Citation: | XUE Y K, LIU K L, WU L, WANG B, ZHANG W J, XU M G, LI Y E, CAI A D. Effects of iron oxides on carbon sequestration characteristics of red soil aggregates in paddy fields and upland under varying long-term fertilization practices[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1428−1438. DOI: 10.12357/cjea.20230241 |
[1] |
REEVES D W. The role of soil organic matter in maintaining soil quality in continuous cropping systems[J]. Soil and Tillage Research, 1997, 43(1/2): 131−167
|
[2] |
LEHMANN J, KLEBER M. The contentious nature of soil organic matter[J]. Nature, 2015, 528(7580): 60−68 doi: 10.1038/nature16069
|
[3] |
BRONICK C J, LAL R. Soil structure and management: a review[J]. Geoderma, 2005, 124(1/2): 3−22
|
[4] |
OADES J M. Soil organic matter and structural stability: mechanisms and implications for management[J]. Plant and Soil, 1984, 76(1): 319−337
|
[5] |
WARDLE D A, BARDGETT R D, KLIRONOMOS J N, et al. Ecological linkages between aboveground and belowground biota[J]. Science, 2004, 304(5677): 1629−1633 doi: 10.1126/science.1094875
|
[6] |
TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141−163 doi: 10.1111/j.1365-2389.1982.tb01755.x
|
[7] |
刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报, 2007, 27(6): 2642−2650 doi: 10.3321/j.issn:1000-0933.2007.06.059
LIU M Q, HU F, CHEN X Y. A review on mechanisms of soil organic carbon stabilization[J]. Acta Ecologica Sinica, 2007, 27(6): 2642−2650 doi: 10.3321/j.issn:1000-0933.2007.06.059
|
[8] |
LALONDE K, MUCCI A, OUELLET A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7388): 198−200 doi: 10.1038/nature10855
|
[9] |
KAISER K, GUGGENBERGER G. Mineral surfaces and soil organic matter[J]. European Journal of Soil Science, 2003, 54(2): 219−236 doi: 10.1046/j.1365-2389.2003.00544.x
|
[10] |
KLEBER M, EUSTERHUES K, KEILUWEIT M, et al. Mineral-organic associations: formation, properties, and relevance in soil environments[J]. Advances in Agronomy, 2015, 130: 1−140
|
[11] |
PONNAMPERUMA F N. The chemistry of submerged soils[J]. Advances in Agronomy, 1972, 24: 29−96
|
[12] |
YU G H, KUZYAKOV Y. