The impact of nitrogen application rate on rice yield and greenhouse gas emissions of ratoon rice in the Taihu Lake region
-
摘要:
为探索氮肥施用量对再生稻产量及温室气体排放(CH4和N2O)的影响以及太湖流域再生稻种植的最佳施氮量, 本研究于2022年4—10月在江苏宜兴采用静态箱-气相色谱法观测CH4和N2O排放通量, 试验设置3种再生季施氮量[FL1: 75 kg(N)·hm−2; FL2: 125 kg(N)·hm−2; FL3: 175 kg(N)·hm−2], 头季均施240 kg(N)·hm−2, 同时设置不施肥处理(FL0)作为对照, 并在水稻收获时测定产量及其构成因子。试验结果显示, 促芽肥造成的N2O排放峰值最大, 且随施肥量的增加呈线性增加趋势, 总量占整个生育期的10.0%~50.7%; 两个稻季(头季+再生季)的N2O排放总量为1.30~8.69 kg(N)·hm−2, 再生季排放量占6.94%~22.7%, 再生季N2O排放系数为0.38%~1.71%。两季CH4排放总量为58.1~78.7 kg·hm−2, 再生季占13.3%~23.8%, CH4排放总量随施氮量增加影响较小。两季水稻总产量为8.33~11.6 t·hm−2, 再生季占34.0%~46.1%, FL2和FL3的再生季产量分别较FL1增加32.3%和17.4%, 这与有效穗数分别增加27.2%和13.5%有关。两季温室气体排放强度为0.26~0.54 t(CO2-eq)·t−1, FL3和FL2较FL1分别增加38.5%和10.3%。综上, 再生季施氮量为125 kg·hm−2时能获得高产且温室气体排放强度相对较低, 是太湖流域蓄留再生稻值得推荐的氮肥施用量。
Abstract:The effects of nitrogen (N) application rate on the yield and greenhouse gas emissions (CH4 and N2O) of ratoon rice were investigated to provide a reference for the optimal N application rate for planting ratoon rice in the Taihu Lake region. From April to October 2022, a static chamber-gas chromatography method was used to observe the CH4 and N2O emission fluxes of ratoon rice under three N fertilization rates [FL1: 75 kg(N)·hm−2; FL2: 125 kg(N)·hm−2; FL3: 175 kg(N)·hm−2] in Yixing, Jiangsu Province, while setting no fertilization treatment (FL0) as a control. The yield and its constituent factors were observed during the rice harvest. The results showed that the peak N2O emission caused by bud-promoting fertilizer was the highest, and it showed a linear increasing trend with the increase of N fertilization rate; the total amount it caused accounted for 10.0%−50.7% of N2O emissions during the entire growth period. Overall, the total (main reason+ratoon reason) N2O emissions ranged from 1.30 to 8.69 kg(N)·hm−2, with 6.94%−22.7% derived from ratoon rice; the N2O emission factor during the ratoon season ranged from 0.38% to 1.71%. Seasonal cumulative CH4 emissions ranged from 58.1 kg·hm−2 to 78.7 kg·hm−2, with 13.3%−23.8% in ratoon rice. Total CH4 emissions were not significantly affected by an increase in N application rate. The total rice yield was 8.33–11.6 t·hm−2, and the ratoon rice yield contributed 34.0%−46.1%. Compared to FL1, the ratoon season yields of FL2 and FL3 increased by 32.3% and 17.4%, respectively, which was related to an increase in effective panicle number by 27.2% and 13.5%, respectively. The greenhouse gas emission intensity during the entire growth period was 0.26−0.54 t(CO2-eq)·t−1, and compared with FL1, FL3 increased by 38.5%, and FL2 increased by 10.3%. Overall, both high yield and relatively low greenhouse gas emission intensity can be obtained by applying 125 kg(N)·hm−2 in ratoon season. This N application rate is recommended for the ratoon rice in Taihu Lake.
-
Keywords:
- Taihu Lake region /
- Ratoon rice /
- Greenhouse gases /
- Grain yield /
- Nitrogen application rate /
- N2O emission factor
-
提高复种指数是提升粮食总产的重要途径之一[1]。再生稻是利用水稻(Oryza sativa)的再生能力[2-4], 使头季稻收割后稻桩上存活的休眠芽继续萌发成穗的一种水稻种植模式。它实现了“一种两收”, 提高了复种指数, 对保障我国粮食安全具有重要意义。据报道, 目前我国再生稻种植面积已超过100万hm2 [5], 再生稻周年产量潜力可达15~17 t·hm−2 [6-7]。我国太湖流域是典型的水稻-小麦(Triticum aestivum)轮作区, 但历史上也曾种植过再生稻, 研究显示江苏省潜在种植再生稻的面积约为124万hm2 [8]。近年来, 再生稻种植在江苏溧阳、常熟和浙江杭州等地有了一定复苏, 再生季产量可达3~5 t·hm−2 [9]。
氮肥对水稻生长的影响仅次于水。合理的施氮量以及氮肥运筹方式不仅能够提高水稻产量[10], 还能改善稻米外观品质以及食用品质[11]。为促进再生稻休眠芽的萌发, 提高再生稻结实率和穗实粒数, 再生稻通常会在头季稻收割前后施用促芽肥和发苗肥等。与磷、钾肥相比, 施用氮肥对促进再生稻高产的效果更为显著[1-2], 有研究表明, 再生季施氮量在0~145 kg(N)·hm−2范围内产量逐渐增加[7]。但不同地区, 再生稻施氮量存在较大差异, 对再生稻产量的影响也不尽相同[12-13], 这可能与水稻品种不同有关。然而对相同水稻品种, 增加再生季氮肥用量也并不意味着能提升产量。譬如: 浙江常山的研究表明[14], 再生季施氮量由233 kg(N)·hm−2增加到252 kg(N)·hm−2, 产量反而由6.67 t·hm−2降至6.10 t·hm−2; 江苏宜兴[15]和溧阳[9]的试验发现, 施用138 kg(N)·hm−2的氮肥, 或再生季施氮112 kg(N)·hm−2并配施复合肥112 kg·hm−2, 其产量分别为4.30 t·hm−2和3.80 t·hm−2, 不仅显著低于湖北和浙江的研究结果, 而且其产量并没有随着施氮量的增加而增加。可见, 探索再生稻最佳施氮量将有利于保证水稻丰产稳产。
再生稻作为一种特殊的稻作模式, 头季较单季稻大约提前两个月移栽, 于8月中旬气温上升期间收割, 整个生育期内施入5次氮肥[2], 肥料运筹与单季稻存在巨大差异, 同时再生季生育期通常仅有短短两个月时间, 这势必会影响再生稻的温室气体排放规律与排放总量。“十四五”期间, 我国大力推进农业农村改革, 农业减排已成为我国及各地政府的重点关注领域[16]。稻田作为大气CH4和N2O的重要排放源, 其CH4和N2O排放量分别占农业温室气体排放总量的55.0%和18.1%[17]。有关不同地区单季稻不同氮肥用量的温室气体排放量和N2O排放系数已有相关文献报道, 江西的试验结果显示[18], 施氮水平从90 kg(N)·hm−2增加至225 kg(N)·hm−2, CH4和N2O排放量分别增加23.6%和87.5%, N2O排放系数为0.02%~0.04%; 浙江的研究结果显示[19], 施氮水平从75 kg(N)·hm−2增加至375 kg(N)·hm−2减少21.8%的CH4排放, 但增加了110.0%的N2O排放, 这是因为增施氮肥为土壤硝化和反硝化提供更多反应基质。然而有关再生稻CH4和N2O排放的研究仅始于近5年, 且不同区域的研究结果差异较大。湖北的统计结果显示[20], 施氮总量为300 kg(N)·hm−2时, 不同地区的CH4和N2O排放量差异分别可达1.25倍和1.73倍, 原因可能是不同地区土壤质地、水热气候条件和田间管理措施等存在差异。通过调整再生季施氮比例及次数并进行优化栽培可使再生稻两季总产量提高25.4%[21], 且CH4累计排放量和全球增温潜势显著降低34.9%和31.9%。单季稻蓄留再生稻后, 头季需施入促芽肥, N2O排放系数必然不同于单季稻, 有关再生稻再生季的N2O排放系数也少见报道, 因此亟需相关试验研究探明。
随着全球气候变暖趋势的加剧, 我国再生稻蓄留面积可能会继续扩大, 再生稻较常规单季稻增加一季水稻产量, 有利于确保国家粮食安全, 但也可能由于全生育期延长和肥料施用量增加而导致稻田温室气体排放增多。因此, 研究再生季氮肥施用量对水稻产量和温室气体排放的影响将具有重要意义。本研究选取团队前期连续3年筛选获得的高产稳产水稻品种‘丰两优香1号’作为试验对象, 于中国科学院常熟农田生态系统国家野外科学观测研究站宜兴基地开展再生季不同氮肥用量试验, 同步观测再生稻的温室气体排放和产量, 以期从氮肥施用角度为太湖流域再生稻高产低排种植方式提供数据参考和科学借鉴。
1. 材料与方法
1.1 试验材料与试验设计
田间试验于2022年4—10月在江苏省宜兴市丁蜀镇漳渎村(31.28°N, 119.91°E)进行。该地区属于亚热带季风气候, 全年平均气温为15.5 ℃, 日照充足, 生长期可达250 d左右。供试土壤类型为黄泥土, 土壤全碳含量为26.2 g∙kg−1, 全氮含量为1.10 g·kg−1, pH为6.32[15]。供试再生稻材料为‘丰两优香1号’, 头季和再生季生育期分别为116 d和61 d。
试验共设计3种再生季施氮肥量[kg(N)·hm−2]: 75、125和175, 按照促芽肥∶发苗肥∶促穗肥=2∶2∶1施入, 分别用FL1、FL2、FL3表示。头季施氮量均为240 kg(N)·hm−2, 按基肥∶分蘖肥∶穗肥=3∶4∶3施用, 另外设置不施氮处理(FL0)作为对照, 具体氮肥施用情况见表1。各处理的过磷酸钙(以P2O5计) 60 kg·hm−2和氯化钾(以K2O计) 45 kg·hm−2作为基肥一次性施入。每个处理设置4次重复, 随机区组设计[22]。每个试验小区的面积为15 m2 (3 m×5 m), 不同小区之间用田埂隔开, 确保各小区不窜水肥。
