17]。现有研究表明, 与单施化肥相比, 长期施用有机肥可向土壤持续释放大量碳、氮和其他营养物质[18]; 有机物料还田后通过微生物作用可为土壤直接补充氮素[19]; 长期有机无机配施对土壤氮素含量的增加具有重要促进作用[14-20], 在提高土壤氮储量方面的效果明显优于单施化肥处理[21]。在稻麦轮作种植体系上, 与单施化肥相比, 不同比例的猪粪替代氮肥可以提高淹育水稻土壤全氮和有机氮组分含量, 进而增加土壤供氮潜力[22]。以上均表明, 合理的有机碳输入有利于改善和维持土壤氮贮存。但目前有关化肥减量条件下, 有机碳输入对土壤氮库活度和氮库管理指数的影响, 特别是化肥减量条件下, 不同比例有机碳输入对土壤氮库活度和氮库管理指数的长期效应如何尚未见系统报道。
云南是我国优质烤烟的主要产区, 其可持续生产的目标是保证烟叶质量、优质且适产。氮肥施用和土壤氮素供应是影响烟叶产量和品质的关键因子[23-24]。现有研究表明, 化肥减量条件下, 合理配施有机肥可提高烤烟产量和经济性状, 提高化肥利用效率[25]; 还能对土壤微生物区系进行有效调节[26], 减少土传病害发生[27]; 另外还能增加植烟土壤有机碳组分含量, 提高土壤碳库管理指数和土壤有机碳固存速率, 有效提高植烟土壤综合肥力[28-30], 促进烟叶产量提升。但连续化肥减量条件下, 不同比例有机碳输入对植烟土壤氮素供应的长期影响尚未见系统报道。
鉴于此, 本研究基于连续11 a的田间定位试验, 研究连续化肥减量条件下, 不同比例有机碳输入对植烟土壤氮组分、土壤氮库活度和氮库管理指数的影响, 探讨其对烟叶产量提升的作用, 以期为植烟土壤氮素供应的长期保持、土壤肥力提升和烟叶优质高效生产提供科学依据和参考。
1. 材料与方法
1.1 试验地点和时间
本田间定位小区试验在云南省昆明市寻甸回族彝族自治县云南农业大学现代农业教育科研基地(25°56ˊN, 103°25ˊE)开展, 该试验始于2013年。试验区土壤类型为红壤, 该试验地2013年起始土壤基础理化性质: pH值6.8, 碱解氮含量94.6 mg∙kg−1, 有效磷含量15.2 mg∙kg−1, 有效钾含量125 mg∙kg−1, 有机质含量21.6 g∙kg−1。本研究为连续定位试验第11年(2023年5-8月)田间试验结果。
1.2 试验材料
本试验选用的烤烟品种为‘云烟87’, 烟苗由当地烟草公司统一培育。试验所用肥料包括当地推荐的烟草专用肥(N 15%、P2O5 10%和K2O 25%)和江苏新天地生物肥料工程中心有限公司提供的有机肥, 该有机肥含有机质≥35%, 总氮磷钾养分≥5%。
1.3 试验设计
田间定位试验设置4个处理, 包括不施肥(CK)、当地常规推荐施肥(即100%化肥, 氮素折纯施用量为105 kg·hm−2, CF)、化肥减量20%配施3 000 kg·hm−2有机肥(即有机碳输入1, OF-1)以及化肥减量40%配施6 000 kg·hm−2有机肥(即有机碳输入2, OF-2)。各处理均设置3次重复, 共12个小区。每个小区植烟5行, 每行7株, 共35株, 烟株行距0.5 m×1.2 m。
在当地常规推荐施肥(CF)处理中, 供试肥料为烟草专用肥, 氮肥施用量为105 kg(N)·hm−2, 其中60%作为基肥, 40%作为追肥。总养分中N: P2O5: K2O为3: 2: 5。OF-1和OF-2处理中的化肥用量在CF处理的基础上分别减少20%和40%, 基肥和追肥均按比例减少, 追肥时间为移栽后30 d。配施的有机肥均作为基肥, 在移栽前一次性施入。在整个田间试验过程中,不使用任何农药, 其他管理措施均依照优质烤烟的生产标准执行。
1.4 样品采集与处理
在烤烟最后一次采烤结束后, 采用多点混合采样法, 采集0~20 cm植烟耕层土壤。土壤样品在现场混匀后, 移除肉眼可见的石块和植物残茬, 并装入自封袋中保存。鲜土于−20 °C冰箱保存, 用于测定土壤可溶性总氮、硝态氮和铵态氮含量。
1.5 测定指标与方法
1.5.1 烤烟产量测定
烤烟收获并完成烘烤后, 参照国家烤烟分级标准(GB2635—1992), 计算各小区初烤烟叶产量及中上等烟叶比例。
1.5.2 土壤氮组分测定
土壤可溶性总氮(TDN)含量采用过硫酸钾氧化-紫外分光光度法测定。硝态氮(NO3−-N)和铵态氮(NH4+-N)含量分别采用氯化钾浸提-靛酚蓝比色法和紫外分光光度法测定。可溶性有机氮(DON)含量由可溶性总氮含量与无机氮含量的差值计算得到[31]。
本试验将CK处理下的土壤作为参考土壤, 参照Blair等[32]的方法进行计算。土壤氮库管理指数的具体计算如下:
$$ \mathrm{N}\mathrm{P}\mathrm{I}={\mathrm{T}\mathrm{N}}_{\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{t}}/{\mathrm{T}\mathrm{N}}_{\mathrm{C}\mathrm{K}} $$ (1) $$ \mathrm{N}\mathrm{L}={\mathrm{D}\mathrm{N}}_{\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{t}}/{\mathrm{I}\mathrm{N}}_{\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{t}} $$ (2) $$ \mathrm{N}\mathrm{L}\mathrm{I}={\mathrm{N}\mathrm{L}}_{\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{t}}/{\mathrm{N}\mathrm{L}}_{\mathrm{C}\mathrm{K}} $$ (3) $$ \mathrm{N}\mathrm{P}\mathrm{M}\mathrm{I}=\mathrm{N}\mathrm{P}\mathrm{I}\times \mathrm{N}\mathrm{L}\mathrm{I}\times 100 $$ (4) 式中: NPI为氮库指数; NL为氮库活度; NLI为氮库活度指数; NPMI为氮库管理指数; TN为总氮含量; DN:为可溶性氮含量; IN: 非可溶性氮含量; treat为样本土壤; CK为对照土壤。
1.6 数据处理与统计分析
使用Microsoft Excel 2021以及SPSS 27.0对数据进行统计分析, 运用Origin 2021软件完成图形绘制, 基于R 4.3.2软件中的randomForest和rfPermute包进行随机森林分析, 用于评估预测变量的相对重要性; 采用Duncan法检验各处理间差异的显著性(P<0.05)。
2. 结果与分析
2.1 化肥减量下不同比例有机碳输入对烟叶产量和经济性状的影响
由表1可以看出, 各施肥处理与连续不施肥(CK)处理相比, 均能显著提高烤烟产量、上等烟叶比例和中上等烟叶比例(P<0.05)。在连续化肥减量条件下, 不同比例有机碳输入处理(OF-1和OF-2) 与常规推荐施肥(CF)相比, 均显著提高烤烟产量、上等烟比例、中上等烟比例(P<0.05)。OF-1和OF-2较CF处理的烟叶产量增幅分别为18.69%和19.22%; 上等烟叶比例分别显著增加94.95%和67.61%, 中上等烟叶比例分别显著增加13.91%和12.25% (P<0.05)。与OF-2处理相比, OF-1处理的烤烟上等烟、中上等烟比例呈较高趋势,但未达显著差异。
表 1 化肥减量下不同比例有机碳输入对烟叶产量及经济性状的影响Table 1. Effect of different proportion of organic carbon input on tobacco yield and economic traits under fertilizer reduction处理
Treatment产量
Yield /(kg∙hm−2)上等烟叶比例
Prime tobacco proportion /%中上等烟叶比例
