Citation: | XIONG F X, ZHAO X L, GUO Z Y, ZHU S B. Research on the effects of rural land consolidation on agricultural carbon emissions: a quasi-natural experiment based on the high-standard farmland construction policy[J]. Chinese Journal of Eco-Agriculture, 2023, 31(12): 2022−2032. DOI: 10.12357/cjea.20230353 |
[1] |
PAN Y L, DONG F. Dynamic evolution and driving factors of new energy development: fresh evidence from China[J]. Technological Forecasting and Social Change, 2022, 176: 121475 doi: 10.1016/j.techfore.2022.121475
|
[2] |
SUN J J, DONG F. Decomposition of carbon emission reduction efficiency and potential for clean energy power: evidence from 58 countries[J]. Journal of Cleaner Production, 2022, 363: 132312 doi: 10.1016/j.jclepro.2022.132312
|
[3] |
原伟鹏, 孙慧, 王晶, 等. 中国城市减污降碳协同的时空演化及驱动力探析[J]. 经济地理, 2022, 42(10): 72−82
YUAN W P, SUN H, WANG J, et al. Spatial-temporal evolution and driving forces of urban pollution and carbon reduction in China[J]. Economic Geography, 2022, 42(10): 72−82
|
[4] |
许明. RCEP生效的出口贸易红利及美欧征收碳关税的应对[J]. 亚太经济, 2022(4): 54−61 doi: 10.16407/j.cnki.1000-6052.2022.04.006
XU M. Export dividends from RCEP and the response to carbon tariffs imposed by the US and EU[J]. Asia-Pacific Economic Review, 2022(4): 54−61 doi: 10.16407/j.cnki.1000-6052.2022.04.006
|
[5] |
YU B L, FANG D B, KLEIT A N, et al. Exploring the driving mechanism and the evolution of the low-carbon economy transition: lessons from OECD developed countries[J]. The World Economy, 2022, 45(9): 2766−2795 doi: 10.1111/twec.13263
|
[6] |
CRIPPA M, SOLAZZO E, GUIZZARDI D, et al. Food systems are responsible for a third of global anthropogenic GHG emissions[J]. Nature Food, 2021, 2(3): 198−209 doi: 10.1038/s43016-021-00225-9
|
[7] |
YANG H, WANG X X, BIN P. Agriculture carbon-emission reduction and changing factors behind agricultural eco-efficiency growth in China[J]. Journal of Cleaner Production, 2022, 334: 130193 doi: 10.1016/j.jclepro.2021.130193
|
[8] |
胡婉玲, 张金鑫, 王红玲. 中国农业碳排放特征及影响因素研究[J]. 统计与决策, 2020, 36(5): 56−62 doi: 10.13546/j.cnki.tjyjc.2020.05.012
HU W L, ZHANG J X, WANG H L. Characteristics and influencing factors of agricultural carbon emission in China[J]. Statistics & Decision, 2020, 36(5): 56−62 doi: 10.13546/j.cnki.tjyjc.2020.05.012
|
[9] |
田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价−基于衍生指标与TOPSIS法的运用[J]. 自然资源学报, 2021, 36(2): 395−410 doi: 10.31497/zrzyxb.20210210
TIAN C S, CHEN Y. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation: based on the application of derivative indicators and TOPSIS[J]. Journal of Natural Resources, 2021, 36(2): 395−410 doi: 10.31497/zrzyxb.20210210
|
[10] |
吴昊玥, 黄瀚蛟, 何宇, 等. 中国农业碳排放效率测度、空间溢出与影响因素[J]. 中国生态农业学报(中英文), 2021, 29(10): 1762−1773
WU H Y, HUANG H J, HE Y, et al. Measurement, spatial spillover and influencing factors of agricultural carbon emissions efficiency in China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1762−1773
|
[11] |
尚杰, 吉雪强, 石锐, 等. 中国农业碳排放效率空间关联网络结构及驱动因素研究[J]. 中国生态农业学报(中英文), 2022, 30(4): 543−557
SHANG J, JI X Q, SHI R, et al. Structure and driving factors of spatial correlation network of agricultural carbon emission efficiency in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 543−557
|
[12] |
吴昊玥, 何艳秋, 陈文宽, 等. 中国农业碳补偿率空间效应及影响因素研究−基于空间Durbin模型[J]. 农业技术经济, 2020(3): 110−123 doi: 10.13246/j.cnki.jae.2020.03.009