表 1 2022年不同处理再生稻氮肥施用时间和施用量Table 1. Dates and rates of nitrogen fertilization for ratoon rice of different treatments in 2022稻季
Season氮肥施用
Nitrogen application施用时间(月-日)
Fertilization date (month-day)氮肥施用量 N application rate [kg(N)·hm−2] FL0 FL1 FL2 FL3 头季
Main rice season基肥 Base fertilizer 04-22 0 72 72 72 分蘖肥 Tillering fertilizer 05-08 0 96 96 96 穗肥 Panicle fertilizer 06-16 0 72 72 72 再生季
Ratoon rice season促芽肥 Bud-promoting fertilizer 08-02 0 30 50 70 发苗肥 Seeding fertilizer 08-17 0 30 50 70 促穗肥 Panicle-promoting fertilizer 08-25 0 15 25 35 FL0、FL1、FL2和FL3分别表示不施氮、再生季施氮75 kg(N)∙hm−2、125 kg(N)∙hm−2和175 kg(N)∙hm−2。FL0, FL1, FL2, and FL3 represent no nitrogen, 75, 125, and 175 kg(N)∙hm−2 application rate during the ratoon season, respectively. 1.2 栽培概况
水稻于4月22日移栽, 移栽密度为24万株·hm−2, 每穴移栽2株水稻苗。8月15日头季收获, 10月16日再生季收获。头季田间水分管理为前期持续淹水, 当分蘖数达预期穗数的80%时, 进行一次烤田(时间持续5 d), 结束后复水, 之后水分管理为干湿交替, 头季水稻收割前一周排水落干[2]。头季水稻收割后田间浅水层(1~2 cm)管理, 促穗肥施用后转为干湿交替直至再生季水稻收获。
1.3 测定项目与方法
温室气体的采集与测定: CH4和N2O样品采集用静态密闭箱法, 箱体材料为不锈钢。采气箱包括中段箱和顶箱两部分, 箱高均为0.6 m, 可在水稻不同生育期单独或组合使用, 箱体外围包裹有锡箔贴纸以避免箱内温度太高。底座规格为0.50 m×0.50 m×0.15 m, 底座上方有4 cm的凹槽。每次采样时, 需向凹槽中添加一定量的水, 以保证静态箱放入底座后具有良好的气密性。每次采样时间均在上午9:00—11:00, 待静态箱密闭后, 用双通针将气体导入20 mL真空玻璃瓶中, 间隔15 min采集一次, 每个采样点采集4次[23]。采样结束后, 将静态箱移走, 以保证水稻的正常生长。水稻生长季, 间隔3~4 d采集一次气样, 烤田及施肥前后加密采样。采集的样品带回实验室检测分析。
CH4和N2O浓度用带氢火焰离子化检测器(FID)和63Ni电子捕获检测器(ECD)的安捷伦气相色谱(Agilent 7890B)测定。CH4和N2O标准气体由中国计量科学研究院提供。
田间辅助指标采集与测定: 采集气体样品的同时, 用数字温度计测定气温及土壤10 cm深处的温度, 用氧化还原电位计测定土壤10 cm深处的氧化还原电位(Eh)[15]。
植物样品的采集: 头季稻、再生季稻收获时, 分别按照小区脱粒、晒干, 测定水稻产量。每个小区留取水稻植株样品带回实验室烘干进行考种, 记录有效穗数、千粒重和结实率等[15]。
1.4 数据处理
CH4和N2O排放通量计算公式为[24]:
$$ F=\rho\times\dfrac{V}{A}\times\dfrac{\mathrm{d}c}{\mathrm{d}t}\times\dfrac{273}{T} $$ (1) 式中: F为CH4或N2O排放通量[mg·m–2·h–1或μg(N)·m–2·h–1]; ρ为标准状态下CH4或N2O-N密度, 取值为0.714 kg·m–3或1.25 kg(N)·m–3; V为采样箱有效体积(m3); A为采样箱覆盖的土壤面积(m2); dc/dt为单位时间内采样箱内CH4或N2O浓度的变化, 单位为μL(CH4)·L–1·h–1或nL(N2O)·L–1·h–1; T为采样箱内温度(K)。
CH4和N2O季节排放总量计算公式为[15]:
$$ T=\sum \left[\dfrac{{F}_{i+1}+{F}_{i}}{2}\right]\times \left({D}_{i+1}-{D}_{i}\right)\times 24 $$ (2) 式中: T为CH4或N2O排放总量[kg·hm–2或kg(N)·hm–2], Fi和Fi+1分别为第i次和i+1次采样时CH4或N2O平均排放通量[mg·m–2·h–1或μg(N)·m–2·h–1], Di+1和Di分别为第i+1次和i次采样时间(d)。CH4和N2O排放总量是将4个重复的观测值按时间间隔加权平均后再平均。
温室气体(CH4和N2O)排放总量[TGHG, kg(CO2-eq)·hm–2]计算公式如下[25]:
$$ \mathrm{T}\mathrm{G}\mathrm{H}\mathrm{G}={T}_{{\mathrm{C}\mathrm{H}}_{4}}\times 27.9+{T}_{{\mathrm{N}}_{2}\mathrm{O}}\times 273 $$ (3) 式中:
$ {T}_{{\mathrm{C}\mathrm{H}}_{4}} $ 和$ {T}_{{\mathrm{N}}_{2}\mathrm{O}} $ 分别为CH4和N2O排放量, 单位均为kg·hm−2; 27.9和273为百年尺度下CH4和N2O相对于CO2的全球增温潜势倍数[26]。用来评估单位产量温室气体排放量的温室气体排放强度[GHGI, t(CO2-eq)∙t−1]计算公式如下[27]:
$$ \mathrm{G}\mathrm{H}\mathrm{G}\mathrm{I}=\mathrm{T}\mathrm{G}\mathrm{H}\mathrm{G}/Y $$ (4) 式中, TGHG为CH4和N2O的综合温室效应, 单位为t(CO2-eq)∙hm−2; Y为水稻产量, 单位t∙hm−2。
N2O排放系数计算公式如下[28]:
$$ \begin{split} &\qquad \mathrm{N}_{ \mathrm{2}} \mathrm{O排放系数( {\text{%}} )=(施氮处理N}_{ \mathrm{2}} \mathrm{O\text{-}N排放量} -\\ & {\mathrm{不施氮处理N}}_{ \mathrm{2}} \mathrm{O\text{-}N排放量)/施氮量\times 100 {\text{%}} } \end{split}$$ (5) 式中: N2O-N排放量与施氮量的单位均为kg(N)∙hm−2。
数据处理采用Excel 2019和SPSS 20.0统计软件完成, 用LSD法进行组间差异性检验(α=0.05), 采用OriginPro 2024作图。
2. 结果与分析
2.1 试验期间环境因子的变化
如图1所示, 整个生育期土壤Eh的变化范围为−280~180 mV, 各处理之间无明显差异。FL1的土壤Eh平均值为−76 mV, 低于FL0 (−68 mV)、FL2 (−60 mV)和FL3 (−74 mV)。水稻生育期厢面下土壤10 cm处的温度变化见图1, 整个生育期内在15~30 ℃范围内变化, 头季收获时土温为29 ℃, 其后10 d土温逐渐上升至30 ℃, 而后迅速下降直至再生稻收获, 整个生育期平均温度为24.2 ℃。
图 1 试验区2022年再生稻全生长季不同施肥处理土壤氧化还原电位及温度动态变化FL0、FL1、FL2和FL3分别表示不施氮、再生季施氮75 kg(N)∙hm−2、125 kg(N)∙hm−2和175 kg(N)∙hm−2。FL0, FL1, FL2, and FL3 represent no nitrogen (N), 75, 125, and 175 kg(N)∙hm−2 application rate during the ratoon season, respectively.Figure 1. Dynamic changes of soil redox potential (Eh) and temperature under different fertilizer treatments during the ratoon rice-growing season in the study area in 20222.2 不同施肥处理再生稻生长期N2O排放
从整个水稻生长季节来看(图2a), N2O排放最高峰值出现在促芽肥施用之后, 各处理促芽肥施用造成的N2O排放量占整个生育期的10.0%~50.7% (表2), FL3较FL2处理增加23.2%, 但并未构成显著性差异; 不同处理之间促芽肥引发的排放峰值达12.5~2730 µɡ(N)·m−2·h−1(图2a)。相较于促芽肥, 施入发苗肥与促穗肥后引起的N2O排放较少。各处理发苗肥施入后造成的N2O排放量占整个生育期的0~2.6% (表2), FL2处理的排放量显著高于FL1, 约为FL1处理的9倍, 但也仅占整个生育期的2.6%。各处理促穗肥施用后造成的N2O排放总量占整个生育期的6.7%~20.7% (表2), 造成的排放峰值为21.3~878 µɡ(N)·m−2·h−1 (图2a), FL3处理的峰值为其他处理的5.98~41.2倍, 且FL3处理的排放总量为1.80 kg(N)·hm−2, 显著高于其他3个处理。相关分析表明, 各处理促芽肥排放峰值大小随施肥量的增加呈明显的线性增加关系(r=0.996, P<0.05), N2O排放与土壤Eh (r=0.244, P<0.05)和10 cm深处的土温(r=0.260, P<0.05)之间有显著正相关的关系。全生育期N2O排放总量以FL3最多[8.70 kg(N)·hm−2], 较FL2处理增加27.7%, 且各处理排放总量随施肥量的增加呈显著正相关(r=0.710, P<0.01)。
图 2 不同施肥处理下再生稻生长期CH4和N2O排放通量FL0、FL1、FL2和FL3分别表示不施氮、再生季施氮75 kg(N)∙hm−2、125 kg(N)∙hm−2和175 kg(N)∙hm−2。FL0, FL1, FL2, and FL3 represent no nitrogen (N), 75, 125, and 175 kg(N)∙hm−2 application rate during the ratoon season, respectively.Figure 2. Temporal variations of CH4 and N2O fluxes during ratoon rice-growing season under different fertilization treatmentsN2O排放系数的定义为氮素肥料施入土壤引起的N2O-N排放量与施氮量比值的百分数[29]。本研究中再生稻头季N2O的排放系数为1.27%~1.81% (表3), 并随施肥水平的增高而有增加的趋势; 再生季N2O的排放系数为0.38%~1.71%, 随着施肥量的增加, 排放系数也有线性增加的趋势(r=0.669, P<0.05)。
表 2 不同施肥处理下再生稻不同施肥期以及全生育期的CH4和N2O累积排放量Table 2. Accumulated emissions of CH4 and N2O in different nitrogen application periods and the entire growth period of ratoon rice under different fertilization treatments处理
Treat-mentN2O排放量 N2O emissions [kg(N)∙hm−2] CH4排放量 CH4 emissions (kg∙hm−2) 全生育期
Whole growth period促芽肥后