Proportion of medium-quality and high-quality tobacco leaves /%CK 553.00±49.30c 11.60±1.86c 34.40±7.69c CF 1 228.00±26.56b 19.71±2.80b 73.03±4.26b OF-1 1 457.50±179.02a 38.43±6.37a 83.18±2.51a OF-2 1 464.00±104.02a 33.04±4.98a 81.97±2.44a CK: 不施肥; CF: 当地常规推荐施肥(100%化肥); OF-1: 化肥减量20%配施3 000 kg·hm−2有机肥; OF-2: 化肥减量40%配施6 000 kg·hm−2有机肥。同列不同小写字母表示处理间差异显著(P<0.05)。CK: no fertilizer; CF: local conventional recommended fertilizer application (100% fertilizer); OF-1: 20% reduction of chemical fertilizer with 3 000 kg∙hm−2 organic fertilizer; OF-2: 40% reduction of chemical fertilizer with 6 000 kg∙hm−2 organic fertilizer. Different lowercase letters in the same column indicate significant differences among different treatments (P<0.05). 2.2 化肥减量下不同比例有机碳输入对植烟土壤可溶性氮组分的影响
2.2.1 植烟土壤可溶性氮组分
连续化肥减量条件下, 不同比例有机碳输入对植烟土壤氮组分的影响如图1所示。结果表明, 与CK处理相比, 施肥(CF、OF-1和OF-2)处理均显著提高了植烟土壤可溶性氮组分含量(P<0.05)。
图 1 化肥减量下不同比例有机碳输入对植烟土壤可溶性氮组分的影响CK: 不施肥; CF: 当地常规推荐施肥(100%化肥); OF-1: 化肥减量20%配施3 000 kg·hm−2有机肥; OF-2: 化肥减量40%配施6 000 kg·hm−2有机肥。不同小写字母表示不同处理间差异显著(P<0.05)。CK: no fertilizer; CF: local conventional recommended fertilizer application (100% fertilizer); OF-1: 20% reduction of chemical fertilizer with 3 000 kg∙hm−2 organic fertilizer; OF-2: 40% reduction of chemical fertilizer with 6 000 kg∙hm−2 organic fertilizer. Different lowercase letters indicate significant differences among different treatments (P<0.05).Figure 1. Effects of different proportions of organic carbon inputs on soluble nitrogen fractions of tobacco-planting soils under fertilizer reduction与CF处理相比, 在连续化肥减量条件下, 不同比例有机碳输入(OF-1和OF-2)均显著提高了土壤可溶性氮组分含量(P<0.05)。与CF处理相比, OF-1和OF-2处理的土壤可溶性总氮(TDN)含量分别显著增加52.11%和57.36% (P<0.05), 可溶性有机氮(DON)含量分别显著增加99.25%和102.64% (P<0.05), 硝态氮(NO3−-N)含量分别显著增加48.09%和54.61% (P<0.05), 铵态氮(NH4+-N)含量分别显著增加18.08%和19.22% (P<0.05)。
2.2.2 植烟土壤可溶性氮组分占比
如图2所示, 植烟土壤各可溶性氮组分占可溶性总氮比例整体表现为NO3−-N>DON>NH4+-N。与CK处理相比, 3个施肥处理NO3−-N含量占TDN含量比例(NO3−-N/TDN)均显著下降(P<0.05), DON含量占TDN含量比例(DON/TDN)有所增加, 其中不同比例有机碳输入(OF-1和OF-2)处理与CK处理间差异显著(P<0.05)。
图 2 化肥减量下不同比例有机碳输入对植烟土壤可溶性氮组分占比的影响CK: 不施肥; CF: 当地常规推荐施肥(100%化肥); OF-1: 化肥减量20%配施3 000 kg·hm−2有机肥; OF-2: 化肥减量40%配施6 000 kg·hm−2有机肥; NO3−-N: 硝态氮含量; TDN: 可溶性总氮含量; NH4+-N: 铵态氮含量; DON: 可溶性有机氮含量。不同小写字母表示不同处理间差异显著(P<0.05)。CK: no fertilizer; CF: local conventional recommended fertilizer application (100% fertilizer); OF-1: 20% reduction of chemical fertilizer with 3 000 kg∙hm−2 organic fertilizer; OF-2: 40% reduction of chemical fertilizer with 6 000 kg∙hm−2 organic fertilizer; NO3−-N: nitrate nitrogen content; TDN: total soluble nitrogen content; NH4+-N: ammonium nitrogen content; DON: soluble organic nitrogen content. Different lowercase letters indicate significant differences among different treatments (P<0.05).Figure 2. Effects of different proportions of organic carbon input on soluble nitrogen fraction of tobacco-planting soil under fertilizer reduction与CF处理相比, OF-1和OF-2处理均降低了NO3−-N含量和NH4+-N含量占TDN含量的比例, 其中NH4+-N含量占比分别显著降低22.99%和24.28% (P<0.05); OF-1和OF-2处理提高了DON含量占TDN含量的比例。OF-1处理相较于CF处理来说, NO3−-N/TDN显著降低3.47% (P<0.05), DON/TDN显著增加35.36% (P<0.05)。
2.3 化肥减量下不同比例有机碳输入对植烟土壤氮库活度的影响
图3结果表明, 与CK处理相比, CF处理对土壤氮库活度无显著影响, 而连续化肥减量条件下, 不同比例有机碳输入(OF-1和OF-2)处理显著增加了土壤氮库活度(NL)和土壤氮库活度指数(NLI) (P<0.05)。与CF处理相比, OF-1和OF-2处理的植烟NL分别显著提高53.58%和50.36% (P<0.05), NLI分别显著提高46.26%和42.94% (P<0.05)。不同比例有机碳输入处理间的NL和NLI均无显著差异。
