ZHANG Guiyun, LYU Beibei, ZHANG Liping, LIU Zhen, FAN Qiaolan, WEI Mingfeng, YAO Zhong, YUAN Jiawei, CHAI Yuejin. Effect of long-term no-tillage with stubble on soil fertility and diversity of prokaryotic microbiome in dryland wheat soils on the Loess Plateau, China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(3): 358-368. DOI: 10.13930/j.cnki.cjea.180604
Citation: ZHANG Guiyun, LYU Beibei, ZHANG Liping, LIU Zhen, FAN Qiaolan, WEI Mingfeng, YAO Zhong, YUAN Jiawei, CHAI Yuejin. Effect of long-term no-tillage with stubble on soil fertility and diversity of prokaryotic microbiome in dryland wheat soils on the Loess Plateau, China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(3): 358-368. DOI: 10.13930/j.cnki.cjea.180604

Effect of long-term no-tillage with stubble on soil fertility and diversity of prokaryotic microbiome in dryland wheat soils on the Loess Plateau, China

Funds: 

Shanxi Key Research and Development Project 201703D321009-3

the Natural Science Foundation of Shanxi Province 2014011029-3

the Doctor Fund Project of Shanxi Academy of Agricultural Sciences YBSJJ1405

More Information
  • Corresponding author:

    ZHANG Guiyun, E-mail: guiyunzhang@126.com

  • Received Date: June 27, 2018
  • Accepted Date: October 24, 2018
  • Available Online: May 11, 2021
  • In dryland regions, conservation tillage has the advantages of reducing soil erosion, maintaining soil structure, improving soil physical and chemical properties, and promoting microbial reproduction, compared with traditional farming methods. Up to now, the effect of long-term conservation tillage on soil prokaryotic microbial community has not been adequately reported for the China's Loess Plateau region. To understand the effects of long-term conservation tillage on soil prokaryotic microbial community diversity and soil fertility in dryland wheat fields on the Loess Plateau, the Illumina Hiseq 2500 high-throughput sequencing and physicochemical test methods were used to analyze the effects of different tillage measures on soil physical and chemical properties and the diversity of soil prokaryotic microbial community in the wheat fields in Linfen City, Shanxi Province. Tillage measures adopted in the study area for 26 years included no-tillage with stubble (NTS), no-tillage with stubble after subsoiling (SNTS) and traditional tillage (TT1). The results showed that:1) while soil contents of total nitrogen, available nitrogen, available phosphorus, available potassium, and soil water storage capacity and water content under NTS and SNTS treatments were significantly higher than those under TT1, soil pH under NTS and SNTS was lower than that under TT1. NTS and SNTS treatments reduced soil bulk density in the 0-10 cm soil layer, but increased it in 10-20 cm soil layer compared with TT1 treatment. Meanwhile, SNTS treatment significantly increased soil organic matter content. 2) The results of the Illumina Hiseq high-throughput 16S rRNA gene sequencing in area Ⅴ4 indicated that:SNTS treatment significantly reduced the relative abundance of Chloroflexi, compared with TT1 treatment. NTS treatment significantly reduced the relative abundance of Verrucomicrobia and Chloroflexi, compared with SNTS treatment. NTS treatment significantly increased the diversity of soil prokaryote community, but not significantly changed the abundance of prokaryote community. SNTS treatment not significantly changed the diversity and richness of prokaryote community. Biomarkers under NTS treatment were higher than under other treatments. The relative abundance of other prokaryotes at the phylum division was not significantly different among three treatments. 3) UPGMA analysis showed that prokaryote community structures of NTS and SNTS were significantly different from those of TT1, and the differences between NTS and SNTS were small. 4) CCA analysis showed that soil pH, contents of organic matter, available nitrogen, available phosphorus and available potassium were important for changes in genetic diversity of soil prokaryote communities. Although NTS and SNTS treatments could change soil prokaryotic microbiome structure greatly, there was still structural similarity among the soil prokaryotic microbiomes among three treatments. To sum up, long-term conservation tillage had obvious positive effects on soil microbial diversity, richness and soil fertility in dryland wheat fields on the Loess Plateau.
  • [1]
    向新华, 魏巍, 张兴义, 等.保护性耕作对大豆生长发育及土壤微生物多样性影响[J].大豆科学, 2013, 32(3):321-327 http://d.old.wanfangdata.com.cn/Periodical/ddkx201303009