After bud-promoting fertilizer发苗肥后
After seeding fertilizer促穗肥后
After panicle-promoting fertilizer全生育期
Whole growth period促芽肥后
After bud-promoting fertilizer发苗肥后
After seeding fertilizer促穗肥后
After panicle-promoting fertilizerFL0 1.30±0.05c 0.13±0.01c 0.00±0.01b 0.16±0.02b 58.11±13.59a 1.94±0.71b 0.87±0.72b 6.89±3.26c FL1 4.91±1.23b 1.51±0.52bc 0.02±0.01b 0.33±0.07b 67.82±8.02a 2.01±0.52b 0.91±0.18b 12.20±1.96b FL2 6.80±1.27ab 3.45±1.61ab 0.18±0.14a 0.68±0.29b 73.81±15.47a 4.30±1.56a 1.80±0.98a 14.30±8.18a FL3 8.70±2.46a 4.25±1.79a 0.17±0.06a 1.80±1.12a 78.70±8.89a 3.30±0.93ab 1.72±0.73a 17.10±6.24a FL0、FL1、FL2和FL3分别表示不施氮、再生季施氮75 kg(N)∙hm−2、125 kg(N)∙hm−2和175 kg(N)∙hm−2。同列不同字母代表处理间存在显著差异(P<0.05)。FL0, FL1, FL2, and FL3 represent no nitrogen (N), 75, 125, and 175 kg(N)∙hm−2 application rate during the ratoon season, respectively. Different lowercase letters within the same column indicate significant differences among treatments (P<0.05). 表 3 不同施肥处理下再生稻的N2O排放系数Table 3. N2O emission factors of ratoon rice under different fertilization treatments处理
TreatmentN2O排放量 N2O emissions [kg(N)·hm−2] N2O排放系数 N2O emission factor (%) 头季 Main rice season 再生季 Ratoon rice season 头季 Main rice season 再生季 Ratoon rice season FL0 1.13±0.07b 0.17±0.03b — — FL1 4.57±1.17a 0.34±0.07b 1.27 0.38 FL2 5.94±1.57a 0.86±0.35b 1.66 0.92 FL3 6.73±1.94a 1.97±1.14a 1.81 1.71 FL0、FL1、FL2和FL3分别表示不施氮、再生季施氮75 kg(N)∙hm−2、125 kg(N)∙hm−2和175 kg(N)∙hm−2。同列不同字母代表处理间存在显著差异(P<0.05)。FL0, FL1, FL2, and FL3 represent no nitrogen (N), 75, 125, and 175 kg(N)∙hm−2 application rate during the ratoon season, respectively. Different lowercase letters within the same column indicate significant differences among treatments (P<0.05). 2.3 不同施肥处理再生稻生长期CH4排放
CH4排放主要发生在头季前期持续淹水和烤田复水后(图2b), 再生季的CH4排放相对较少。促芽肥施用后造成的CH4排放总量占整个生育期CH4排放总量的3.0%~5.8%, 各处理CH4排放量为FL2最多, 为4.30 kg·hm−2, 与FL3处理之间并没有显著性差异, 但相较于FL1显著增加113.9% (P<0.05, 表2)。发苗肥施入后造成的CH4排放总量约占整个生育期的1.3%~2.4%, FL2处理总量达1.80 kg·hm−2, 显著高于FL1处理。促穗肥施用后, 各处理的CH4排放总量随施肥量的增加依次增加, 促穗肥施用后的CH4排放量占整个生育期排放总量的11.9%~21.9% (表2)。相关性分析显示, CH4排放与土壤Eh呈显著负相关关系(r=−0.664, P<0.01)。施肥导致CH4排放增加, 增加幅度在16.7%~35.5%范围内, 施肥量的增加导致CH4排放量略有增加, 但并未造成显著性差异(表2), 全生育期CH4排放量以FL3处理最多, 为78.70 kg·hm−2, FL2处理为73.81 kg·hm−2, 两处理之间差异不显著。
2.4 不同施肥处理再生稻生长季产量、温室气体排放总量以及温室气体排放强度
由表4可知, 头季稻产量为5.49~6.27 t·hm−2, FL1、FL2与FL3分别较FL0处理显著增加13.8%、13.3%和14.2%。不同施肥处理间的产量差异体现在再生季中, FL2、FL3分别比FL1增加32.3% (P<0.05)和17.4%, FL2与FL3之间并未形成显著性差异。总产量以FL2最高, 为11.55 t·hm−2, 较FL1显著增加12.4%。头季稻的有效穗数以FL3处理最多, 为472万穗·hm−2, 与FL2和FL1处理之间并未构成显著性差异; 再生季的有效穗数以FL2处理最高, 为612万穗·hm−2, 与其他3个处理之间差异较大, 相较于FL0、FL1和FL3分别显著增加34.8%、27.2%和12.1% (P<0.05) (表5)。相关分析表明, 水稻有效穗数是影响产量的重要指标, 头季产量(r=0.771, P<0.01)与再生季产量(r=0.944, P<0.01)分别与其有效穗数之间存在显著正相关关系, 与结实率和千粒重之间并无显著相关性。
表 4 不同施肥处理下再生稻生长季产量、温室气体排放总量及温室气体排放强度Table 4. Yield, total emissions and emission intensities of greenhouse gases during the ratoon rice-growing season under different fertilization treatments处理
Treat-ment水稻产量
Rice yield (t∙hm−2)温室气体排放总量
Total greenhouse gases emissions
[t(CO2-eq)·hm−2]温室气体排放强度
Greenhouse gases emission intensity
[t(CO2-eq)·t−1]头季
Main rice reason再生季
Ratoon rice reason全生育期
Whole growth period头季
Main rice reason再生季
Ratoon rice reason全生育期
Whole growth period头季
Main rice season再生季
Ratoon rice reason全生育期
Whole growth periodFL0 5.49±0.77b 2.83±0.46c 8.33±0.31c 1.89±0.43b 0.29±0.11b 2.18±0.39c 0.34±0.06b 0.10±0.04b 0.26±0.04c FL1 6.25±0.12a 4.03±0.27b 10.28±0.15b 3.49±0.32a 0.51±0.08b 4.00±0.39b 0.56±0.05a 0.13±0.01b 0.39±0.04ab FL2 6.22±0.17a 5.33±0.07a 11.55±0.10a 4.16±0.99a 0.82±0.20ab 4.98±0.95ab 0.67±0.17a 0.15±0.04b 0.43±0.09ab FL3 6.27±0.08a 4.73±0.63ab 10.99±0.55a 4.56±0.85a 1.37±0.61a 5.93±1.24a 0.73±0.14a 0.28±0.10a 0.54±0.10a FL0、FL1、FL2和FL3分别表示不施氮、再生季施氮75 kg(N)∙hm−2、125 kg(N)∙hm−2和175 kg(N)∙hm−2。同列不同字母代表处理间存在显著差异(P<0.05)。FL0, FL1, FL2, and FL3 represent no nitrogen (N), 75, 125, and 175 kg(N)∙hm−2 application rate during the ratoon season, respectively. Different lowercase letters within the same column indicate significant differences among treatments (P<0.05). 头季温室气体排放总量(TGHG)在施肥处理间无差异(表4), FL3和FL2较FL1分别增加30.7%和19.2%; 再生季TGHG仅为两季总量的12.8%~23.1%, FL3较FL1显著增加168.6% (表4), FL2较FL1增加60.8%; 全生育期TGHG为2.18~5.93 t(CO2-eq)·hm−2, FL3相较于FL1显著增加48.3% (P<0.05), FL2较FL1增加24.5%。两季温室气体排放强度为0.26~0.54 t (CO2-eq)·t−1, FL3为FL1的1.4倍(表4), FL2较FL1增加10.3%。相关性分析显示, 头季温室气体排放总量与头季稻产量(r=0.629, P<0.05)以及有效穗数(r=0.770, P<0.01)存在正相关关系, 与头季稻结实率和千粒重均无显著相关性; 再生季温室气体排放总量与再生季稻产量、有效穗数和结实率未呈现显著正相关关系。
表 5 不同施肥处理下头季稻和再生季稻产量及其产量构成因子Table 5. Yields and its components of main rice season and ratoon rice season under different fertilization treatments处理
Treatment头季稻 Main rice season 再生季稻 Ratoon rice season 有效穗数
Effective number
of spikes
(×104spikes·hm−2)结实率
Percentage of
filled grains
(%)千粒重
1000-grain
weight
(g)有效穗数
Effective number
of spikes
(×104spikes·hm−2)结实率
Percentage of
filled grains
(%)千粒重
1000-grain
weight
(g)FL0 412±20b 90.3±1.2a 27.0±0.8a 454±21c 88.6±1.4a 25.9±1.2bc FL1 447±16ab 88.4±1.1ab 26.3±0.0b 481±7c 81.5±0.3b 27.3±0.1a FL2 468±43a 86.6±0.4ab 25.2±0.2c 612±3a 82.2±0.5b 26.7±0.0ab FL3 472±7a 88.3±1.8ab 25.4±0.1c 546±40b 82.1±0.1b 25.3±0.1c FL0、FL1、FL2和FL3分别表示不施氮、再生季施氮75 kg(N)∙hm−2、125 kg(N)∙hm−2和175 kg(N)∙hm−2。同列不同字母代表处理间存在显著差异(P<0.05)。FL0, FL1, FL2, and FL3 represent no nitrogen (N), 75, 125, and 175 kg(N)∙hm−2 application rate during the ratoon season, respectively. Different lowercase letters within the same column indicate significant differences among treatments (P<0.05). 3. 讨论