WU H Y, HE Y Q, CHEN W K, et al. Spatial effect and influencing factors of China’s agricultural carbon compensation rate based on spatial durbin model[J]. Journal of Agrotechnical Economics, 2020(3): 110−123 doi: 10.13246/j.cnki.jae.2020.03.009
|
[13] |
HE P P, ZHANG J B, LI W J. The role of agricultural green production technologies in improving low-carbon efficiency in China: necessary but not effective[J]. Journal of Environmental Management, 2021, 293: 112837 doi: 10.1016/j.jenvman.2021.112837
|
[14] |
吉雪强, 李卓群, 张跃松. 农地流转对农业碳排放的影响及空间特性[J]. 资源科学, 2023, 45(1): 77−90
JI X Q, LI Z Q, ZHANG Y S. Influence of rural land transfer on agricultural carbon emissions and its spatial characteristics[J]. Resources Science, 2023, 45(1): 77−90
|
[15] |
WANG R R, ZHANG Y, ZOU C M. How does agricultural specialization affect carbon emissions in China?[J]. Journal of Cleaner Production, 2022, 370: 133463 doi: 10.1016/j.jclepro.2022.133463
|
[16] |
LI J K, GAO M, LUO E G, et al. Does rural energy poverty alleviation really reduce agricultural carbon emissions? The case of China[J]. Energy Economics, 2023, 119: 106576 doi: 10.1016/j.eneco.2023.106576
|
[17] |
谢会强, 吴晓迪. 城乡融合对中国农业碳排放效率的影响及其机制[J]. 资源科学, 2023, 45(1): 48−61
XIE H Q, WU X D. Impact and its mechanism of urban-rural integration on the efficiency of agricultural carbon emissions in China[J]. Resources Science, 2023, 45(1): 48−61
|
[18] |
ZHANG L, PANG J X, CHEN X P, et al. Carbon emissions, energy consumption and economic growth: evidence from the agricultural sector of China’s main grain-producing areas[J]. Science of the Total Environment, 2019, 665: 1017−1025 doi: 10.1016/j.scitotenv.2019.02.162
|
[19] |
ZHANG Z, TIAN Y, CHEN Y H. Can agricultural credit subsidies affect county-level carbon intensity in China?[J]. Sustainable Production and Consumption, 2023, 38: 80−89 doi: 10.1016/j.spc.2023.03.028
|
[20] |
DU Y Y, LIU H B, HUANG H, et al. The carbon emission reduction effect of agricultural policy— Evidence from China[J]. Journal of Cleaner Production, 2023, 406: 137005 doi: 10.1016/j.jclepro.2023.137005
|
[21] |
张壮, 田云, 陈池波. 政策性农业保险能引导农业碳减排吗?[J]. 湖南农业大学学报(社会科学版), 2023, 24(2): 29−38 doi: 10.13331/j.cnki.jhau(ss).2023.02.004
ZHANG Z, TIAN Y, CHEN C B. Can policy-supported agricultural insurance guide agricultural carbon emission reduction?[J]. Journal of Hunan Agricultural University (Social Sciences), 2023, 24(2): 29−38 doi: 10.13331/j.cnki.jhau(ss).2023.02.004
|
[22] |
梁志会, 张露, 张俊飚. 土地整治与化肥减量−来自中国高标准基本农田建设政策的准自然实验证据[J]. 中国农村经济, 2021(4): 123−144
LIANG Z H, ZHANG L, ZHANG J B. Land consolidation and fertilizer reduction: quasi-natural experimental evidence from China’s well-facilitated capital farmland construction[J]. Chinese Rural Economy, 2021(4): 123−144
|
[23] |
金书秦, 林煜, 牛坤玉. 以低碳带动农业绿色转型: 中国农业碳排放特征及其减排路径[J]. 改革, 2021(5): 29−37
JIN S Q, LIN Y, NIU K Y. Driving green transformation of agriculture with low carbon: characteristics of agricultural carbon emissions and its emission reduction path in China[J]. Reform, 2021(5): 29−37
|
[24] |
郑庆宇, 尚旭东, 王煜. 耕地保护何以难: 目标、实践及对策−来自西部粮食主产区的观察[J]. 经济学家, 2023(4): 98−107
ZHENG Q Y, SHANG X D, WANG Y. Why is it difficult to protect arable land: objectives, problems and countermeasures —Observation from the main grain-producing areas in the West[J]. Economist, 2023(4): 98−107
|
[25] |
姜棪峰, 龙花楼, 唐郁婷. 土地整治与乡村振兴−土地利用多功能性视角[J]. 地理科学进展, 2021, 40(3): 487−497 doi: 10.18306/dlkxjz.2021.03.012
JIANG Y F, LONG H L, TANG Y T. Land consolidation and rural vitalization: a perspective of land use multifunctionality[J]. Progress in Geography, 2021, 40(3): 487−497 doi: 10.18306/dlkxjz.2021.03.012