图 3 化肥减量下不同比例有机碳输入对植烟土壤氮库活度的影响CK: 不施肥; CF: 当地常规推荐施肥(100%化肥); OF-1: 化肥减量20%配施3 000 kg·hm−2有机肥; OF-2: 化肥减量40%配施6000 kg·hm−2有机肥; NL: 土壤氮库活度; NLI: 土壤氮库活度指数。不同小写字母表示不同处理间差异显著(P<0.05)。CK: no fertilizer; CF: local conventional recommended fertilizer application (100% fertilizer); OF-1: 20% reduction of chemical fertilizer with 3 000 kg∙hm−2 organic fertilizer; OF-2: 40% reduction of chemical fertilizer with 6 000 kg∙hm−2 organic fertilizer; NL: soil nitrogen pool activity; NLI: soil nitrogen pool activity index. Different lowercase letters indicate significant differences among different treatments (P<0.05).Figure 3. Effects of different proportions of organic carbon input on nitrogen pool activity of tobacco-planting soil under fertilizerreduction2.4 化肥减量下不同比例有机碳输入对植烟土壤氮库管理指数的影响
由图4可知, 与不施肥(CK)处理相比, 施肥(CF、OF-1、OF-2)均显著提高了土壤氮库指数(NPI)和土壤氮库管理指数(NPMI) (P<0.05)。在连续化肥减量条件下, 不同比例有机碳输入(OF-1、OF-2) 与连续不施肥处理(CK)相比, 显著增加了植烟土壤的氮库指数和氮库管理指数(P<0.05)。其土壤氮库指数增幅分别为25.34%、30.31%, 土壤氮库管理指数增幅分别为89.30%、92.31%。与CF相比, OF-1的土壤氮库指数增加1.25%, OF-2的土壤氮库指数显著增加了5.27% (P<0.05); OF-1和OF-2处理的氮库管理指数分别显著增加了48.21%和50.57% (P<0.05), 而OF-1和OF-2处理间无显著差异。
图 4 化肥减量下不同比例有机碳输入对植烟土壤氮库管理指数的影响CK: 不施肥; CF: 当地常规推荐施肥(100%化肥); OF-1: 化肥减量20%配施3 000 kg·hm−2有机肥; OF-2: 化肥减量40%配施6000 kg·hm−2有机肥; NPI: 土壤氮库指数; NPMI: 土壤氮库管理指数。不同小写字母表示不同处理间差异显著(P<0.05)。CK: no fertilizer; CF: local conventional recommended fertilizer application (100% fertilizer); OF-1: 20% reduction of chemical fertilizer with 3 000 kg∙hm−2 organic fertilizer; OF-2: 40% reduction of chemical fertilizer with 6 000 kg∙hm−2 organic fertilizer; NPI: soil nitrogen pool; NPMI: soil nitrogen pool management index. Different lowercase letters indicate significant differences among different treatments (P<0.05).Figure 4. Effects of different proportions of organic carbon input on nitrogen reservoir management index of tobacco-planting soilunder fertilizer reduction2.5 植烟土壤氮组分、氮库活度和氮库管理指数与烤烟产量及经济性状的关系
为了明确不同比例有机碳输入对土壤氮库组分、氮库活度和氮库管理指数对烤烟产量及经济性状的影响, 本文对其进行了相关分析, 结果如图5所示。
图 5 植烟土壤氮组分、氮库活度、氮库管理指数与烤烟产量及经济性状的关系蓝色和红色分别代表正相关和负相关。*表示在P<0.05水平显著, **表示在P<0.01水平显著。Yield: 烟叶产量; PMHTL: 中上等烟叶比例; TDN: 可溶性总氮含量; NH4+-N: 铵态氮含量; NO3−-N: 硝态氮含量; DON: 可溶性有机氮含量; NL: 土壤氮库活度; NLI: 土壤氮库活度指数; NPI: 土壤氮库指数; NPMI: 土壤氮库管理指数。Blue and red represent positive and negative correlations, respectively. * indicates significant at P<0.05 level, and ** indicates significant at P<0.01 level. Yield: tobacco yield; PMHTL: proportion of medium-quality and high-quality tobacco leaves; TDN: total soluble nitrogen content; NH4+-N: ammonium nitrogen content; NO3−-N: nitrate nitrogen content; DON: soluble organic nitrogen content; NL: soil nitrogen pool activity; NLI: soil nitrogen pool activity index; NPI: soil nitrogen pool; NPMI: soil nitrogen pool management index.Figure 5. Relationship between nitrogen composition, nitrogen pool activity, and management index of nitrogen pool of tobacco-planting soil with the yield and economic traits of flue-cured tobacco结果表明, 烤烟产量与土壤TDN、NH4+-N、NO3−-N、DON和NPMI呈极显著正相关关系(P<0.01), 与NL、NLI和NPI呈显著正相关关系(P<0.05)。烤烟中上等烟叶比例与土壤TDN、NH4+-N、NO3−-N和NPMI呈极显著正相关关系(P<0.01), 与土壤DON、NL、NLI和NPI呈显著正相关关系(P<0.05)。以上表明, 在连续化肥减量条件下, 有机碳输入所提高的土壤可溶性氮组分、氮库活度和氮库管理指数是提高烟叶产量及经济性状的关键因子。相关分析进一步表明, NL与TDN、NH4+-N、NO3−-N和DON呈极显著正相关关系(P<0.01)。NPMI与TDN、NH4+-N、NO3−-N、DON、NL和NLI呈极显著正相关关系(P<0.01), 与NPI呈显著正相关关系(P<0.05)。土壤氮组分、氮库活度、氮库管理指数与烟叶产量及经济性状之间均存在显著或极显著的正相关关系(P<0.05; P<0.01)。
2.6 植烟土壤氮组分、氮库活度、氮库管理指数对烤烟产量的贡献
利用随机森林模型进一步评估影响烤烟产量的重要预测因子, 结果如图6所示。该模型总方差解释率(R2)为94.09%。对于烤烟产量而言, NO3−-N、TDN和NH4+-N是影响烟叶产量的关键氮组分, 其贡献率分别为16.87%、16.23%和15.23%。在土壤氮库指标中, 关键指数对其相对贡献依次为NPMI、NPI、NL和NLI。土壤氮库活度(NL)和土壤氮库管理指数(NPMI)贡献度分别为11.15%和17.80%。综上, 土壤氮库管理指数、土壤可溶性氮素含量和土壤氮库活度是影响烟叶产量的重要预测因子。