3.1 N2O排放
农田土壤N2O的排放是硝化与反硝化作用的综合结果。氮素投入是农田N2O排放最具决定性的单一预测因子[30]。本研究中, N2O排放峰出现在每次氮肥施用后(图2a), 这主要是由于氮肥施用后引起土壤无机氮含量上升, 为土壤硝化与反硝化作用提供充足的反应底物和能量[21], 从而促进N2O的产生与排放[31-32]。值得注意的是, 在本研究中施用促芽肥造成了一个巨大的峰值(图2a)。以往在湖北潜江、四川资阳等地[21,33]的研究也发现促芽肥施用后会出现明显的N2O排放峰。促芽肥的作用是促进水稻休眠芽的萌发, 通常在头季稻齐穗至成熟期施用[34], 此时土壤温度较高(图1), 有利于N2O的产生和排放。相关性分析结果显示, N2O排放通量与土壤温度呈极显著正相关关系(P<0.01)。实验室研究也表明, 硝化作用的适宜温度范围在25~35 ℃[35-37], 且温度从20 ℃升至30 ℃时, 土壤硝化作用的速率可增加2.2倍[38], N2O排放通量在25~35 ℃范围内随温度的升高而增加[39], 约有67%的N2O排放量集中在15~25 ℃[39]。其次, 头季稻齐穗至成熟期田间水分管理方式是干湿交替, 这有利于改善土壤的通气性, 促进土壤有机质的矿化作用[40], 为硝化和反硝化作用提供底物, 从而促进N2O的排放。有研究表明[41], 水稻排灌交替期的N2O平均排放速率约为持续淹水期的3倍, 排放总量更是增加147%。
稻田N2O排放量随再生稻施氮量增加而增加(表2), 其中促芽肥引发的N2O排放峰值大小随再生季施氮量增加呈线性增加趋势(r=0.996, P<0.05), 促芽肥施用后的N2O排放量随施氮量从75 kg(N)·hm−2增加至175 kg(N)·hm−2而随之增加181.5%。相关性分析结果显示, 两季N2O排放总量与氮肥施用量之间呈极显著正相关关系(r=0.710, P<0.01)。以往大量研究也表明[42-45], 稻田在水分管理一致的条件下, N2O排放量随氮肥施用量增加而增加。氮肥尤其是促芽肥施用是再生稻丰产的关键因素, 施用促芽肥可以实现增产56%[46], 以后可考虑适度调整促芽肥的施用比例以及施用时间, 或采取配施硝化抑制剂等措施, 来提高植株氮素利用率, 减少氮素损失[47], 在确保产量的前提下探索更优化的减排方案。
N2O排放系数作为量化N2O排放量的指标, 其在评估温室气体排放以及制定减排策略中具有不可忽视的地位。氮肥施用量是影响N2O排放系数的重要因素。在本研究中, 3个施肥处理的头季N2O排放系数均高于国际农田推荐值1.25%[29], 分析认为最主要的原因是促芽肥的施用导致各施肥处理有大量N2O排放。再生季的N2O排放系数为0.38%~1.71%, FL3处理高于1.25%, 从N2O排放通量图(图2a)中可以看到, 促穗肥的施用使得FL3处理出现一个排放峰值, 显著高于FL1与FL2处理。以往研究结果显示, 南方稻田土壤N2O排放系数为2.47%[28]。而本研究中得出的结果均低于2.47%, 也就是说在本研究区域种植再生稻且通过合理的氮肥运筹可以实现稻田N2O减排的效果。当然排放系数也可能由于地区的气候条件以及田间管理措施等的差异而有不同, 因此还需要在本研究试验地进行持续的观测以适应新的排放情况, 从而不断更新和调整减排策略。
3.2 CH4排放
CH4是产甲烷菌在严格的还原条件下产生的[48]。土壤CH4的产生、再氧化及排放传输3个过程相互作用决定了稻田CH4的排放量。田间水分管理是CH4产生、排放的决定性因素[49]。稻田淹水后, 水分阻止氧气的扩散从而形成严格厌氧环境, 促进稻田CH4的产生。稻田淹水期间的CH4排放量占整个生育期CH4排放总量的68.3%~70.1% (图2b)。再生季的CH4排放通量明显低于头季(图2b), 再生季生育期长约为头季生育期长的53.5%, 其CH4排放量却仅为头季的15.4%~31.3% (表2), 这很可能与再生季地上部生物量减少及土温降低有关[24]。再生稻是利用头季稻收割后稻桩上存活的休眠芽萌发进而抽穗长成的一季水稻, 再生季的水稻植株矮于头季, 生物量显著减少[50], 而水稻植株是CH4排放的主要途径[51], 所以再生季通过植株排放的CH4相对较少。再生季开始于8月中下旬, 此时气温逐渐降低, 土壤温度也随着降低(图1), 产甲烷菌的活性也随之降低[52], 抑制了CH4的产生。湖北、安徽及四川等地[24-25,53]的研究结果也表明, 再生季的CH4排放量相较于头季可减少67.4%~89.0%。
稻田CH4排放与氮肥用量之间的关系较为复杂[54], 氮肥是通过影响CH4产生和氧化进而影响CH4排放的。本研究中, 全生育期CH4排放量随氮肥施用的增多也相应增加, 但是并无显著性差异(表2)。其原因一方面可能是氮肥施用后在水中分解为NH4+, NH4+对CH4的氧化有抑制作用, 从而有效增加CH4的产生[49]; 另一方面, 氮肥施用可促进水稻根系的发育以及水稻植株的生长, 根系分泌物增加为产甲烷菌提供底物, 同时使得CH4通过植株排放到大气中这一通道变得畅通, 从而增加CH4的产生与排放。广州、沈阳以及美国等地[44,55-56]的研究也发现, 稻田CH4排放量随施肥量的增加均有不同程度的增加。
3.3 温室气体排放强度
施肥可以有效增加水稻产量[57], 氮素能通过延缓叶片衰老和延长水稻光合时间使水稻籽粒灌浆期延长, 进而通过提高水稻千粒重和结实率而提高产量[58]。不同水稻运筹方式对产量的影响不同, 在施氮总量一致的情况下, 浙江的研究发现增施一次穗肥产量可以提升20%[59], 同样的效果也在安徽的研究中有报道[60]。本研究中, 再生季产量以FL2最高, 达5.33 t·hm−2, 与FL3处理之间并未形成显著差异(表4)。这与曹玉贤等[7]的统计结果再生季产量随施氮量增加呈“线性+平台”趋势一致。在一定范围内产量随施氮量的增加而增加, 但过高的氮肥用量可能会造成反作用。樊迪等[15]于2021年在本研究区域开展的再生稻研究, 再生季施氮量为138 kg(N)·hm−2, 与本研究FL2施氮量相当, 但产量却比本研究低30%。本研究与之最大的区别是增加了再生稻施氮次数, 在施用促芽肥和发苗肥后, 还施用了促穗肥。这说明可在不增加氮肥施用量的条件下, 通过调整氮肥运筹来提高水稻产量。
头季温室气体排放总量及温室气体排放强度均随施肥量的增加有增加趋势(表4), 最主要的原因是促芽肥是在头季稻收割前施用, 影响了头季的温室气体排放, 使得3个施肥处理的头季温室气体排放总量占全生育期的76.9%~87.3%。再生季温室气体排放总量和温室气体排放强度均随再生季施肥量的增加而增加, FL3较FL1分别显著增加了168.6%和115.4%, FL2较FL1分别增加60.8%和15.4% (表4)。安徽研究结果表明[61], 施氮量从154 kg(N)·hm−2增加至220 kg(N)·hm−2, 温室气体排放总量和温室气体排放强度分别增加33.3%和25.2%。本研究3个施肥处理的全生育期温室气体排放强度在0.39~0.54 t(CO2-eq)·t−1范围内, 低于樊迪等[15]在本研究区域的研究结果, 可能原因是本研究的产量提升68.0%~88.7%, 尤其以FL2处理产量最高。以上结果表明种植再生稻需通过合理的氮肥运筹来实现有效减排, 同时任何减排措施都不应该以牺牲产量为代价, 综合产量、温室气体排放总量和温室气体排放强度来看, FL2处理值得推广。
4. 结论
再生稻产量在各施肥处理中以FL2最高, 再生季产量高达5.33 t∙hm−2, 两季总产量达11.55 t∙hm−2。氮肥施用量的增加促进温室气体排放, 特别是N2O的排放, 排放峰值出现在促芽肥施用后及促穗肥施用后, 同时本研究还报道了再生季N2O排放系数为0.38%~1.71%。3个施肥处理排放强度在0.39~0.54 t(CO2-eq)∙t−1范围内, 随施肥量的增加而增加。综合经济效益与环境效益, 太湖流域种植再生稻头季和再生季分别施用氮肥240 kg(N)·hm−2和125 kg(N)·hm−2总体效果最佳, 具有推荐应用价值。
致谢 感谢中国科学院常熟农田生态系统国家野外科学观测研究站宜兴基地为本研究提供的试验场地以及帮助。
-
图 1 试验区2022年再生稻全生长季不同施肥处理土壤氧化还原电位及温度动态变化
FL0、FL1、FL2和FL3分别表示不施氮、再生季施氮75 kg(N)∙hm−2、125 kg(N)∙hm−2和175 kg(N)∙hm−2。FL0, FL1, FL2, and FL3 represent no nitrogen (N), 75, 125, and 175 kg(N)∙hm−2 application rate during the ratoon season, respectively.
Figure 1. Dynamic changes of soil redox potential (Eh) and temperature under different fertilizer treatments during the ratoon rice-growing season in the study area in 2022
图 2 不同施肥处理下再生稻生长期CH4和N2O排放通量
FL0、FL1、FL2和FL3分别表示不施氮、再生季施氮75 kg(N)∙hm−2、125 kg(N)∙hm−2和175 kg(N)∙hm−2。FL0, FL1, FL2, and FL3 represent no nitrogen (N), 75, 125, and 175 kg(N)∙hm−2 application rate during the ratoon season, respectively.
Figure 2. Temporal variations of CH4 and N2O fluxes during ratoon rice-growing season under different fertilization treatments
表 1 2022年不同处理再生稻氮肥施用时间和施用量
Table 1 Dates and rates of nitrogen fertilization for ratoon rice of different treatments in 2022
稻季
Season氮肥施用
Nitrogen application施用时间(月-日)
Fertilization date (month-day)氮肥施用量 N application rate [kg(N)·hm−2] FL0 FL1 FL2 FL3 头季
Main rice season基肥 Base fertilizer 04-22 0 72 72 72 分蘖肥 Tillering fertilizer 05-08 0 96 96 96 穗肥 Panicle fertilizer 06-16 0 72 72 72 再生季
Ratoon rice season促芽肥 Bud-promoting fertilizer 08-02 0 30 50 70 发苗肥 Seeding fertilizer 08-17 0 30 50 70 促穗肥 Panicle-promoting fertilizer 08-25 0 15 25 35 FL0、FL1、FL2和FL3分别表示不施氮、再生季施氮75 kg(N)∙hm−2、125 kg(N)∙hm−2和175 kg(N)∙hm−2。FL0, FL1, FL2, and FL3 represent no nitrogen, 75, 125, and 175 kg(N)∙hm−2 application rate during the ratoon season, respectively. 表 2 不同施肥处理下再生稻不同施肥期以及全生育期的CH4和N2O累积排放量
Table 2 Accumulated emissions of CH4 and N2O in different nitrogen application periods and the entire growth period of ratoon rice under different fertilization treatments
处理
