Altitudinal distribution pattern and its driving factors of plant diversity in the middle section of the eastern slope of the Taihang Mountain
-
摘要: 太行山东西坡因地形等因素差异呈现不同的生物多样性, 本文聚焦于太行山东坡中段, 研究了植物多样性在海拔梯度上的分布格局及其主要影响因素。根据样方调查数据, 研究了维管植物α多样性和β多样性的垂直分布格局, 由此描述了植物群落的垂直梯度演替特征; 应用植被净初级生产力(MODIS NPP)数据产品, 分析了垂直梯度植物丰富度与净初级生产力(NPP)和环境因子之间的关系; 运用数量分类学方法, 研究了主导群落优势物种垂直分布的环境因素。结果表明: 太行山东坡中段维管植物群落α多样性垂直分布出现两次峰值, 基本符合“中间高度膨胀”理论。植物多样性垂直分布与太行山区产水量和NPP垂直格局相一致。β多样性相似性指数在物种丰富度峰值区达到最低, 说明此区段群落间差异性大, 群落间演替速率增大, 致使群落物种多样性增加。植被NPP与物种丰富度呈现一致的垂直分布格局, 二者显著正相关。RDA和CCA排序分析表明, 影响优势物种垂直分布的主要环境因素是海拔、温度和降水, 与坡度、坡面等地形因子相关性不显著。综合研究结果, 太行山东坡中段维管植物垂直分布格局是群落垂直演替进程、环境因素和人为干扰协同作用的结果。Abstract: Due to global climate change, altitudinal distribution patterns of biodiversity and factors influencing biodiversity have changed dramatically. To clarify the elevational distribution pattern of plant diversity and the main influencing factors in the middle section of the eastern slope of the Taihang Mountain, the alpha and beta diversities of vascular plant communities were studied along the elevational gradient using the quadrat survey method. In the middle section of the eastern slope of the Taihang Mountain, the succession characteristics of plant communities along the elevational gradient were investigated. Additionally, the main factors influencing the altitudinal distribution pattern of plant diversity were studied. The possible mechanisms of plant altitudinal distribution patterns were discussed by exploring the relationships between plant diversity and environmental factors. The results showed that the distribution of the alpha diversity of vegetationa had two peaks along the elevational gradient, which was in line with the theory of “diversity peaks at the intermediate altitude”. By studying the correlation between plant diversity, water yield, and net primary production of vegetation along the altitudinal gradient, it was demonstrated that the distribution pattern of plant diversity on the elevational gradient was consistent with the vertical distribution pattern of water yield and net primary productivity of vegetation in the study area. The similarity index (beta diversity) of plant communities on the altitudinal gradient reached the lowest value in the peak area of species richness, indicating that there were significant differences among the plant communities within this height range, and that the replacement rate of plant species between communities increased, which led to an increase in plant species richness. The altitudinal distribution of net primary production of vegetation showed a consistent pattern with plant species richness in the study area, and there was a significant positive correlation between them. CCA and RDA analyses revealed that the main environmental factors influencing the distribution of plant diversity on the elevational gradient were altitude, temperature, and precipitation; and no significant correlation was found with topographic factors such as slope and aspect. Comparing the ordination results of CCA and RDA analyses, the results were found to be consistent, which proved that both the linear and unimodal models were suitable for the ordination study of plant species distribution in this region. Using the Monte Carlo permutation test, the significance of the explanatory quantity of environmental factors on species distribution was analyzed. The results showed that the ordination results can comprehensively explain the effects of various environmental factors on species distribution. Based on the comprehensive research results, it was concluded that the altitudinal distribution pattern of the vascular plants in the middle section of the eastern slope of the Taihang Mountain was the result of the synergistic effect of the community altitudinal succession processes, environmental influence, and human disturbance.