图 6 植烟土壤氮组分、氮库活度、氮库管理指数对烤烟产量的贡献NPMI: 土壤氮库管理指数; NO3−-N: 硝态氮含量; TDN: 可溶性总氮含量; NH4+-N: 铵态氮含量; NPI: 土壤氮库指数; NL: 土壤氮库活度; NLI: 土壤氮库活度指数; DON: 可溶性有机氮含量。图中各变量的重要性以随机森林中的“percentage of increase of mean square error” (increase in MSE)进行衡量。*表示P<0.05; **表示P<0.01。图中右下角的数值为总方差的解释率。NPMI: soil nitrogen pool management index; NO3−-N: nitrate nitrogen content; TDN: total soluble nitrogen content; NH4+-N: ammonium nitrogen content; NPI: soil nitrogen pool; NL: soil nitrogen pool activity; NLI: soil nitrogen pool activity index; DON: soluble organic nitrogen content. The importance of each variable in the figure is measured by the “percentage of increase of mean square error” (increase in MSE) in the random forest. * indicates P<0.05, ** indicates P<0.01. The figure in the lower right corner is the interpretation rate of the total variance.Figure 6. Contribution of soil nitrogen composition, nitrogen pool activity and nitrogen pool management index to flue-cured tobacco yield3. 讨论
3.1 化肥减量下不同比例有机碳输入对植烟土壤氮组分的影响
土壤氮素形态及其含量是衡量土壤氮素供应状况的重要指标。可溶性氮素作为土壤氮素中最活跃的组分, 既可以直接被作物吸收利用, 也可以被微生物同化为无效态氮[33]。本试验结果表明, 连续化肥减量条件下, 不同比例有机碳输入能显著增加植烟土壤可溶性氮素含量(图1)。与常规推荐施肥相比, 在化肥减量条件下, 不同比例有机碳输入均显著增加了土壤可溶性总氮含量, 与隽英华等[34]研究结果较为一致, 这说明外源碳氮的同时添加对土壤有机质的矿化表现出正向刺激作用, 而有机碳输入会引起土壤有机质矿化的激发效应(即起爆效应), 进而提高土壤氮素供应能力[35]。刘灵芝等[36]的研究也指出, 施用有机肥后, 土壤矿质态氮含量显著增加, 与本研究结果相符。此外, 本研究显示, 连续化肥减量条件下, 有机碳输入相比于常规推荐施肥, 其植烟土壤可溶性有机氮增加了99.25%~102.64%。这可能是由于, 化肥减量条件下, 有机碳输入可为土壤提供大量能源物质和碳源, 促进了土壤微生物生长, 也有助于微生物固定更多无机态氮[37]。
土壤可溶性氮组分与可溶性总氮的比值能够较好反映土壤氮素有效性, 更能体现土壤氮库变化[38]。不同施肥处理下, 土壤可溶性氮组分所占比例的改变会影响土壤中氮素的相应转化[39]。本研究结果表明, 不同比例有机碳输入使土壤中硝态氮和铵态氮含量在可溶性总氮含量中所占的比例下降, 增加了可溶性有机氮含量的占比。这表明土壤有效氮被作物吸收利用, 土壤中残留的硝态氮减少, 进而减少了氮素损失。有机碳输入驱动了植烟土壤可溶性氮素转化。另外, 有机碳输入有利于微生物将有机氮转化为速效氮, 进而提高土壤氮素供蓄能力, 改善土壤质量。随着有机碳输入量的增加, 土壤矿化与硝化趋于一种稳定的、可持续的循环状态[40]。
3.2 化肥减量下不同比例有机碳输入对植烟土壤氮库活度和氮库管理指数的影响
土壤氮库活度指数(NLI)是衡量土壤氮素可利用性的重要指标, 可以反映土壤中可溶性氮含量的变化, NLI越高, 表明土壤中可利用的氮素越多[11]。土壤氮库管理指数(NPMI)也是反映土壤氮库变化的重要指标[4], 由土壤氮库指数和氮库活度指数组成。本研究发现, 在连续化肥减量条件下, 有机碳输入(OF-1和OF-2)处理土壤氮库活度和土壤氮库活度指数显著高于常规推荐施肥CF处理(图3), 同时, 有机碳输入也显著增加了植烟土壤氮库指数和土壤氮库管理指数(图4)。与焦欢等[41]有机无机配合施用提高复垦4 a和8 a的土壤氮库管理指数结果相似, 说明施用有机肥是提高土壤氮库管理指数的有效途径。这可能是因为有机碳输入有利于增加土壤可溶性氮含量, 从而实现了土壤活性氮库扩容[42]。本文研究结果也证实了这一点(图1和图3)。以上结果与秸秆还田显著提高棉田土壤氮库活度系数和氮库管理指数等研究一致[43]。
3.3 化肥减量下不同比例有机碳输入的植烟土壤氮库活度与烟叶产量的关系
烤烟是一种以收获叶片为主的经济作物, 氮素供应对烟叶品质和产量具有显著影响[23]。Meta分析表明, 有机肥长期施入可提高土壤生产力, 并提高作物产量, 与常规施用化肥相比, 化肥与有机肥配合施用能显著增加土壤有效氮含量[44]。本研究结果也显示, 土壤氮组分、氮库活度、氮库管理指数与烟叶产量和经济性状之间存在显著的正相关关系(图5)。肖庆亮等[45]研究同样表明, 土壤有效氮与烟叶产量和中上等烟叶比例之间存在显著的正相关, 这与本研究结果基本一致。本研究中土壤氮库管理指数、氮库活度与土壤可溶性氮组分呈极显著正相关, 即土壤氮库管理指数与这些土壤指标的变化规律紧密相关, 因此, 该指数可以作为反映土壤氮素供应水平的一个重要指标[43]。随机森林结果进一步表明, 土壤氮库管理指数、土壤可溶性氮素含量和土壤氮库活度是烟叶产量的重要预测因子。在连续11 a化肥减量条件下, 有机碳输入提高了烟叶产量和经济性状, 这主要得益于土壤养分、土壤性质和微生物状况的改善[46]。有机碳施用增强了土壤的缓冲性能, 同时提高了土壤氮库可溶性组分、氮库活度和氮库管理指数, 保持了土壤良好的无机氮供应能力, 并提高了土壤的保水和保肥能力[47]。因此, 连续化肥减量条件下, 有机碳输入通过改善土壤氮库活度和氮库管理指数提高了烟叶产量及经济性状。关于不同比例有机碳输入条件下, 提高土壤氮库活度的微生物学影响机制还有待于进一步研究。
4. 结论
与当地常规推荐施肥相比, 在连续11 a化肥减量20%和40%条件下, 不同比例有机碳输入通过增加植烟土壤中可溶性氮组分含量, 提高了植烟土壤氮库活度, 并有效改善了土壤氮库管理指数, 因此有机碳输入比例优化是提升植烟土壤氮素供应的一种有效途径。土壤可溶性氮组分含量、土壤氮库活度、氮库管理指数与烟叶产量和经济性状呈显著正相关, 土壤氮库管理指数、可溶性氮组分含量和土壤氮库活度等是影响烟叶产量的关键预测因子。在连续化肥减量条件下, 配施不同比例有机肥可有效增加土壤可溶性氮素含量, 提高土壤氮库活度和氮库管理指数, 进而提升烟叶产量。因此, 该措施可以作为一种绿色生态施肥方法, 在减少化肥用量的条件下提高土壤氮素供应水平, 进而实现烟叶绿色优质生产。
-
图 1 化肥减量下不同比例有机碳输入对植烟土壤可溶性氮组分的影响
CK: 不施肥; CF: 当地常规推荐施肥(100%化肥); OF-1: 化肥减量20%配施3 000 kg·hm−2有机肥; OF-2: 化肥减量40%配施6 000 kg·hm−2有机肥。不同小写字母表示不同处理间差异显著(P<0.05)。CK: no fertilizer; CF: local conventional recommended fertilizer application (100% fertilizer); OF-1: 20% reduction of chemical fertilizer with 3 000 kg∙hm−2 organic fertilizer; OF-2: 40% reduction of chemical fertilizer with 6 000 kg∙hm−2 organic fertilizer. Different lowercase letters indicate significant differences among different treatments (P<0.05).