    XIANG X H, WEI W, ZHANG X Y, et al. Effect of conservation tillage systems on soybean growth and soil microbial diversity[J]. Soybean Science, 2013, 32(3):321-327 http://d.old.wanfangdata.com.cn/Periodical/ddkx201303009
    [2]
    高旺盛.论保护性耕作技术的基本原理与发展趋势[J].中国农业科学, 2007, 40(12):2702-2708 doi: 10.3321/j.issn:0578-1752.2007.12.006

    GAO W S. Development trends and basic principles of conservation tillage[J]. Scientia Agricultura Sinica, 2007, 40(12):2702-2708 doi: 10.3321/j.issn:0578-1752.2007.12.006
    [3]
    KITTIWORAWAT S, YOUPENSUK S, RERKASEM B. Diversity of arbuscular mycorrhizal fungi in Mimosa invisa and effect of the soil pH on the symbiosis[J]. Chiang Mai Journal of Science, 2010, 37(3):517-527
    [4]
    HELGASON B L, WALLEY F L, GERMIDA J J. Fungal and bacterial abundance in long-term no-till and intensive-till soils of the Northern Great Plains[J]. Soil Science Society of America Journal, 2009, 73(1):120-127 doi: 10.2136/sssaj2007.0392
    [5]
    TREONIS A M, AUSTIN E E, BUYER J S, et al. Effects of organic amendment and tillage on soil microorganisms and microfauna[J]. Applied Soil Ecology, 2010, 46(1):103-110 doi: 10.1016/j.apsoil.2010.06.017
    [6]
    曹鹏.典型生态系统土壤微生物分布特征及生态学机制[D].北京: 中国科学院研究生院, 2015 http://www.irgrid.ac.cn/handle/1471x/1110451?mode=full&submit_simple=Show+full+item+record

    CAO P. Distribution patterns and the ecological mechanisms of soil microorganism in typical ecosystems[D]. Beijing: University of Chinese Academy of Sciences, 2015 http://www.irgrid.ac.cn/handle/1471x/1110451?mode=full&submit_simple=Show+full+item+record
    [7]
    何玉梅, 张仁陟, 张丽华, 等.不同耕作措施对土壤真菌群落结构与生态特征的影响[J].生态学报, 2007, 27(1):113-119 http://d.old.wanfangdata.com.cn/Periodical/stxb200701013

    HE Y M, ZHANG R Z, ZHANG L H, et al. Effects of different tillage practices on fungi community structure and ecologic characteristics in loess soils[J]. Acta Ecologica Sinica, 2007, 27(1):113-119 http://d.old.wanfangdata.com.cn/Periodical/stxb200701013
    [8]
    YAN F, MCBRATNEY A B, COPELAND L. Functional substrate biodiversity of cultivated and uncultivated A horizons of vertisols in NW New South Wales[J]. Geoderma, 2000, 96(4):321-343 doi: 10.1016/S0016-7061(00)00018-5
    [9]
    李彤, 王梓廷, 刘露, 等.保护性耕作对西北旱区土壤微生物空间分布及土壤理化性质的影响[J].中国农业科学, 2017, 50(5):859-870 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201705009

    LI T, WANG Z T, LIU L, et al. Effect of conservation tillage practices on soil microbial spatial distribution and soil physico-chemical properties of the northwest dryland[J]. Scientia Agricultura Sinica, 2017, 50(5):859-870 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201705009
    [10]
    高焕文.保护性耕作技术与机具[M].北京:化学工业出版社, 2004

    GAO H W. Conservation Tillage Technology and Machinery Tools[M]. Beijing:Chemical Industry Press, 2004
    [11]
    王碧胜, 蔡典雄, 武雪萍, 等.长期保护性耕作对土壤有机碳和玉米产量及水分利用的影响[J].植物营养与肥料学报, 2015, 21(6):1455-1464 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201506011

    WANG B S, CAI D X, WU X P, et al. Effects of long-term conservation tillage on soil organic carbon, maize yield and water utilization[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6):1455-1464 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201506011
    [12]
    张贵云, 张丽萍, 魏明峰, 等.长期保护性耕作对丛枝菌根真菌多样性的影响[J].中国生态农业学报, 2018, 26(7):1048-1055 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0712&flag=1