-
-
图 2 太行山东坡中段维管植物群落丰富度和种群密度(a)、α多样性(Shannon-Wiener指数)(b)、相似性指数(Sørensen和Jaccard指数)(c)和群落更替速率(Cody指数)(d)的垂直分布
Figure 2. Altitudinal variations of the species richness and density (a), alpha index (Shannon-Wiener index) (b), similarity index (Sørensen and Jaccard indexes) (c) and succession rate (Cody index) (d) of vascular plant communities in the middle section fo the eastern slope of the Taihang Mountain
图 4 太行山东坡中段植物群落优势物种RDA和CCA排序图
sit1-sit16: 取样点1到取样点16。T: 温度; prec: 降水; ele: 海拔; asp: 坡向; slo: 坡度; N: 土壤全氮含量; P: 土壤全磷含量; K: 土壤全钾含量; C: 土壤全碳含量; por: 土壤孔隙度。Rubia: 茜草属; Ailanthus: 臭椿属; Populus: 杨属; Ziziphus: 枣属; Pinus: 松属; Potentilla: 委陵菜属; Thalictrum: 唐松草属; Ampelopsis: 蛇葡萄属; Saussurea: 风毛菊属; Spiraea: 绣线菊属; Artemisia: 蒿属; Lysimachia: 珍珠菜属; Inula: 旋覆花属; Sanguisorba: 地榆属.
Figure 4. RDA ordination and CCA ordination of the dominant plant species in the middle section of the eastern slope of the Taihang Mountain
sit1-sit16: sampling site 1 to 16. T: temperature; prec: precipitation; ele: elevation; asp: aspect; slo: slope; N: soil N content; P: soil P content; K: soil K content; C: soil C content; por: porosity.
表 1 太行山东坡中段植被物种丰富度、Shannon-Wiener指数与环境因子偏相关分析
Table 1 Partial correlation analysis between species richness, Shannon-Wiener index of vegetagtion and environmental factors in the middle section of the eastern slope of the Taihang Mountain
参数
Parameter海拔
Elevation降水
Precipitation温度
Temperature净初级生产力
Net primary
productivity物种丰富度
Species richness−0.060 0.014 −0.005 0.573* Shannon-
Wiener
指数
Shannon-
Wiener index−0.154 −0.079 0.140 0.444 *表示P<0.05水平显著。* represents a significant correlation at P<0.05. 表 2 太行山中段植物群落垂直分布影响因子CCA排序结果蒙特卡洛显著性检验
Table 2 Monte Carlo significance test of the CCA ordination results of the influencing factors to the altitudinal distribution of plant communites in the middle section of the eastern slope of the Taihang Mountain
CCA1 CCA2 r2 Pr 海拔
Elevation0.9612 −0.2731 0.9001 0.001*** 温度
Temperature−0.9982 0.0598 0.7734 0.001*** 降水
Precipitation0.9994 −0.0336 0.7166 0.004** 坡度
Slope0.8654 0.5012 0.2094 0.354 坡向
Aspect0.9719 −0.2353 0.3233 0.201 土壤全氮含量
Soil N content0.9963 0.0861 0.5723 0.027* 土壤全磷含量
Soil P content−0.9883 0.1526 0.3700 0.053 土壤钾含量
Soil K content−0.8914 0.4532 0.1272 0.556 土壤碳含量
Soil C content0.9949 0.1012 0.5720 0.026* 土壤孔隙度
Porosity0.9824 −0.1869 0.5891 0.019* ***、 ** 和*分别表示P<0.001、P<0.01和P<0.05水平具显著性。***, ** and * represent significant correlation at the levels of P<0.001, P<0.01 and P<0.05, respectively. -
[1] 刘华训. 我国山地植被的垂直分布规律[J]. 地理学报, 1981, 36(3): 267−279 doi: 10.3321/j.issn:0375-5444.1981.03.003 LIU H X. The vertical zonation of mountain vegetation in China[J]. Acta Geographica Sinica, 1981, 36(3): 267−279 doi: 10.3321/j.issn:0375-5444.1981.03.003