Figure 1. Effects of different proportions of organic carbon inputs on soluble nitrogen fractions of tobacco-planting soils under fertilizer reduction
图 2 化肥减量下不同比例有机碳输入对植烟土壤可溶性氮组分占比的影响
CK: 不施肥; CF: 当地常规推荐施肥(100%化肥); OF-1: 化肥减量20%配施3 000 kg·hm−2有机肥; OF-2: 化肥减量40%配施6 000 kg·hm−2有机肥; NO3−-N: 硝态氮含量; TDN: 可溶性总氮含量; NH4+-N: 铵态氮含量; DON: 可溶性有机氮含量。不同小写字母表示不同处理间差异显著(P<0.05)。CK: no fertilizer; CF: local conventional recommended fertilizer application (100% fertilizer); OF-1: 20% reduction of chemical fertilizer with 3 000 kg∙hm−2 organic fertilizer; OF-2: 40% reduction of chemical fertilizer with 6 000 kg∙hm−2 organic fertilizer; NO3−-N: nitrate nitrogen content; TDN: total soluble nitrogen content; NH4+-N: ammonium nitrogen content; DON: soluble organic nitrogen content. Different lowercase letters indicate significant differences among different treatments (P<0.05).
Figure 2. Effects of different proportions of organic carbon input on soluble nitrogen fraction of tobacco-planting soil under fertilizer reduction
图 3 化肥减量下不同比例有机碳输入对植烟土壤氮库活度的影响
CK: 不施肥; CF: 当地常规推荐施肥(100%化肥); OF-1: 化肥减量20%配施3 000 kg·hm−2有机肥; OF-2: 化肥减量40%配施6000 kg·hm−2有机肥; NL: 土壤氮库活度; NLI: 土壤氮库活度指数。不同小写字母表示不同处理间差异显著(P<0.05)。CK: no fertilizer; CF: local conventional recommended fertilizer application (100% fertilizer); OF-1: 20% reduction of chemical fertilizer with 3 000 kg∙hm−2 organic fertilizer; OF-2: 40% reduction of chemical fertilizer with 6 000 kg∙hm−2 organic fertilizer; NL: soil nitrogen pool activity; NLI: soil nitrogen pool activity index. Different lowercase letters indicate significant differences among different treatments (P<0.05).
Figure 3. Effects of different proportions of organic carbon input on nitrogen pool activity of tobacco-planting soil under fertilizerreduction
图 4 化肥减量下不同比例有机碳输入对植烟土壤氮库管理指数的影响
CK: 不施肥; CF: 当地常规推荐施肥(100%化肥); OF-1: 化肥减量20%配施3 000 kg·hm−2有机肥; OF-2: 化肥减量40%配施6000 kg·hm−2有机肥; NPI: 土壤氮库指数; NPMI: 土壤氮库管理指数。不同小写字母表示不同处理间差异显著(P<0.05)。CK: no fertilizer; CF: local conventional recommended fertilizer application (100% fertilizer); OF-1: 20% reduction of chemical fertilizer with 3 000 kg∙hm−2 organic fertilizer; OF-2: 40% reduction of chemical fertilizer with 6 000 kg∙hm−2 organic fertilizer; NPI: soil nitrogen pool; NPMI: soil nitrogen pool management index. Different lowercase letters indicate significant differences among different treatments (P<0.05).
Figure 4. Effects of different proportions of organic carbon input on nitrogen reservoir management index of tobacco-planting soilunder fertilizer reduction
图 5 植烟土壤氮组分、氮库活度、氮库管理指数与烤烟产量及经济性状的关系
蓝色和红色分别代表正相关和负相关。*表示在P<0.05水平显著, **表示在P<0.01水平显著。Yield: 烟叶产量; PMHTL: 中上等烟叶比例; TDN: 可溶性总氮含量; NH4+-N: 铵态氮含量; NO3−-N: 硝态氮含量; DON: 可溶性有机氮含量; NL: 土壤氮库活度; NLI: 土壤氮库活度指数; NPI: 土壤氮库指数; NPMI: 土壤氮库管理指数。Blue and red represent positive and negative correlations, respectively. * indicates significant at P<0.05 level, and ** indicates significant at P<0.01 level. Yield: tobacco yield; PMHTL: proportion of medium-quality and high-quality tobacco leaves; TDN: total soluble nitrogen content; NH4+-N: ammonium nitrogen content; NO3−-N: nitrate nitrogen content; DON: soluble organic nitrogen content; NL: soil nitrogen pool activity; NLI: soil nitrogen pool activity index; NPI: soil nitrogen pool; NPMI: soil nitrogen pool management index.
Figure 5. Relationship between nitrogen composition, nitrogen pool activity, and management index of nitrogen pool of tobacco-planting soil with the yield and economic traits of flue-cured tobacco
图 6 植烟土壤氮组分、氮库活度、氮库管理指数对烤烟产量的贡献
NPMI: 土壤氮库管理指数; NO3−-N: 硝态氮含量; TDN: 可溶性总氮含量; NH4+-N: 铵态氮含量; NPI: 土壤氮库指数; NL: 土壤氮库活度; NLI: 土壤氮库活度指数; DON: 可溶性有机氮含量。图中各变量的重要性以随机森林中的“percentage of increase of mean square error” (increase in MSE)进行衡量。*表示P<0.05; **表示P<0.01。图中右下角的数值为总方差的解释率。NPMI: soil nitrogen pool management index; NO3−-N: nitrate nitrogen content; TDN: total soluble nitrogen content; NH4+-N: ammonium nitrogen content; NPI: soil nitrogen pool; NL: soil nitrogen pool activity; NLI: soil nitrogen pool activity index; DON: soluble organic nitrogen content. The importance of each variable in the figure is measured by the “percentage of increase of mean square error” (increase in MSE) in the random forest. * indicates P<0.05, ** indicates P<0.01. The figure in the lower right corner is the interpretation rate of the total variance.