Treat-mentN2O排放量 N2O emissions [kg(N)∙hm−2] CH4排放量 CH4 emissions (kg∙hm−2) 全生育期
Whole growth period促芽肥后
After bud-promoting fertilizer发苗肥后
After seeding fertilizer促穗肥后
After panicle-promoting fertilizer全生育期
Whole growth period促芽肥后
After bud-promoting fertilizer发苗肥后
After seeding fertilizer促穗肥后
After panicle-promoting fertilizerFL0 1.30±0.05c 0.13±0.01c 0.00±0.01b 0.16±0.02b 58.11±13.59a 1.94±0.71b 0.87±0.72b 6.89±3.26c FL1 4.91±1.23b 1.51±0.52bc 0.02±0.01b 0.33±0.07b 67.82±8.02a 2.01±0.52b 0.91±0.18b 12.20±1.96b FL2 6.80±1.27ab 3.45±1.61ab 0.18±0.14a 0.68±0.29b 73.81±15.47a 4.30±1.56a 1.80±0.98a 14.30±8.18a FL3 8.70±2.46a 4.25±1.79a 0.17±0.06a 1.80±1.12a 78.70±8.89a 3.30±0.93ab 1.72±0.73a 17.10±6.24a FL0、FL1、FL2和FL3分别表示不施氮、再生季施氮75 kg(N)∙hm−2、125 kg(N)∙hm−2和175 kg(N)∙hm−2。同列不同字母代表处理间存在显著差异(P<0.05)。FL0, FL1, FL2, and FL3 represent no nitrogen (N), 75, 125, and 175 kg(N)∙hm−2 application rate during the ratoon season, respectively. Different lowercase letters within the same column indicate significant differences among treatments (P<0.05). 表 3 不同施肥处理下再生稻的N2O排放系数
Table 3 N2O emission factors of ratoon rice under different fertilization treatments
处理
TreatmentN2O排放量 N2O emissions [kg(N)·hm−2] N2O排放系数 N2O emission factor (%) 头季 Main rice season 再生季 Ratoon rice season 头季 Main rice season 再生季 Ratoon rice season FL0 1.13±0.07b 0.17±0.03b — — FL1 4.57±1.17a 0.34±0.07b 1.27 0.38 FL2 5.94±1.57a 0.86±0.35b 1.66 0.92 FL3 6.73±1.94a 1.97±1.14a 1.81 1.71 FL0、FL1、FL2和FL3分别表示不施氮、再生季施氮75 kg(N)∙hm−2、125 kg(N)∙hm−2和175 kg(N)∙hm−2。同列不同字母代表处理间存在显著差异(P<0.05)。FL0, FL1, FL2, and FL3 represent no nitrogen (N), 75, 125, and 175 kg(N)∙hm−2 application rate during the ratoon season, respectively. Different lowercase letters within the same column indicate significant differences among treatments (P<0.05). 表 4 不同施肥处理下再生稻生长季产量、温室气体排放总量及温室气体排放强度
Table 4 Yield, total emissions and emission intensities of greenhouse gases during the ratoon rice-growing season under different fertilization treatments
处理
Treat-ment水稻产量
Rice yield (t∙hm−2)温室气体排放总量
Total greenhouse gases emissions
[t(CO2-eq)·hm−2]温室气体排放强度
Greenhouse gases emission intensity
[t(CO2-eq)·t−1]头季
Main rice reason再生季
Ratoon rice reason全生育期
Whole growth period头季
Main rice reason再生季
Ratoon rice reason全生育期
Whole growth period头季
Main rice season再生季
Ratoon rice reason全生育期
Whole growth periodFL0 5.49±0.77b 2.83±0.46c 8.33±0.31c 1.89±0.43b 0.29±0.11b 2.18±0.39c 0.34±0.06b 0.10±0.04b 0.26±0.04c FL1 6.25±0.12a 4.03±0.27b 10.28±0.15b 3.49±0.32a 0.51±0.08b 4.00±0.39b 0.56±0.05a 0.13±0.01b 0.39±0.04ab FL2 6.22±0.17a 5.33±0.07a 11.55±0.10a 4.16±0.99a 0.82±0.20ab 4.98±0.95ab 0.67±0.17a 0.15±0.04b 0.43±0.09ab FL3 6.27±0.08a 4.73±0.63ab 10.99±0.55a 4.56±0.85a 1.37±0.61a 5.93±1.24a 0.73±0.14a 0.28±0.10a 0.54±0.10a FL0、FL1、FL2和FL3分别表示不施氮、再生季施氮75 kg(N)∙hm−2、125 kg(N)∙hm−2和175 kg(N)∙hm−2。同列不同字母代表处理间存在显著差异(P<0.05)。FL0, FL1, FL2, and FL3 represent no nitrogen (N), 75, 125, and 175 kg(N)∙hm−2 application rate during the ratoon season, respectively. Different lowercase letters within the same column indicate significant differences among treatments (P<0.05). 表 5 不同施肥处理下头季稻和再生季稻产量及其产量构成因子
Table 5 Yields and its components of main rice season and ratoon rice season under different fertilization treatments
处理
Treatment头季稻 Main rice season 再生季稻 Ratoon rice season 有效穗数
Effective number
of spikes
(×104spikes·hm−2)结实率
Percentage of
filled grains
(%)千粒重
1000-grain
weight
(g)有效穗数
Effective number
of spikes
(×104spikes·hm−2)结实率
Percentage of
filled grains
(%)千粒重
1000-grain
weight
(g)FL0 412±20b 90.3±1.2a 27.0±0.8a 454±21c 88.6±1.4a 25.9±1.2bc FL1 447±16ab 88.4±1.1ab 26.3±0.0b 481±7c 81.5±0.3b 27.3±0.1a FL2 468±43a 86.6±0.4ab 25.2±0.2c 612±3a 82.2±0.5b 26.7±0.0ab FL3 472±7a 88.3±1.8ab 25.4±0.1c 546±40b 82.1±0.1b 25.3±0.1c FL0、FL1、FL2和FL3分别表示不施氮、再生季施氮75 kg(N)∙hm−2、125 kg(N)∙hm−2和175 kg(N)∙hm−2。同列不同字母代表处理间存在显著差异(P<0.05)。FL0, FL1, FL2, and FL3 represent no nitrogen (N), 75, 125, and 175 kg(N)∙hm−2 application rate during the ratoon season, respectively. Different lowercase letters within the same column indicate significant differences among treatments (P<0.05). -
[1] 林文雄, 陈鸿飞, 张志兴, 等. 再生稻产量形成的生理生态特性与关键栽培技术的研究与展望[J]. 中国生态农业学报, 2015, 23(4): 392−401 LIN W X, CHEN H F, ZHANG Z X, et al. Research and prospect on physio-ecological properties of ratoon rice yield formation and its key cultivation technology[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4): 392−401
[2] 宋开付, 张广斌, 徐华, 等. 中国再生稻种植的影响因素及可持续性研究进展[J]. 土壤学报, 2020, 57(6): 1365−1377 doi: 10.11766/trxb201907170371 SONG K F, ZHANG G B, XU H, et al. A review of research on influencing factors and sustainability of ratoon rice cultivation in China[J]. Acta Pedologica Sinica, 2020, 57(6): 1365−1377 doi: 10.11766/trxb201907170371
[3] 唐仁庚, 黄云军, 易镇邪. 湘潭县超级稻—再生稻示范种植效益分析[J]. 作物研究, 2018, 32(2): 152−155 TANG R G, HUANG Y J, YI Z X. Analysis on benefit of demonstration planting of super rice-ratooning rice in Xiangtan County[J]. Crop Research, 2018, 32(2): 152−155
[4] DONG H L, CHEN Q, WANG W Q, et al. The growth and yield of a wet-seeded rice-ratoon rice system in central China[J]. Field Crops Research, 2017, 208: 55−59 doi: 10.1016/j.fcr.2017.04.003
[5] 唐启源, 青先国. 湖南再生稻技术进步与生产发展对策[J]. 杂交水稻, 2023, 38(1): 1−9 TANG Q Y, QING X G. Technological advancement and production development countermeasures of ratooning rice in Hunan Province[J]. Hybrid Rice, 2023, 38(1): 1−9