[2] HUBER U M, BUGMANN H K M, REASONER M A. Global Change and Mountain Regions[M]. Dordrecht: Springer Netherlands, 2005
[3] 孙然好, 陈利顶, 张百平, 等. 山地景观垂直分异研究进展[J]. 应用生态学报, 2009, 20(7): 1617−1624 SUN R H, CHEN L D, ZHANG B P, et al. Vertical zonation of mountain landscape: a review[J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1617−1624
[4] 王根绪, 刘国华, 沈泽昊, 等. 山地景观生态学研究进展[J]. 生态学报, 2017, 37(12): 3967−3981 WANG G X, LIU G H, SHEN Z H, et al. Research progress and future perspectives on the landscape ecology of mountainous areas[J]. Acta Ecologica Sinica, 2017, 37(12): 3967−3981
[5] ZHANG B P, YAO Y H. Implications of mass elevation effect for the altitudinal patterns of global ecology[J]. Journal of Geographical Sciences, 2016, 26(7): 871−877 doi: 10.1007/s11442-016-1303-2
[6] 唐志尧, 方精云. 植物物种多样性的垂直分布格局[J]. 生物多样性, 2004, 12(1): 20−28 doi: 10.3321/j.issn:1005-0094.2004.01.004 TANG Z Y, FANG J Y. A review on the elevational patterns of plant species diversity[J]. Chinese Biodiversity, 2004, 12(1): 20−28 doi: 10.3321/j.issn:1005-0094.2004.01.004
[7] 张百平. 山地的自然现象: 垂直带[J]. 森林与人类, 2015(2): 2−4 ZHANG B P. Natural phenomenon of mountains: vertical zonation[J]. Forest & Humankind, 2015(2): 2−4
[8] JENÍK J. H. Walter Vegetation of the earth in relation to climate and the eco-physiological conditions[J]. Folia Geobotanica et Phytotaxonomica, 1975, 10(1): 100 doi: 10.1007/BF02855103
[9] KÖRNER C. Why are there global gradients in species richness? mountains might hold the answer[J]. Trends in Ecology & Evolution, 2000, 15(12): 513−514
[10] 兰斯安, 宋敏, 曾馥平, 等. 木论喀斯特森林木本植物多样性垂直格局[J]. 生态学报, 2016, 36(22): 7374−7383 LAN S A, SONG M, ZENG F P, et al. Altitudinal pattern of woody plant species diversity in the Karst forest in Mulun, China[J]. Acta Ecologica Sinica, 2016, 36(22): 7374−7383
[11] BROWN J H, WHITHAM T G, MORGAN ERNEST S K, et al. Complex species interactions and the dynamics of ecological systems: long-term experiments[J]. Science, 2001, 293(5530): 643−650 doi: 10.1126/science.293.5530.643
[12] 方精云. 探索中国山地植物多样性的分布规律[J]. 生物多样性, 2004, 12(1): 1−4, 213 doi: 10.3321/j.issn:1005-0094.2004.01.001 FANG J Y. Exploring altitudinal patterns of plant diversity of China’s mountains[J]. Chinese Biodiversity, 2004, 12(1): 1−4, 213 doi: 10.3321/j.issn:1005-0094.2004.01.001
[13] 孙建, 程根伟. 山地垂直带谱研究评述[J]. 生态环境学报, 2014, 23(9): 1544−1550 doi: 10.3969/j.issn.1674-5906.2014.09.023 SUN J, CHENG G W. Mountain altitudinal belt: a review[J]. Ecology and Environmental Sciences, 2014, 23(9): 1544−1550 doi: 10.3969/j.issn.1674-5906.2014.09.023