Figure 6. Contribution of soil nitrogen composition, nitrogen pool activity and nitrogen pool management index to flue-cured tobacco yield
表 1 化肥减量下不同比例有机碳输入对烟叶产量及经济性状的影响
Table 1 Effect of different proportion of organic carbon input on tobacco yield and economic traits under fertilizer reduction
处理
Treatment产量
Yield /(kg∙hm−2)上等烟叶比例
Prime tobacco proportion /%中上等烟叶比例
Proportion of medium-quality and high-quality tobacco leaves /%CK 553.00±49.30c 11.60±1.86c 34.40±7.69c CF 1 228.00±26.56b 19.71±2.80b 73.03±4.26b OF-1 1 457.50±179.02a 38.43±6.37a 83.18±2.51a OF-2 1 464.00±104.02a 33.04±4.98a 81.97±2.44a CK: 不施肥; CF: 当地常规推荐施肥(100%化肥); OF-1: 化肥减量20%配施3 000 kg·hm−2有机肥; OF-2: 化肥减量40%配施6 000 kg·hm−2有机肥。同列不同小写字母表示处理间差异显著(P<0.05)。CK: no fertilizer; CF: local conventional recommended fertilizer application (100% fertilizer); OF-1: 20% reduction of chemical fertilizer with 3 000 kg∙hm−2 organic fertilizer; OF-2: 40% reduction of chemical fertilizer with 6 000 kg∙hm−2 organic fertilizer. Different lowercase letters in the same column indicate significant differences among different treatments (P<0.05). -
[1] 韩建, 张玉铭, 何红波, 等. 长期不同施氮量下微生物残体氮对土壤氮库稳定性和玉米氮素吸收的影响[J]. 中国生态农业学报(中英文), 2024, 32(5): 766−779 doi: 10.12357/cjea.20240116 HAN J, ZHANG Y M, HE H B, et al. Impact of microbial residue nitrogen on soil nitrogen pool stability and maize nitrogen uptake under long-term varying nitrogen applications[J]. Chinese Journal of Eco-Agriculture, 2024, 32(5): 766−779 doi: 10.12357/cjea.20240116
[2] YANG L, WANG L H, CHU J C, et al. Improving soil quality and wheat yield through diversified crop rotations in the North China Plain[J]. Soil and Tillage Research, 2024, 244: 106231 doi: 10.1016/j.still.2024.106231
[3] CHEN S H, ZHANG S W, HU T T, et al. Responses of soil reactive nitrogen pools and enzyme activities to water and nitrogen levels and their relationship with apple yield and quality under drip fertigation[J]. Scientia Horticulturae, 2024, 324: 112632 doi: 10.1016/j.scienta.2023.112632
[4] WUADEN C R, NICOLOSO R S, BARROS E C, et al. Early adoption of no-till mitigates soil organic carbon and nitrogen losses due to land use change[J]. Soil and Tillage Research, 2020, 204: 104728 doi: 10.1016/j.still.2020.104728
[5] 李俊杰, 邹洪琴, 许发辉, 等. 土壤微生物量氮对小麦各生育期氮素形态的调控[J]. 植物营养与肥料学报, 2021, 27(8): 1321−1329 doi: 10.11674/zwyf.2021044 LI J J, ZOU H Q, XU F H, et al. Regulation of soil microbial biomass nitrogen on nitrogen forms in different growth stages of wheat[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(8): 1321−1329 doi: 10.11674/zwyf.2021044
[6] 丛日环, 张丽, 鲁艳红, 等. 添加不同外源氮对长期秸秆还田土壤中氮素转化的影响[J]. 植物营养与肥料学报, 2019, 25(7): 1107−1114 doi: 10.11674/zwyf.18295 CONG R H, ZHANG L, LU Y H, et al. Effect of adding different exogenous nitrogen sources on nitrogen transformation in long-term straw incorporated soil[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1107−1114 doi: 10.11674/zwyf.18295
[7] 杨婷, 钟全林, 李宝银, 等. 短期铵态氮与硝态氮配施对刨花楠幼苗生长及叶片性状的影响[J]. 应用生态学报, 2022, 33(1): 25−32 YANG T, ZHONG Q L, LI B Y, et al. Effects of short-term combined application of ammonium nitrogen and nitrate nitrogen on the growth and leaf traits of Machilus pauhoi seedlings[J]. Chinese Journal of Applied Ecology, 2022, 33(1): 25−32
[8] HAYNES R J. Labile organic matter fractions as central components of the quality of agricultural soils: an overview[M]//Advances in Agronomy. Amsterdam: Elsevier, 2005: 221–268
[9] 邢力, 张玉铭, 胡春胜, 等. 长期不同养分循环再利用途径对农田土壤养分演替规律与培肥效果的影响研究[J]. 中国生态农业学报(中英文), 2022, 30(6): 937−951 doi: 10.12357/cjea.20220306 XING L, ZHANG Y M, HU C S, et al. Effects of long-term nutrient recycling pathways on soil nutrient dynamics and fertility in farmland[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 937−951 doi: 10.12357/cjea.20220306
[10] FIERER N, CRAINE J M, MCLAUCHLAN K, et al. Litter quality and the temperature sensitivity of decomposition[J]. Ecology, 2005, 86(2): 320−326 doi: 10.1890/04-1254
[11] ŠIMANSKÝ V, HORVÁTHOVÁ J, JONCZAK J, et al. Suitability of carbon and nitrogen management indices for the evaluation of soil organic matter under different soil management practices in a productive vineyard[J]. Journal of Ecological Engineering, 2021, 22(7): 150−162 doi: 10.12911/22998993/139027
[12] WESTERHOF R, VILELA L, AYARZA M, et al. Land use effects on labile N extracted with permanganate and the nitrogen management index in the Cerrado region of Brazil[J]. Biology and Fertility of Soils, 1998, 27(4): 353−357 doi: 10.1007/s003740050443
[13] MALHI S S, NYBORG M, SOLBERG E D, et al. Long-term straw management and N fertilizer rate effects on quantity and quality of organic C and N and some chemical properties in two contrasting soils in Western Canada[J]. Biology and Fertility of Soils, 2011, 47(7): 785−800 doi: 10.1007/s00374-011-0587-8
[14] GONG W, YAN X Y, WANG J Y, et al. Long-term applications of chemical and organic fertilizers on plant-available nitrogen pools and nitrogen management index[J]. Biology and Fertility of Soils, 2011, 47(7): 767−775 doi: 10.1007/s00374-011-0585-x