[6] 杨德生, 黄见良, 彭少兵. 机收再生稻高产优质栽培技术研究进展[J]. 中国稻米, 2023, 29(5): 1−8 doi: 10.3969/j.issn.1006-8082.2023.03.001 YANG D S, HUANG J L, PENG S B. Research progresses of mechanized rice ratooning technology for improving grain yield and quality[J]. China Rice, 2023, 29(5): 1−8 doi: 10.3969/j.issn.1006-8082.2023.03.001
[7] 曹玉贤, 朱建强, 侯俊. 中国再生稻的产量差及影响因素[J]. 中国农业科学, 2020, 53(4): 707−719 doi: 10.3864/j.issn.0578-1752.2020.04.004 CAO Y X, ZHU J Q, HOU J. Yield gap of ratoon rice and their influence factors in China[J]. Scientia Agricultura Sinica, 2020, 53(4): 707−719 doi: 10.3864/j.issn.0578-1752.2020.04.004
[8] YU X, TAO X, LIAO J, et al. Predicting potential cultivation region and paddy area for ratoon rice production in China using Maxent model[J]. Field Crops Research, 2022, 275: 108372 doi: 10.1016/j.fcr.2021.108372
[9] 狄田荣, 陆伟英. 溧阳市杂交籼稻再生栽培技术初步研究[J]. 上海农业科技, 2020(1): 46−47, 49 doi: 10.3969/j.issn.1001-0106.2020.01.020 DI T R, LU W Y. Preliminary study on regeneration cultivation techniques of indica hybrid rice in Liyang City[J]. Shanghai Agricultural Science and Technology, 2020(1): 46−47, 49 doi: 10.3969/j.issn.1001-0106.2020.01.020
[10] JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041−3046
[11] WANG W Q, HE A B, JIANG G L, et al. Ratoon rice technology: A green and resource-efficient way for rice production[M]//Advances in Agronomy. Amsterdam: Elsevier, 2020: 135–167
[12] 余延丰, 张富林, 刘冬碧, 等. 氮肥用量和运筹方式对再生稻产量品质和氮肥利用率的影响[J]. 中国土壤与肥料, 2022(12): 133–140 YU Y F, ZHANG F L, LIU D B, et al. Effect of nitrogen fertilizer application rate and strategy on yield, quality and nitrogen utilization of ratoon rice[J]. Soil and Fertilizer Sciences in China, 2022(12): 133–140
[13] CHEN Q, HE A B, WANG W Q, et al. Comparisons of regeneration rate and yields performance between inbred and hybrid rice cultivars in a direct seeding rice-ratoon rice system in central China[J]. Field Crops Research, 2018, 223: 164−170 doi: 10.1016/j.fcr.2018.04.010
[14] 刘伟伟, 林光号, 易建群, 等. 甬优1540作再生稻在浙西地区种植表现及超高产栽培技术[J]. 浙江农业科学, 2023, 64(4): 778−782 LIU W W, LIN G H, YI J Q, et al. The planting performance and ultra-high yield cultivation techniques of Yongyou 1540 as regenerated rice in the western Zhejiang Region[J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(4): 778−782
[15] 樊迪, 李若林, 马静, 等. 太湖流域不同再生稻品种的温室气体排放强度[J]. 农业环境科学学报, 2022, 41(9): 2082−2090 doi: 10.11654/jaes.2022-0219 FAN D, LI R L, MA J, et al. Greenhouse gas intensity from different cultivars of ratoon rice fields in Taihu Lake region, China[J]. Journal of Agro-Environment Science, 2022, 41(9): 2082−2090 doi: 10.11654/jaes.2022-0219
[16] 葛瑞阳, 王双双, 张妍, 等. 长三角地区农作物温室气体排放特征研究[J]. 南京信息工程大学学报(自然科学版), 2024, 16(3): 428–436 GE R Y, WANG S S, ZHANG Y, et al. Estimation of greenhouse gas emissions from crops in the Yangtze River Delta[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2024, 16(3): 428–436
[17] 范紫月, 齐晓波, 曾麟岚, 等. 中国农业系统近40年温室气体排放核算[J]. 生态学报, 2022, 42(23): 9470−9482 FAN Z Y, QI X B, ZENG L L, et al. Accounting of greenhouse gas emissions in the Chinese agricultural system from 1980 to 2020[J]. Acta Ecologica Sinica, 2022, 42(23): 9470−9482
[18] 马艳芹, 钱晨晨, 孙丹平, 等. 施氮水平对稻田土壤温室气体排放的影响[J]. 农业工程学报, 2016, 32(S2): 128−134 doi: 10.11975/j.issn.1002-6819.2016.z2.017 MA Y Q, QIAN C C, SUN D P, et al. Effect of nitrogen fertilizer application on greenhouse gas emissions from soil in paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 128−134 doi: 10.11975/j.issn.1002-6819.2016.z2.017
[19] 郑洁敏, 钟一铭, 戈长水, 等. 不同施氮水平下水稻田温室气体排放影响研究[J]. 核农学报, 2016, 30(10): 2020−2025 doi: 10.11869/j.issn.100-8551.2016.10.2020 ZHENG J M, ZHONG Y M, GE C S, et al. Greenhouse gas emissions from paddy field under different nitrogen fertilization rates[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(10): 2020−2025 doi: 10.11869/j.issn.100-8551.2016.10.2020
[20] 吴梦琴, 李成芳, 盛锋, 等. 基于DNDC模型评估湖北省不同稻作系统不同管理措施温室气体排放的周年变化[J]. 中国生态农业学报(中英文), 2021, 29(9): 1480−1492 WU M Q, LI C F, SHENG F, et al. Assessment of the annual greenhouse gases emissions under different rice-based cropping systems in Hubei Province based on the denitrification-decomposition (DNDC) mode[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1480−1492
[21] 邓桥江, 曹凑贵, 李成芳. 不同再生稻栽培模式对稻田温室气体排放和产量的影响[J]. 农业环境科学学报, 2019, 38(6): 1373−1380 doi: 10.11654/jaes.2018-1400 DENG Q J, CAO C G, LI C F. Effects of different ratooning cultivation modes on greenhouse gas emissions and grain yields in paddy fields[J]. Journal of Agro-Environment Science, 2019, 38(6): 1373−1380 doi: 10.11654/jaes.2018-1400
[22] SONG K F, ZHANG G B, MA J, et al. Greenhouse gas emissions from ratoon rice fields among different varieties[J]. Field Crops Research, 2022, 277: 108423 doi: 10.1016/j.fcr.2021.108423
[23] SONG K F, ZHANG G B, YU H Y, et al. Methane and nitrous oxide emissions from a ratoon paddy field in Sichuan Province, China[J]. European Journal of Soil Science, 2021, 72(3): 1478−1491 doi: 10.1111/ejss.13066
[24] 宋开付, 杨玉婷, 于海洋, 等. 川中丘陵区覆膜栽培再生稻对CH4排放的影响[J]. 生态学报, 2019, 39(19): 7258−7266 SONG K F, YANG Y T, YU H Y, et al. Effects of plastic film mulching cultivation of ratoon rice on CH4 emissions in the hilly area of central Sichuan[J]. Acta Ecologica Sinica, 2019, 39(19): 7258−7266