[14] 张璐, 苏志尧, 陈北光. 山地森林群落物种多样性垂直格局研究进展[J]. 山地学报, 2005, 23(6): 6736−6743 ZHANG L, SU Z Y, CHEN B G. Altitudinal patterns of species diversity in the montane forest communities: a review[J]. Journal of Mountain Research, 2005, 23(6): 6736−6743
[15] 朱珣之, 张金屯. 中国山地植物多样性的垂直变化格局[J]. 西北植物学报, 2005, 25(7): 1480−1486 doi: 10.3321/j.issn:1000-4025.2005.07.036 ZHU X Z, ZHANG J T. Altitudinal patterns of plant diversity of China mountains[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(7): 1480−1486 doi: 10.3321/j.issn:1000-4025.2005.07.036
[16] 陈圣宾, 欧阳志云, 徐卫华, 等. Beta多样性研究进展[J]. 生物多样性, 2010, 18(4): 323−335 doi: 10.3724/SP.J.1003.2010.323 CHEN S B, OUYANG Z Y, XU W H, et al. A review of beta diversity studies[J]. Biodiversity Science, 2010, 18(4): 323−335 doi: 10.3724/SP.J.1003.2010.323
[17] WHITTAKER R H. Vegetation of the Siskiyou Mountains, Oregon and California[J]. Ecological Monographs, 1960, 30(3): 279−338 doi: 10.2307/1943563
[18] 张金屯, 邱扬, 郑凤英. 景观格局的数量研究方法[J]. 山地学报, 2000, 18(4): 346−352 doi: 10.3969/j.issn.1008-2786.2000.04.011 ZHANG J T, QIU Y, ZHENG F Y. Quantitative methods in landscape pattern analysis[J]. Journal of Mountain Research, 2000, 18(4): 346−352 doi: 10.3969/j.issn.1008-2786.2000.04.011
[19] SOCOLAR J B, GILROY J J, KUNIN W E, et al. Sparse data necessitate explicit treatment of beta-diversity: a reply to Bush et al[J]. Trends in Ecology & Evolution, 2016, 31(5): 338−339
[20] LOMOLINO M V. Elevation gradients of species-density: historical and prospective views[J]. Global Ecology and Biogeography, 2001, 10(1): 3−13 doi: 10.1046/j.1466-822x.2001.00229.x
[21] 贺金生, 陈伟烈. 陆地植物群落物种多样性的梯度变化特征[J]. 生态学报, 1997, 17(1): 91−99 doi: 10.3321/j.issn:1000-0933.1997.01.014 HE J S, CHEN W L. A review of gradient changes in species diversity of land plant communities[J]. Acta Ecologica Sinica, 1997, 17(1): 91−99 doi: 10.3321/j.issn:1000-0933.1997.01.014
[22] 尚文艳, 吴钢, 付晓, 等. 陆地植物群落物种多样性维持机制[J]. 应用生态学报, 2005, 16(3): 573−578 doi: 10.3321/j.issn:1001-9332.2005.03.036 SHANG W Y, WU G, FU X, et al. Maintaining mechanism of species diversity of land plant communities[J]. Chinese Journal of Applied Ecology, 2005, 16(3): 573−578 doi: 10.3321/j.issn:1001-9332.2005.03.036
[23] 李薇, 谈明洪. 太行山区不同坡度NDVI变化趋势差异分析[J]. 中国生态农业学报, 2017, 25(4): 509−519 LI W, TAN M H. NDVI variation tendency under different slopes in Taihang Mountain[J]. Chinese Journal of Eco-Agriculture, 2017, 25(4): 509−519
[24] 李晓荣, 高会, 韩立朴, 等. 太行山区植被NPP时空变化特征及其驱动力分析[J]. 中国生态农业学报, 2017, 25(4): 498−508 LI X R, GAO H, HAN L P, et al. Spatio-temporal variations in vegetation NPP and the driving factors in Taihang Mountain Area[J]. Chinese Journal of Eco-Agriculture, 2017, 25(4): 498−508