    ZHANG G Y, ZHANG L P, WEI M F, et al. Effect of long-term conservation tillage on arbuscular mycorrhizal fungi diversity[J]. Chinese Journal of Eco-Agriculture, 2018, 26(7):1048-1055 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0712&flag=1
    [13]
    迟凤琴, 刘晶鑫, 匡恩俊, 等.黑土长期定位试验原状土搬迁对土壤细菌群落多样性的影响[J].土壤通报, 2015, 46(6):1420-1427 http://d.old.wanfangdata.com.cn/Periodical/trtb201506022

    CHI F Q, LIU J X, KUANG E J, et al. Effects of black soil long-term test undisturbed soil moved on soil bacterial community diversity[J]. Chinese Journal of Soil Science, 2015, 46(6):1420-1427 http://d.old.wanfangdata.com.cn/Periodical/trtb201506022
    [14]
    李桥.基于高通量测序技术下土壤微生物群落结构的研究[D].济南: 山东师范大学, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10445-1014191510.htm

    LI Q. Research of soil microbial community structure based on high-throughput sequencing technology[D]. Jinan: Shandong Normal University, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10445-1014191510.htm
    [15]
    韩亚飞, 伊文慧, 王文波, 等.基于高通量测序技术的连作杨树人工林土壤细菌多样性研究[J].山东大学学报:理学版, 2014, 49(5):1-6 http://d.old.wanfangdata.com.cn/Periodical/sddxxb201405001

    HAN Y F, YI W H, WANG W B, et al. Soil bacteria diversity in continuous cropping poplar plantation by high throughput sequencing[J]. Journal of Shandong University:Natural Science, 2014, 49(5):1-6 http://d.old.wanfangdata.com.cn/Periodical/sddxxb201405001
    [16]
    岳桂东, 高强, 罗龙海, 等.高通量测序技术在动植物研究领域中的应用[J].中国科学:生命科学, 2012, 42(2):107-124 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200090590

    YUE G D, GAO Q, LUO L H, et al. The application of high-throughput sequencing technology in plant and animal research[J]. Scientia Sinica Vitae, 2012, 42(2):107-124 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200090590
    [17]
    牛世全, 龙洋, 李海云, 等.应用Illumina MiSeq高通量测序技术分析河西走廊地区盐碱土壤微生物多样性[J].微生物学通报, 2017, 44(9):2067-2078 http://d.old.wanfangdata.com.cn/Periodical/wswxtb201709007

    NIU S Q, LONG Y, LI H Y, et al. Microbial diversity in saline alkali soil from Hexi Corridor analyzed by Illumina MiSeq high-throughput sequencing system[J]. Microbiology China, 2017, 44(9):2067-2078 http://d.old.wanfangdata.com.cn/Periodical/wswxtb201709007
    [18]
    VERE D. Research into Conservation Tillage for Dryland Cropping in Australia and China[R]. Canberra:The Australian Centre for International Agricultural Research, 2005:8-46
    [19]
    鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社, 2000

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing:China Agriculture Press, 2000
    [20]
    PITTA D W, PARMAR N, PATEL A K, et al. Bacterial diversity dynamics associated with different diets and different primer pairs in the rumen of Kankrej cattle[J]. PLoS One, 2014, 9(11):e111710 doi: 10.1371/journal.pone.0111710
    [21]
    SUN R B, ZHANG X X, GUO X S, et al. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J]. Soil Biology and Biochemistry, 2015, 88:9-18 doi: 10.1016/j.soilbio.2015.05.007
    [22]
    曹辉, 李燕歌, 周春然, 等.炭化苹果枝对苹果根区土壤细菌和真菌多样性的影响[J].中国农业科学, 2016, 49(17):3413-3424 doi: 10.3864/j.issn.0578-1752.2016.17.014

    CAO H, LI Y G, ZHOU C R, et al. Effect of carbonized apple branches on bacterial and fungal diversities in apple root-zone soil[J]. Scientia Agricultura Sinica, 2016, 49(17):3413-3424 doi: 10.3864/j.issn.0578-1752.2016.17.014
    [23]
    ZHANG C H, LI S F, YANG L, et al. Structural modulation of gut microbiota in life-long calorie-restricted mice[J]. Nature Communications, 2013, 4:2163 doi: 10.1038/ncomms3163
    [24]
    戴雅婷, 闫志坚, 解继红, 等.基于高通量测序的两种植被恢复类型根际土壤细菌多样性研究[J].土壤学报, 2017, 54(3):735-748 http://d.old.wanfangdata.com.cn/Periodical/trxb201703018