[25] 王天宇, 樊迪, 宋开付, 等. 巢湖圩区再生稻田甲烷及氧化亚氮的排放规律研究[J]. 农业环境科学学报, 2021, 40(8): 1829−1838 doi: 10.11654/jaes.2021-0181 WANG T Y, FAN D, SONG K F, et al. Reduced methane and nitrous oxide emissions from ratoon rice paddy in Chaohu polder area, China[J]. Journal of Agro-Environment Science, 2021, 40(8): 1829−1838 doi: 10.11654/jaes.2021-0181
[26] MASSON-DELMOTTE V. Climate Change 2021: The Physical Science Basis: Working GroupⅠ Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2021
[27] MOSIER A R, HALVORSON A D, REULE C A, et al. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado[J]. Journal of Environmental Quality, 2006, 35(4): 1584−1598 doi: 10.2134/jeq2005.0232
[28] 王芝麟, 邹彬, 张涵, 等. 南方红壤丘陵区不同土地利用方式土壤N2O排放系数研究[J]. 南方农业学报, 2021, 52(8): 2193−2201 doi: 10.3969/j.issn.2095-1191.2021.08.018 WANG Z L, ZOU B, ZHANG H, et al. Differences in soil N2O emission coefficients of different land use types in red soil hilly areas in Southern China[J]. Journal of Southern Agriculture, 2021, 52(8): 2193−2201 doi: 10.3969/j.issn.2095-1191.2021.08.018
[29] 山楠, 赵同科, 毕晓庆, 等. 适宜施氮量降低京郊小麦-玉米农田N2O排放系数增加产量[J]. 农业工程学报, 2016, 32(22): 163−170 doi: 10.11975/j.issn.1002-6819.2016.04.023 SHAN N, ZHAO T K, BI X Q, et al. Suitable nitrogen application reducing N2O emission and improving grain yield in wheat-maize crop rotation system in Beijing suburb[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22): 163−170 doi: 10.11975/j.issn.1002-6819.2016.04.023
[30] 李玥, 巨晓棠. 农田氧化亚氮减排的关键是合理施氮[J]. 农业环境科学学报, 2020, 39(4): 842−851 doi: 10.11654/jaes.2020-0245 LI Y, JU X T. Rational nitrogen application is the key to mitigate agricultural nitrous oxide emission[J]. Journal of Agro-Environment Science, 2020, 39(4): 842−851 doi: 10.11654/jaes.2020-0245
[31] XIONG Z Q, XING G X, ZHU Z L. Nitrous oxide and methane emissions as affected by water, soil and nitrogen[J]. Pedosphere, 2007, 17(2): 146−155 doi: 10.1016/S1002-0160(07)60020-4
[32] SÁNCHEZ-MARTÍN L, VALLEJO A, DICK J, et al. The influence of soluble carbon and fertilizer nitrogen on nitric oxide and nitrous oxide emissions from two contrasting agricultural soils[J]. Soil Biology and Biochemistry, 2008, 40(1): 142−151 doi: 10.1016/j.soilbio.2007.07.016
[33] 宋开付, 于海洋, 张广斌, 等. 川中丘陵区覆膜再生稻田N2O排放规律研究[J]. 农业环境科学学报, 2019, 38(6): 1381−1387 doi: 10.11654/jaes.2018-1368 SONG K F, YU H Y, ZHANG G B, et al. N2O emissions from ratoon paddy fields covered with plastic film mulching in the hilly area of central Sichuan, China[J]. Journal of Agro-Environment Science, 2019, 38(6): 1381−1387 doi: 10.11654/jaes.2018-1368
[34] 徐富贤, 熊洪, 洪松. 促芽肥施用时期对杂交中稻再生力的影响[J]. 四川农业大学学报, 2001, 19(1): 21–23, 39 XU F X, XIONG H, HONG S. Effect of N application for bud development at different days after full heading of main crop on the ratooning ability in hybrid mid-rice[J]. Journal of Sichuan Agricultural University, 2001, 19(1): 21–23, 39
[35] AGEHARA S, WARNCKE D D. Soil moisture and temperature effects on nitrogen release from organic nitrogen sources[J]. Soil Science Society of America Journal, 2005, 69(6): 1844−1855 doi: 10.2136/sssaj2004.0361
[36] 朱永官, 王晓辉, 杨小茹, 等. 农田土壤N2O产生的关键微生物过程及减排措施[J]. 环境科学, 2014, 35(2): 792−800 ZHU Y G, WANG X H, YANG X R, et al. Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies[J]. Environmental Science, 2014, 35(2): 792−800
[37] 张振贤, 华珞, 尹逊霄, 等. 农田土壤N2O的发生机制及其主要影响因素[J]. 首都师范大学学报(自然科学版), 2005, 26(3): 114−120 ZHANG Z X, HUA L, YIN X X, et al. Nitrous oxide emission from agricultural soil and some influence factors[J]. Journal of Capital Normal University (Natural Science Edition), 2005, 26(3): 114−120
[38] 张树兰, 杨学云, 吕殿青, 等. 温度、水分及不同氮源对土壤硝化作用的影响[J]. 生态学报, 2002, 22(12): 2147−2153 doi: 10.3321/j.issn:1000-0933.2002.12.019 ZHANG S L, YANG X Y, LYU D Q, et al. Effect of soil moisture, temperature and different nitrogen fertilizers on nitrification[J]. Acta Ecologica Sinica, 2002, 22(12): 2147−2153 doi: 10.3321/j.issn:1000-0933.2002.12.019
[39] 郑循华, 王明星, 王跃思, 等. 温度对农田N2O产生与排放的影响[J]. 环境科学, 1997(5): 3–7, 93 ZHENG X H, WANG M X, WANG Y S, et al. Impacts of temperature on N2O production and emission[J]. Environmental Science, 1997(5): 3–7, 93
[40] 徐新超, 伏广农, 谢小茜, 等. 农田氧化亚氮排放的主要影响因素及其作用机制[J]. 广东农业科学, 2013, 40(11): 171−176 doi: 10.3969/j.issn.1004-874X.2013.25.030 XU X C, FU G N, XIE X X, et al. Main influence factors and mechanisms of N2O emissions in agricultural soils[J]. Guangdong Agricultural Science, 2013, 40(11): 171−176 doi: 10.3969/j.issn.1004-874X.2013.25.030
[41] 于亚军, 朱波, 王小国, 等. 成都平原水稻-油菜轮作系统氧化亚氮排放[J]. 应用生态学报, 2008, 19(6): 1277−1282 YU Y J, ZHU B, WANG X G, et al. N2O emission from rice-rapeseed rotation system in Chengdu Plain of Sichun Basin[J]. Chinese Journal of Applied Ecology, 2008, 19(6): 1277−1282
[42] 杨劲峰, 韩晓日, 战秀梅, 等. 不同施肥处理对棕壤N2O排放量的影响[J]. 生态环境, 2007, 16(2): 560−563 YANG J F, HAN X R, ZHAN X M, et al. Effects of different fertilization on N2O emission in brown field[J]. Ecology and Environmental Sciences, 2007, 16(2): 560−563
[43] 黄树辉, 蒋文伟, 吕军, 等. 氮肥和磷肥对稻田N2O排放的影响[J]. 中国环境科学, 2005, 25(5): 540−543 doi: 10.3321/j.issn:1000-6923.2005.05.008 HUANG S H, JIANG W W, LYU J, et al. Influence of nitrogen and phosphorus fertilizers on N2O emissions in rice fields[J]. China Environmental Science, 2005, 25(5): 540−543 doi: 10.3321/j.issn:1000-6923.2005.05.008
[44] 易琼, 逄玉万, 杨少海, 等. 施肥对稻田甲烷与氧化亚氮排放的影响[J]. 生态环境学报, 2013, 22(8): 1432−1437 doi: 10.3969/j.issn.1674-5906.2013.08.027 YI Q, PANG Y W, YANG S H, et al. Methane and nitrous oxide emissions in paddy field as influenced by fertilization[J]. Ecology and Environmental Sciences, 2013, 22(8): 1432−1437 doi: 10.3969/j.issn.1674-5906.2013.08.027