[25] 马克平, 叶万辉, 于顺利, 等. 北京东灵山地区植物群落多样性研究Ⅷ. 群落组成随海拔梯度的变化[J]. 生态学报, 1997, 17(6): 593−600 doi: 10.3321/j.issn:1000-0933.1997.06.002 MA K P, YE W H, YU S L, et al. Studies on plant community diversity in Dongling Mountain, Beijing, China Ⅷ. variation of composition along elevational gradient[J]. Acta Ecologica Sinica, 1997, 17(6): 593−600 doi: 10.3321/j.issn:1000-0933.1997.06.002
[26] 杨慧, 娄安如, 高益军, 等. 北京东灵山地区白桦种群生活史特征与空间分布格局[J]. 植物生态学报, 2007, 31(2): 272−282 doi: 10.3321/j.issn:1005-264X.2007.02.010 YANG H, LOU A R, GAO Y J, et al. Life history characteristics and spatial distribution of the Betula platyphylla population in the Dongling Mountain region, Beijing, China[J]. Journal of Plant Ecology, 2007, 31(2): 272−282 doi: 10.3321/j.issn:1005-264X.2007.02.010
[27] 高会, 刘金铜, 朱建佳, 等. 基于可持续发展的太行山区生态系统服务垂直分类管理[J]. 自然杂志, 2018, 40(1): 47−54 doi: 10.3969/j.issn.0253-9608.2018.01.007 GAO H, LIU J T, ZHU J J, et al. Ecosystem services management based on vertical variation for sustainable development of Taihang Mountain areas[J]. Chinese Journal of Nature, 2018, 40(1): 47−54 doi: 10.3969/j.issn.0253-9608.2018.01.007
[28] WHITTAKER R H, NIERING W A. Vegetation of the Santa Catalina Mountains, Arizona.Ⅴ. biomass, production, and diversity along the elevation gradient[J]. Ecology, 1975, 56(4): 771−790 doi: 10.2307/1936291
[29] 方精云. 群落生态学迎来新的辉煌时代[J]. 生物多样性, 2009, 17(6): 531−532 FANG J Y. Community ecology comes to a new era[J]. Biodiversity Science, 2009, 17(6): 531−532
[30] 郝占庆, 于德永, 吴钢, 等. 长白山北坡植物群落β多样性分析[J]. 生态学报, 2001, 21(12): 2018−2022 doi: 10.3321/j.issn:1000-0933.2001.12.008 HAO Z Q, YU D Y, WU G, et al. Analysis on β diversity of plant communities on northern slope of Changbai Mountain[J]. Acta Ecologica Sinica, 2001, 21(12): 2018−2022 doi: 10.3321/j.issn:1000-0933.2001.12.008
[31] SMILAUER P, LEPŠ J. Multivariate Analysis of Ecological Data using CANOCO 5[M]. Cambridge: Cambridge University Press, 2014: 15–38
[32] MABESSIMO C L. 北京东灵山主要植被类型植物多样性分析[D]. 北京: 北京林业大学, 2015: 1–4 MABESSIMO C L. Analysis of plants diversity of major vegetation types in Dongling Mountain, Beijing[D]. Beijing: Beijing Forestry University, 2015: 1–4
[33] 茹文明, 张峰. 中条山东段植被垂直带的数量分类研究[J]. 应用与环境生物学报, 2000, 6(3): 201−205 doi: 10.3321/j.issn:1006-687X.2000.03.002 RU W M, ZHANG F. Study on vertical zonation of vegetation in the eastern part of the Zhongtiao Mountains, Shanxi[J]. Chinese Journal of Applied and Environmental Biology, 2000, 6(3): 201−205 doi: 10.3321/j.issn:1006-687X.2000.03.002
[34] 茹文明, 张桂萍, 张金屯, 等. 太行山南段森林群落物种多样性研究[J]. 西北植物学报, 2006, 26(5): 1036−1042 doi: 10.3321/j.issn:1000-4025.2006.05.026 RU W M, ZHANG G P, ZHANG J T, et al. Species diversity of forest communities in southern Taihang Mountains, Shanxi[J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(5): 1036−1042 doi: 10.3321/j.issn:1000-4025.2006.05.026