[15] DUTTA D, MEENA A L, BHANU C, et al. Sustainable soil management for climate resilience: long-term management effects on soil carbon sequestration and nitrogen dynamics in a semi-arid tropical inceptisol of India[J]. Journal of Soil Science and Plant Nutrition, 2024, 24(3): 4407−4426 doi: 10.1007/s42729-024-01844-4
[16] SHI X P, SONG X, YANG J J, et al. Yield benefits from joint application of manure and inorganic fertilizer in a long-term field pea, wheat and potato crop rotation[J]. Field Crops Research, 2023, 294: 108873 doi: 10.1016/j.fcr.2023.108873
[17] SONG W F, SHU A P, LIU J A, et al. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil[J]. Pedosphere, 2022, 32(4): 637−648 doi: 10.1016/S1002-0160(21)60047-4
[18] 陈洁, 梁国庆, 周卫, 等. 长期施用有机肥对稻麦轮作体系土壤有机碳氮组分的影响[J]. 植物营养与肥料学报, 2019, 25(1): 36−44 doi: 10.11674/zwyf.18138 CHEN J, LIANG G Q, ZHOU W, et al. Responses of soil organic carbon and nitrogen fractions to long-term organic fertilization under rice-wheat rotation[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 36−44 doi: 10.11674/zwyf.18138
[19] 雷琬莹, 李娜, 滕培基, 等. 农田生态系统有机物料腐解过程及土壤培肥机制研究[J]. 中国生态农业学报(中英文), 2022, 30(9): 1393−1408 doi: 10.12357/cjea.20210878 LEI W Y, LI N, TENG P J, et al. Decomposition processes of organic materials and their mechanisms of improving soil fertility in cropland ecosystems[J]. Chinese Journal of Eco-Agriculture, 2022, 30(9): 1393−1408 doi: 10.12357/cjea.20210878
[20] 丁建莉, 姜昕, 马鸣超, 等. 长期有机无机肥配施对东北黑土真菌群落结构的影响[J]. 植物营养与肥料学报, 2017, 23(4): 914−923 doi: 10.11674/zwyf.16357 DING J L, JIANG X, MA M C, et al. Structure of soil fungal communities under long-term inorganic and organic fertilization in black soil of NorthEast China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 914−923 doi: 10.11674/zwyf.16357
[21] GAI X P, LIU H B, LIU J, et al. Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain[J]. Agricultural Water Management, 2018, 208: 384−392 doi: 10.1016/j.agwat.2018.07.002
[22] 李萌, 王昌全, 李冰, 等. 猪粪替代氮肥对稻麦轮作条件下土壤有机氮组分的影响[J]. 土壤, 2016, 48(3): 449−454 LI M, WANG C Q, LI B, et al. Effects of pig manure replacing nitrogen fertilizer on soil organic nitrogen components under rice-wheat rotation[J]. Soils, 2016, 48(3): 449−454
[23] 李春俭, 张福锁, 李文卿, 等. 我国烤烟生产中的氮素管理及其与烟叶品质的关系[J]. 植物营养与肥料学报, 2007, 13(2): 331−337 doi: 10.3321/j.issn:1008-505X.2007.02.024 LI C J, ZHANG F S, LI W Q, et al. Nitrogen management and its relation to leaf quality in production of flue-cured tobacco in China[J]. Plant Nutrition and Fertilizer Science, 2007, 13(2): 331−337 doi: 10.3321/j.issn:1008-505X.2007.02.024
[24] 解梦凡, 贾海江, 曲远凯, 等. 种植密度和氮肥用量对百色烟区烤烟叶片发育及烟叶产量的影响[J]. 作物杂志, 2024(2): 189−197 XIE M F, JIA H J, QU Y K, et al. Effects of planting density and nitrogen fertilizer application rate on leaf development and yield of flue-cured tobacco in Baise tobacco region[J]. Crops, 2024(2): 189−197
[25] 宋建群, 徐智, 汤利, 等. 不同有机肥对烤烟养分吸收及化肥利用率的影响[J]. 云南农业大学学报(自然科学), 2015, 30(3): 471−476 SONG J Q, XU Z, TANG L, et al. Effects of different organic fertilizers on nutrient absorption and fertilizer use efficiency of flue-cured tobacco[J]. Journal of Yunnan Agricultural University (Natural Science), 2015, 30(3): 471−476
[26] 张云伟, 徐智, 汤利, 等. 不同有机肥对烤烟根际土壤微生物的影响[J]. 应用生态学报, 2013, 24(9): 2551−2556 ZHANG Y W, XU Z, TANG L, et al. Effects of different organic fertilizers on the microbes in rhizospheric soil of flue-cured tobacco[J]. Chinese Journal of Applied Ecology, 2013, 24(9): 2551−2556
[27] 张云伟, 徐智, 汤利, 等. 生物有机肥对烤烟黑胫病及根际微生物代谢功能多样性的影响[J]. 中国烟草学报, 2014, 20(5): 59−65,72 doi: 10.3969/j.issn.1004-5708.2014.05.010 ZHANG Y W, XU Z, TANG L, et al. Effects of bio-organic fertilizer on flue-cured tobacco black shank and diversity of rhizospheric microbial metabolic function[J]. Acta Tabacaria Sinica, 2014, 20(5): 59−65,72 doi: 10.3969/j.issn.1004-5708.2014.05.010
[28] 余顺平, 熊于斌, 廖涛, 等. 连续化肥减量配施有机肥提升植烟土壤肥力质量的综合评价[J]. 中国土壤与肥料, 2024(1): 70−78 doi: 10.11838/sfsc.1673-6257.22786 YU S P, XIONG Y B, LIAO T, et al. Comprehensive evaluation of continuous chemical fertilizer reduction with organic fertilizer application to improve soil fertility quality of planted tobacco[J]. Soil and Fertilizer Sciences in China, 2024(1): 70−78 doi: 10.11838/sfsc.1673-6257.22786
[29] 农传江, 汤利, 徐智, 等. 有机肥部分替代化肥对土壤有机碳库和烤烟经济性状的影响[J]. 中国土壤与肥料, 2016(4): 70−75 doi: 10.11838/sfsc.20160412 NONG C J, TANG L, XU Z, et al. Effects of organic fertilizer partial substituted for chemical fertilizer on soil organic carbon pool and economic characters of flue-cured tobacco[J]. Soil and Fertilizer Sciences in China, 2016(4): 70−75 doi: 10.11838/sfsc.20160412
[30] 熊于斌, 余顺平, 杨娅, 等. 不同比例化肥减量配施有机肥对植烟土壤有机碳固存的影响[J]. 中国生态农业学报(中英文), 2024, 32(2): 262−272 doi: 10.12357/cjea.20230327 XIONG Y B, YU S P, YANG Y, et al. Effects of different proportions of chemical fertilizer reduction combined with organic fertilizer supplements on organic carbon sequestration in Tobacco-planting soil[J]. Chinese Journal of Eco-Agriculture, 2024, 32(2): 262−272 doi: 10.12357/cjea.20230327