    DAI Y T, YAN Z J, XIE J H, et al. Soil bacteria diversity in rhizosphere under two types of vegetation restoration based on high throughput sequencing[J]. Acta Pedologica Sinica, 2017, 54(3):735-748 http://d.old.wanfangdata.com.cn/Periodical/trxb201703018
    [25]
    厉桂香, 马克明.土壤微生物多样性海拔格局研究进展[J].生态学报, 2018, 38(5):1521-1529 http://d.old.wanfangdata.com.cn/Periodical/stxb201805001

    LI G X, MA K M. Progress in the study of elevational patterns of soil microbial diversity[J]. Acta Ecologica Sinica, 2018, 38(5):1521-1529 http://d.old.wanfangdata.com.cn/Periodical/stxb201805001
    [26]
    李玉洁, 王慧, 赵建宁, 等.耕作方式对农田土壤理化因子和生物学特性的影响[J].应用生态学报, 2015, 26(3):939-948 http://d.old.wanfangdata.com.cn/Periodical/yystxb201503038

    LI Y J, WANG H, ZHAO J N, et al. Effects of tillage methods on soil physicochemical properties and biological characteristics in farmland:A review[J]. Chinese Journal of Applied Ecology, 2015, 26(3):939-948 http://d.old.wanfangdata.com.cn/Periodical/yystxb201503038
    [27]
    DOLAN M S, CLAPP C E, ALLMARAS R R, et al. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management[J]. Soil and Tillage Research, 2006, 89(2):221-231 doi: 10.1016/j.still.2005.07.015
    [28]
    FILHO C C, LOURENÇO A, DE F GUIMARÃES M, et al. Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil[J]. Soil and Tillage Research, 2002, 65(1):45-51 doi: 10.1016/S0167-1987(01)00275-6
    [29]
    杨培培, 杨明欣, 董文旭, 等.保护性耕作对土壤养分分布及冬小麦吸收与分配的影响[J].中国生态农业学报, 2011, 19(4):755-759 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110405&flag=1

    YANG P P, YANG M X, DONG W X, et al. Effect of conservation tillage on wheat and soil nutrient distribution and absorption[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4):755-759 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110405&flag=1
    [30]
    李友军, 黄明, 吴金芝, 等.不同耕作方式对豫西旱区坡耕地水肥利用与流失的影响[J].水土保持学报, 2006, 20(2):42-45 doi: 10.3321/j.issn:1009-2242.2006.02.011

    LI Y J, HUANG M, WU J Z, et al. Effects of Different Tillage on utilization and run-off of water and nutrient in sloping farmland of Yuxi dryland area[J]. Journal of Soil and Water Conservation, 2006, 20(2):42-45 doi: 10.3321/j.issn:1009-2242.2006.02.011
    [31]
    戴亮.耕作方式对土壤微生物及土壤腐殖质影响的研究[D].长春: 吉林农业大学, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10193-1013127113.htm

    DAI L. Tillage practices on soil microbes and soil humus impact[D]. Changchun: Jilin Agricultural University, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10193-1013127113.htm
    [32]
    许菁, 李晓莎, 许姣姣, 等.长期保护性耕作对麦-玉两熟农田土壤碳氮储量及固碳固氮潜力的影响[J].水土保持学报, 2015, 29(6):191-196 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201506034

    XU J, LI X S, XU J J, et al. Effects of long-term conservation tillage on soil organic carbon and nitrogen storages, soil carbon sequestration potential and nitrogen fixation potential in wheat-maize crop system[J]. Journal of Soil and Water Conservation, 2015, 29(6):191-196 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201506034
    [33]
    王克鹏, 张仁陟, 董博, 等.长期保护性耕作对黄土高原旱地土壤水分及作物叶水势的影响[J].生态学报, 2014, 34(13):3752-3761 http://d.old.wanfangdata.com.cn/Periodical/stxb201413030

    WANG K P, ZHANG R Z, DONG B, et al. Effect of long-term conservation tillage on soil water regimes and leaf water potential of crops in rainfed areas of the Loess Plateau[J]. Acta Ecologica Sinica, 2014, 34(13):3752-3761 http://d.old.wanfangdata.com.cn/Periodical/stxb201413030
    [34]
    郁鑫, 王旭东.黄土高原不同耕作方式对土壤理化性质及作物产量的影响[J].安徽农业科学, 2018, 46(5):144-146 doi: 10.3969/j.issn.0517-6611.2018.05.043

    YU X, WANG X D. Effects of different tillage methods on soil physical-chemical properties and crop yield in Loess Plateau[J]. Journal of Anhui Agricultural Sciences, 2018, 46(5):144-146 doi: 10.3969/j.issn.0517-6611.2018.05.043
    [35]
    严洁, 邓良基, 黄剑.保护性耕作对土壤理化性质和作物产量的影响[J].中国农机化, 2005, (2):31-34 doi: 10.3969/j.issn.1006-7205.2005.02.010

    YAN J, DENG L J, HUANG J. Effect of conservation tillage on soil physicochemical properties and crop yields[J]. Chinese Agricultural Mechanization, 2005, (2):31-34 doi: 10.3969/j.issn.1006-7205.2005.02.010
    [36]
    李娟.渭北旱塬玉米田轮耕下土壤质量及生产性能响应研究[D].杨凌: 西北农林科技大学, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10712-1017100363.htm

    LI J. Research on soil quality and production capability under rotation tillage on maize field in Weibei highland[D]. Yangling: Northwest A & F University, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10712-1017100363.htm
    [37]
    赵洪利, 李军, 贾志宽, 等.不同耕作方式对黄土高原旱地麦田土壤物理性状的影响[J].干旱地区农业研究, 2009, 27(3):17-21 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200903004

    ZHAO H L, LI J, JIA Z K, et al. Effect of different tillages on soil physical properties of dryland wheat field in the Loess Plateau[J]. Agricultural Research in the Arid Areas, 2009, 27(3):17-21 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200903004
    [38]
    DUNBAR J, BARNS S M, TICKNOR L O, et al. Empirical and theoretical bacterial diversity in four Arizona soils[J]. Applied and Environmental Microbiology, 2002, 68(6):3035-3045 doi: 10.1128/AEM.68.6.3035-3045.2002
    [39]
    ROESCH L F W, FULTHORPE R R, RIVA A, et al. Pyrosequencing enumerates and contrasts soil microbial diversity[J]. The ISME Journal, 2007, 1(4):283-290 doi: 10.1038/ismej.2007.53
    [40]
    刘洋, 曾全超, 黄懿梅.基于454高通量测序的黄土高原不同乔木林土壤细菌群落特征[J].中国环境科学, 2016, 36(11):3487-3494 doi: 10.3969/j.issn.1000-6923.2016.11.035

    LIU Y, ZENG Q C, HUANG Y M. Soil microbial communities by 454prosequencing under different arbor forests on the Loess Plateau[J]. China Environmental Science, 2016, 36(11):3487-3494 doi: 10.3969/j.issn.1000-6923.2016.11.035
    [41]
    LIU J J, SUI Y Y, YU Z H, et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology and Biochemistry, 2014, 70:113-122 doi: 10.1016/j.soilbio.2013.12.014
    [42]
    DORAN J W. Soil microbial and biochemical changes associated with reduced tillage[J]. Soil Science Society of America Journal, 1980, 44(4):765-771 doi: 10.2136/sssaj1980.03615995004400040022x
    [43]
    LIU X, LINDEMANN W C, WHITFORD W G, et al. Microbial diversity and activity of disturbed soil in the northern Chihuahuan Desert[J]. Biology and Fertility of Soils, 2000, 32(3):243-249 doi: 10.1007/s003740000242
    [44]
    BENDING G D, TURNER M K, JONES J E. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities[J]. Soil Biology and Biochemistry, 2002, 34(8):1073-1082 doi: 10.1016/S0038-0717(02)00040-8
    [45]
    王伏伟, 王晓波, 李金才, 等.施肥及秸秆还田对砂姜黑土细菌群落的影响[J].中国生态农业学报, 2015, 23(10):1302-1311 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151012&flag=1

    WANG F W, WANG X B, LI J C, et al. Effects of fertilization and straw incorporation on bacterial communities in lime concretion black soil[J]. Chinese Journal of Eco-Agriculture, 2015, 23(10):1302-1311 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151012&flag=1
    [46]
    罗培宇.轮作条件下长期施肥对棕壤微生物群落的影响[D].沈阳: 沈阳农业大学, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10157-1014295053.htm

    LUO P Y. Effect of long-term fertilization on microbial community in a brown soil under crop-rotation system[D]. Shenyang: Shenyang Agricultural University, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10157-1014295053.htm

Catalog

    Article Metrics

    Article views (1228) PDF downloads (711) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return