[35] 丛沛桐, 赵则海, 张文辉, 等. 东灵山辽东栎群落演替的连续时间马尔可夫过程研究[J]. 植物研究, 2000, 20(4): 438−443 doi: 10.3969/j.issn.1673-5102.2000.04.016 CONG P T, ZHAO Z H, ZHANG W H, et al. The research of succession process of Quercus liaotungensis community on Dongling Mountain with continous time Markov approach[J]. Bulletin of Botanical Research, 2000, 20(4): 438−443 doi: 10.3969/j.issn.1673-5102.2000.04.016
[36] 郑敬刚, 张有福, 王云, 等. 太行山中段植被分布特征及其多样性研究[J]. 河南科学, 2009, 27(3): 292−294 doi: 10.3969/j.issn.1004-3918.2009.03.011 ZHENG J G, ZHANG Y F, WANG Y, et al. The characteristics of plant distribution and diversity in the middle section of Taihang Mountain[J]. Henan Science, 2009, 27(3): 292−294 doi: 10.3969/j.issn.1004-3918.2009.03.011
[37] 刘晓, 丛静, 卢慧, 等. 典型阔叶林的物种多样性分布和环境解释[J]. 生态科学, 2016, 35(4): 125−133 LIU X, CONG J, LU H, et al. Distribution of species diversity and environmental interpretation of typical broadleaved forests[J]. Ecological Science, 2016, 35(4): 125−133
[38] 牛克昌, 刘怿宁, 沈泽昊, 等. 群落构建的中性理论和生态位理论[J]. 生物多样性, 2009, 17(6): 579−593 doi: 10.3724/SP.J.1003.2009.09142 NIU K C, LIU Y N, SHEN Z H, et al. Community assembly: the relative importance of neutral theory and niche theory[J]. Biodiversity Science, 2009, 17(6): 579−593 doi: 10.3724/SP.J.1003.2009.09142
[39] PETERSON A T, MARTÍNEZ-CAMPOS C, NAKAZAWA Y, et al. Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2005, 99(9): 647−655 doi: 10.1016/j.trstmh.2005.02.004
[40] QIAO H J, SOBERÓN J, PETERSON A T. No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation[J]. Methods in Ecology and Evolution, 2015, 6(10): 1126−1136 doi: 10.1111/2041-210X.12397
[41] 李军玲, 张金屯. 太行山中段植物群落草本植物优势种种间联结性分析[J]. 草业科学, 2010, 27(9): 119−123 doi: 10.3969/j.issn.1001-0629.2010.09.021 LI J L, ZHANG J T. Interspecific association and correlation of dominant herbs in plant community in the midst of Taihang Mountains[J]. Pratacultural Science, 2010, 27(9): 119−123 doi: 10.3969/j.issn.1001-0629.2010.09.021
[42] 斯幸峰, 赵郁豪, 陈传武, 等. Beta多样性分解: 方法、应用与展望[J]. 生物多样性, 2017, 25(5): 464−480 doi: 10.17520/biods.2017024 SI X F, ZHAO Y H, CHEN C W, et al. Beta-diversity partitioning: methods, applications and perspectives[J]. Biodiversity Science, 2017, 25(5): 464−480 doi: 10.17520/biods.2017024
[43] MORI A S, SHIONO T, KOIDE D, et al. Community assembly processes shape an altitudinal gradient of forest biodiversity[J]. Global Ecology and Biogeography, 2013, 22(7): 878−888 doi: 10.1111/geb.12058
[44] ANDERSON M J, CRIST T O, CHASE J M, et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist[J]. Ecology Letters, 2011, 14(1): 19−28 doi: 10.1111/j.1461-0248.2010.01552.x