|
[26] |
ZHONG L N, WANG J, ZHANG X, et al. Effects of agricultural land consolidation on ecosystem services: trade-offs and synergies[J]. Journal of Cleaner Production, 2020, 264: 121412 doi: 10.1016/j.jclepro.2020.121412
|
[27] |
刘春芳, 刘立程, 何瑞东. 黄土丘陵区高标准农田建设的生态系统服务响应研究[J]. 中国人口·资源与环境, 2018, 28(12): 124−130
LIU C F, LIU L C, HE R D. Ecosystem services response of well-facilitated farmland construction project in Loess Hilly Region[J]. China Population, Resources and Environment, 2018, 28(12): 124−130
|
[28] |
ZHONG L N, WANG J, ZHANG X, et al. Effects of agricultural land consolidation on soil conservation service in the Hilly Region of Southeast China — Implications for land management[J]. Land Use Policy, 2020, 95: 104637 doi: 10.1016/j.landusepol.2020.104637
|
[29] |
张天恩, 李子杰, 费坤, 等. 高标准农田建设对耕地质量的影响及灌排指标的贡献[J]. 农业资源与环境学报, 2022, 39(5): 978−989 doi: 10.13254/j.jare.2021.0332
ZHANG T E, LI Z J, FEI K, et al. Effects of high-standard farmland construction on farmland quality and contribution of irrigation and drainage index[J]. Journal of Agricultural Resources and Environment, 2022, 39(5): 978−989 doi: 10.13254/j.jare.2021.0332
|
[30] |
陈江华, 洪炜杰. 高标准农田建设促进了农地流转吗?[J]. 中南财经政法大学学报, 2022(4): 108−117
CHEN J H, HONG W J. Does the construction of high standard farmland promote the transfer of farmland?[J]. Journal of Zhongnan University of Economics and Law, 2022(4): 108−117
|
[31] |
祝伟, 王瑞梅. 经营规模、土地转入与化肥减量增效−基于全国4745个农户的调查数据[J]. 四川农业大学学报, 2023, 41(2): 372−379 doi: 10.16036/j.issn.1000-2650.202211195
ZHU W, WANG R M. Farm size, land transfer and fertilizer reduction and efficiency: based on a survey data of 4745 rural households in China[J]. Journal of Sichuan Agricultural University, 2023, 41(2): 372−379 doi: 10.16036/j.issn.1000-2650.202211195
|
[32] |
孙学涛. 高标准农田建设对农业社会化服务的影响[J]. 中南财经政法大学学报, 2023(3): 150−160 doi: 10.19639/j.cnki.issn1003-5230.2023.0028
SUN X T. Impact of the construction of high standard farmland on agricultural socialization services[J]. Journal of Zhongnan University of Economics and Law, 2023(3): 150−160 doi: 10.19639/j.cnki.issn1003-5230.2023.0028
|
[33] |
张志新, 周亚楠, 丁鑫. 高标准农田建设政策对农业绿色发展的影响研究[J]. 农林经济管理学报, 2023, 22(1): 113−122 doi: 10.16195/j.cnki.cn36-1328/f.2023.01.13
ZHANG Z X, ZHOU Y N, DING X. Impact of well-facilitated capital farmland construction programs on green agricultural development[J]. Journal of Agro-Forestry Economics and Management, 2023, 22(1): 113−122 doi: 10.16195/j.cnki.cn36-1328/f.2023.01.13
|
[34] |
颜光耀, 陈卫洪, 钱海慧. 农业技术效率对农业碳排放的影响−基于空间溢出效应与门槛效应分析[J]. 中国生态农业学报(中英文), 2023, 31(2): 226−240
YAN G Y, CHEN W H, QIAN H H. Effects of agricultural technical efficiency on agricultural carbon emission: based on spatial spillover effect and threshold effect analysis[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 226−240
|
[35] |
钱龙, 刘聪, 郑淋议, 等. 高标准农田建设如何影响农地流转[J]. 中国土地科学, 2023, 37(2): 62−70
QIAN L, LIU C, ZHENG L Y, et al. How does high-standard farmland construction affect farmland transfer[J]. China Land Science, 2023, 37(2): 62−70
|
[36] |
陈宇斌, 王森. 农业综合开发投资的农业碳减排效果评估−基于高标准基本农田建设政策的事件分析[J]. 农业技术经济, 2023(06): 67−80 doi: 10.13246/j.cnki.jae.20220301.001
CHEN Y B, WANG S. Evaluation of agricultural carbon emission reduction effect of agricultural comprehensive development investment: event analysis based on high-standard farmland construction[J]. Journal of Agrotechnical Economics, 2023(06): 67−80 doi: 10.13246/j.cnki.jae.20220301.001
|