[45] HE F F, JIANG R F, CHEN Q, et al. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China[J]. Environmental Pollution, 2009, 157(5): 1666−1672 doi: 10.1016/j.envpol.2008.12.017
[46] 童品球. 再生稻不同促芽肥施用试验[J]. 安徽农学通报, 2019, 25(6): 36−37 doi: 10.3969/j.issn.1007-7731.2019.06.015 TONG P Q. Experiment on application of different germination promoting fertilizers for ratooning rice[J]. Anhui Agricultural Science Bulletin, 2019, 25(6): 36−37 doi: 10.3969/j.issn.1007-7731.2019.06.015
[47] 彭少兵, 黄见良, 钟旭华, 等. 提高中国稻田氮肥利用率的研究策略[J]. 中国农业科学, 2002, 35(9): 1095−1103 doi: 10.3321/j.issn:0578-1752.2002.09.012 PENG S B, HUANG J L, ZHONG X H, et al. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Scientia Agricultura Sinica, 2002, 35(9): 1095−1103 doi: 10.3321/j.issn:0578-1752.2002.09.012
[48] 王明星, 李晶, 郑循华. 稻田甲烷排放及产生、转化、输送机理[J]. 大气科学, 1998, 22(4): 218−230 doi: 10.3878/j.issn.1006-9895.1998.04.20 WANG M X, LI J, ZHENG X H. Methane emission and mechanisms of methane production, oxidation, transportation in the rice fields[J]. Scientia Atmospherica Sinica, 1998, 22(4): 218−230 doi: 10.3878/j.issn.1006-9895.1998.04.20
[49] 葛会敏, 陈璐, 于一帆, 等. 稻田甲烷排放与减排的研究进展[J]. 中国农学通报, 2015, 31(3): 160−166 doi: 10.11924/j.issn.1000-6850.2014-1822 GE H M, CHEN L, YU Y F, et al. Advances in methane emission and emission reduction in rice field[J]. Chinese Agricultural Science Bulletin, 2015, 31(3): 160−166 doi: 10.11924/j.issn.1000-6850.2014-1822
[50] 易镇邪, 周文新, 屠乃美. 留桩高度对再生稻源库性状与物质运转的影响[J]. 中国水稻科学, 2009, 23(5): 509−516 doi: 10.3969/j.issn.1001-7216.2009.05.10 YI Z X, ZHOU W X, TU N M. Effects of stubble height of the main crop on source-sink characteristics and assimilates transportation in ratooning rice[J]. Chinese Journal of Rice Science, 2009, 23(5): 509−516 doi: 10.3969/j.issn.1001-7216.2009.05.10
[51] 贾仲君, 蔡祖聪. 水稻植株对稻田甲烷排放的影响[J]. 应用生态学报, 2003, 14(11): 2049–2053 JIA Z J, CAI Z C. Effects of rice plants on methane emission from paddy fields[J]. Chinese Journal of Applied Ecology, 2003, 14(11): 2049–2053
[52] 江长胜, 王跃思, 郑循华, 等. 稻田甲烷排放影响因素及其研究进展[J]. 土壤通报, 2004, 35(5): 663−669 doi: 10.3321/j.issn:0564-3945.2004.05.032 JIANG C S, WANG Y S, ZHENG X H, et al. Advances in the research on methane emission from paddy fields and its affecting factors[J]. Chinese Journal of Soil Science, 2004, 35(5): 663−669 doi: 10.3321/j.issn:0564-3945.2004.05.032
[53] 李绍秋, 娄兵, 李芝义, 等. 江汉平原不同类型“一种两收”水稻品种对稻田CH4和N2O排放的影响[J]. 作物研究, 2023, 37(2): 104−109 doi: 10.3969/j.issn.1001-5280.2023.2.zuowuyj202302002 LI S Q, LOU B, LI Z Y, et al. Effects of different types of “One Type, Two Harvests” rice varieities on CH4 and N2O emissions in the Jianghan Plain[J]. Crop Research, 2023, 37(2): 104−109 doi: 10.3969/j.issn.1001-5280.2023.2.zuowuyj202302002
[54] 马静, 徐华, 蔡祖聪. 施肥对稻田甲烷排放的影响[J]. 土壤, 2010, 42(2): 153−163 MA J, XU H, CAI Z C. Effect of fertilization on methane emissions from rice fields[J]. Soils, 2010, 42(2): 153−163
[55] 陈冠雄, 黄国宏, 黄斌, 等. 稻田CH4和N2O的排放及养萍和施肥的影响[J]. 应用生态学报, 1995, 6(4): 378−382 CHEN G X, HUANG G H, HUANG B, et al. CH4 and N2O emission from a rice field and effect of azolla and fertilization on them[J]. Chinese Journal of Applied Ecology, 1995, 6(4): 378−382
[56] LINDAU C W. Methane emissions from Louisiana rice fields amended with nitrogen fertilizers[J]. Soil Biology and Biochemistry, 1994, 26(3): 353−359 doi: 10.1016/0038-0717(94)90284-4
[57] 李思平, 曾路生, 吴立鹏, 等. 氮肥水平与栽植密度对植稻土壤养分含量变化与氮肥利用效率的影响[J]. 中国水稻科学, 2020, 34(1): 69−79 LI S P, ZENG L S, WU L P, et al. Effects of nitrogen fertilizer level and planting density on changes in soil nutrient contents and nitrogen use efficiency in rice[J]. Chinese Journal of Rice Science, 2020, 34(1): 69−79
[58] 肖大康, 胡仁, 韩天富, 等. 氮肥用量和运筹对我国水稻产量及其构成因子影响的整合分析[J]. 中国水稻科学, 2023, 37(5): 529−542 XIAO D K, HU R, HAN T F, et al. Effects of nitrogen fertilizer consumption and operation on rice yield and its components in China: A meta-analysis[J]. Chinese Journal of Rice Science, 2023, 37(5): 529−542
[59] 郑梅群, 刘娟, 姜培坤, 等. 氮肥运筹对稻田CH4和N2O排放的影响[J]. 环境科学, 2022, 43(4): 2171−2181 ZHENG M Q, LIU J, JIANG P K, et al. Effects of nitrogen fertilizer management on CH4 and N2O emissions in paddy fields[J]. Environmental Science, 2022, 43(4): 2171−2181
[60] 陈刚, 吴文革, 孙如银, 等. 氮肥追施方式对机插杂交中籼稻群体质量及产量形成的影响[J]. 中国土壤与肥料, 2015(2): 78−82 doi: 10.11838/sfsc.20150214 CHEN G, WU W G, SUN R Y, et al. Effects of nitrogen topdressing on population quality and yield formation of machine transplanted middle-season indica hybrid rice[J]. Soil and Fertilizer Sciences in China, 2015(2): 78−82 doi: 10.11838/sfsc.20150214
[61] 李丹丹, 何昊, 潘非凡, 等. 优化减氮与施用生物炭对双季稻土壤温室气体排放及产量的影响[J]. 农业环境科学学报, 2023, 42(11): 2625−2634 doi: 10.11654/jaes.2023-0050 LI D D, HE H, PAN F F, et al. Effects of biochar application on greenhouse gas emissions and yield in a double-season rice cropping system under various optimized nitrogen reduction conditions[J]. Journal of Agro-Environment Science, 2023, 42(11): 2625−2634 doi: 10.11654/jaes.2023-0050
-
期刊类型引用(3)
1. 盛艳,秦富仓,刘林甫,安丽,李娟. 基于InVEST模型的黄河流域砒砂岩区土壤保持功能演化及驱动机制. 西北林学院学报. 2024(03): 144-152 . 百度学术
2. 何丽波,李馨雨,李细归. 中国茶叶生产格局变迁及其影响因素研究. 地域研究与开发. 2024(04): 21-28 . 百度学术
3. 刘志林,王磊,丁银平,角媛梅,武欣怡,徐秋娥. 贺兰山东麓葡萄酒生产集群格局演变与驱动机制. 经济地理. 2023(08): 165-176 . 百度学术
其他类型引用(6)