[45] MCCAIN C M, BECK J. Species turnover in vertebrate communities along elevational gradients is idiosyncratic and unrelated to species richness[J]. Global Ecology and Biogeography, 2016, 25(3): 299−310 doi: 10.1111/geb.12410
[46] MARINI L, BERTOLLI A, BONA E, et al. Beta-diversity patterns elucidate mechanisms of alien plant invasion in mountains[J]. Global Ecology and Biogeography, 2013, 22(4): 450−460 doi: 10.1111/geb.12006
[47] 郭华, 张桂萍, 铁军, 等. 太行山南段油松群落物种多样性研究[J]. 植物科学学报, 2015, 33(2): 151−157 doi: 10.11913/PSJ.2095-0837.2015.20151 GUO H, ZHANG G P, TIE J, et al. Analysis on species diversity of Pinus tabulaeform is forest communities in the southern Taihang Mountains[J]. Plant Science Journal, 2015, 33(2): 151−157 doi: 10.11913/PSJ.2095-0837.2015.20151
[48] 曹杨, 上官铁梁, 张金屯, 等. 山西五台山蓝花棘豆群落的数量分类和排序[J]. 植物资源与环境学报, 2005, 14(3): 1−6 doi: 10.3969/j.issn.1674-7895.2005.03.001 CAO Y, SHANGGUAN T L, ZHANG J T, et al. The numerical classification and ordination ofOxytropis coerulea community of Wutai Mountain in Shanxi Province[J]. Journal of Plant Resources and Environment, 2005, 14(3): 1−6 doi: 10.3969/j.issn.1674-7895.2005.03.001
[49] 刘增力, 郑成洋, 方精云. 河北小五台山主要植被类型的分布与地形的关系: 基于遥感信息的分析[J]. 生物多样性, 2004, 12(1): 146−154 doi: 10.3321/j.issn:1005-0094.2004.01.018 LIU Z L, ZHENG C Y, FANG J Y. Relationship between the vegetation type and topography in Mt. Xiaowutai, Hebei Province: a remote sensing analysis[J]. Chinese Biodiversity, 2004, 12(1): 146−154 doi: 10.3321/j.issn:1005-0094.2004.01.018
-
期刊类型引用(14)
1. 白晓航,朱珣之. 小五台山植物资源多样性保护与可持续管理. 中国野生植物资源. 2025(01): 102-110 . 百度学术
2. 姜安静,董乙强,周时杰,聂婷婷,吴悦,柳泽宇,单兴芸,雷雅欣,吴凯,安沙舟. 草地植物多样性沿海拔梯度分布特征及其驱动因素——以天山北坡东段为例. 草业学报. 2025(03): 29-40 . 百度学术
3. 原日强,杨建明,李建伟,党雪芳,周幸,杜凡. 植物群落沿海拔梯度的分布规律——以滇西北哈巴雪山东坡矿场路为例. 安徽农业科学. 2024(05): 116-120 . 百度学术
4. 王哲,韩芳,李传荣,李坤,翟慧宁,王志勇. 泰山油松空间分布特征及生长状态分析. 山东理工大学学报(自然科学版). 2024(04): 1-7 . 百度学术
5. 林阳,李时轩,周伟龙,龙丹,杨中杰,毛志斌,熊艳云,刘胜龙,潘心禾,刘金亮,沈国春,丁炳扬,于明坚. 百山祖国家公园植物群落α和β多样性对海拔梯度的响应. 生态学报. 2024(17): 7700-7712 . 百度学术
6. 张佳鑫,李一萱,曹建生,李炜,王楠,张瑜. 太行山区不同林龄油松叶片-枝条-土壤生态化学计量特征. 应用生态学报. 2024(11): 2966-2974 . 百度学术
7. 陈静,张振华,魏久锋,赵清,张虎芳. 山西太行山蝽类昆虫多样性及垂直分布研究. 河南农业科学. 2024(12): 110-118 . 百度学术
8. 吴芳芳,刘娜,何春梅,原作强,郝占庆,尹秋龙. 秦岭山地木本植物群落结构及多样性的海拔梯度格局. 生物多样性. 2024(12): 7-25 . 百度学术
9. 翟心语,历从实,胡永歌,田国行,雷雅凯,徐恩凯. 前坪水库植物物种多样性及其对环境的回应. 河南农业大学学报. 2023(01): 81-95 . 百度学术
10. 杨壹,邱开阳,李静尧,谢应忠,刘王锁,黄业芸,王思瑶,鲍平安. 贺兰山东坡典型植物群落多样性垂直分布特征与土壤因子的关系. 生态学报. 2023(12): 4995-5004 . 百度学术
11. 苏杨,乔文君,张桐坤,赵依林,李敏,朱建佳,赵建成,梁红柱. 植物群落谱系结构与多样性格局研究进展——基于CiteSacep的知识图谱分析. 河北师范大学学报(自然科学版). 2023(04): 394-405 . 百度学术
12. 闫戈丁,景海涛,何湜,李慧,郭桓超. 太行山区生态环境质量时空变化与演变趋势. 山地学报. 2023(03): 335-347 . 百度学术
13. 吴国章,甘先华,张卫强,黄芳芳,王宁,苏宇乔. 新丰江库区森林群落物种多样性随海拔梯度的变化格局. 林业与环境科学. 2023(04): 1-11 . 百度学术
14. 葛结林,熊高明,徐文婷,毛江涛,秦晓琼,马博宇,徐凯,高璐鑫,李家湘,武元帅,谢宗强. 闽西生态保护型乡村植物多样性特征及维护策略. 中国生态农业学报(中英文). 2023(12): 1921-1931 . 本站查看
其他类型引用(8)