[31] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000 BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000
[32] BLAIR G J, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459 doi: 10.1071/AR9951459
[33] GEISSELER D, HORWATH W R, DOANE T A. Significance of organic nitrogen uptake from plant residues by soil microorganisms as affected by carbon and nitrogen availability[J]. Soil Biology and Biochemistry, 2009, 41(6): 1281−1288 doi: 10.1016/j.soilbio.2009.03.014
[34] 隽英华, 何志刚, 刘慧屿, 等. 秸秆还田与氮肥运筹对农田土壤可溶性氮组分的影响[J]. 中国土壤与肥料, 2024(3): 49−56 doi: 10.11838/sfsc.1673-6257.23173 JUAN Y H, HE Z G, LIU H Y, et al. Effects of straw returning and nitrogen application management on dissolved nitrogen components in farmland soil[J]. Soil and Fertilizer Sciences in China, 2024(3): 49−56 doi: 10.11838/sfsc.1673-6257.23173
[35] 田玉强, 陈颖, 欧阳胜男, 等. 外源性碳氮添加对北方半干旱草原土壤有机质矿化的影响[J]. 生态环境学报, 2020, 29(6): 1101−1108 TIAN Y Q, CHEN Y, OUYANG S N, et al. The effect of carbon and nitrogen addition on soil organic matter mineralization in the semi-arid grassland of North China[J]. Ecology and Environmental Sciences, 2020, 29(6): 1101−1108
[36] 刘灵芝, 郭冰清, 王丰, 等. 长期施氮对土壤氨化细菌和氮矿化作用的影响[J/OL]. 土壤学报, 2024: 1–12 (2024-08-26). https://kns.cnki.net/kcms/detail/32.1119.P.20240823.1559.004.html. LIU L Z, GUO B Q, WANG F, et al. Effects of long-term nitrogen application on soil ammonifier and nitrogen mineralization[J/OL]. Acta Pedologica Sinica, 2024: 1–12 (2024-08-26). https://kns.cnki.net/kcms/detail/32.1119.P.20240823.1559.004.html.
[37] 李孝刚, 彭曙光, 靳志丽, 等. 有机物料对植烟土壤氮素矿化及微生物性质的影响[J]. 土壤学报, 2021, 58(1): 225−234 doi: 10.11766/trxb201907220320 LI X G, PENG S G, JIN Z L, et al. Effects of application of organic materials on nitrogen mineralization and microbial properties in tobacco planting soil[J]. Acta Pedologica Sinica, 2021, 58(1): 225−234 doi: 10.11766/trxb201907220320
[38] 郭康莉, 郑江, 冀拯宇, 等. 连续施用无害化污泥堆肥对沙质潮土活性有机氮组分的影响[J]. 应用生态学报, 2018, 29(6): 1960−1968 GUO K L, ZHENG J, JI Z Y, et al. Effects of consecutive application of composted sewage sludge on active organic nitrogen fractions in the sandy fluvo-aquic soil[J]. Chinese Journal of Applied Ecology, 2018, 29(6): 1960−1968
[39] 梁斌, 李俊良, 杨学云, 等. 施肥对麦田土壤可溶性有机氮的影响[J]. 生态学报, 2016, 36(14): 4430−4437 LIANG B, LI J L, YANG X Y, et al. Effect of fertilization on extractable organic nitrogen in wheat monoculture cropping systems[J]. Acta Ecologica Sinica, 2016, 36(14): 4430−4437
[40] 丁梦娇, 黄莺, 易维洁, 等. 施用有机肥对植烟土壤氮素转化与功能微生物的影响[J]. 西南农业学报, 2016, 29(5): 1166−1171 DING M J, HUANG Y, YI W J, et al. Effects of applying organic manure on nitrogen transformation and functional microbes of tobacco-planting soil[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(5): 1166−1171
[41] 焦欢, 李廷亮, 高继伟, 等. 培肥措施对复垦土壤轻重组有机碳氮的影响[J]. 水土保持学报, 2018, 32(5): 208−213,221 JIAO H, LI T L, GAO J W, et al. Effects of fertilization on light and heavy fractions organic nitrogen in reclaimed soil[J]. Journal of Soil and Water Conservation, 2018, 32(5): 208−213,221
[42] 王开悦, 廖育林, 鲁艳红, 等. 超级稻田碳氮库管理指数在等养分不同有机物料处理下的动态变化[J]. 农业环境科学学报, 2023, 42(8): 1758−1767 doi: 10.11654/jaes.2022-1258 WANG K Y, LIAO Y L, LU Y H, et al. Dynamic changes in carbon and nitrogen pool management indexes in super rice fields treated with various organic materials and equal nutrients[J]. Journal of Agro-Environment Science, 2023, 42(8): 1758−1767 doi: 10.11654/jaes.2022-1258
[43] 王智. 不同施氮量下秸秆还田对棉花产量形成与氮肥利用效率的影响及其机制[D]. 南京: 南京农业大学, 2020 WANG Z. Mechanism for the effects of straw returning under different nitrogen fertilizer rates on cotton yield formation and nitrogen use efficienty[D]. Nanjing: Nanjing Agricultural University, 2020
[44] DU Y D, CUI B J, ZHANG Q, et al. Effects of manure fertilizer on crop yield and soil properties in China: a meta-analysis[J]. Catena, 2020, 193: 104617 doi: 10.1016/j.catena.2020.104617
[45] 肖庆亮, 刘京, 李治模, 等. 长期种植施肥对烤烟产质量和土壤氮素形态的影响[J]. 中国土壤与肥料, 2023(10): 100−108 doi: 10.11838/sfsc.1673-6257.22586 XIAO Q L, LIU J, LI Z M, et al. Effects of long-term cultivation and fertilization on yield and quality of flue-cured tobacco and soil nitrogen forms[J]. Soil and Fertilizer Sciences in China, 2023(10): 100−108 doi: 10.11838/sfsc.1673-6257.22586
[46] 余顺平, 熊于斌, 杨娅, 等. 化肥减量配施不同有机肥的植烟土壤-微生物碳氮磷生态化学计量特征[J]. 生态学杂志, 2024, 43(7): 2150−2157 YU S P, XIONG Y B, YANG Y, et al. Ecological stoichiometry of carbon, nitrogen, and phosphorus in tobacco-planting soils and microbes in response to reduced chemical fertilizer application combined with different organic fertilizers[J]. Chinese Journal of Ecology, 2024, 43(7): 2150−2157
[47] 龚雪蛟, 秦琳, 刘飞, 等. 有机类肥料对土壤养分含量的影响[J]. 应用生态学报, 2020, 31(4): 1403−1416 GONG X J, QIN L, LIU F, et al. Effects of organic manure on soil nutrient content: a review[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1403−1416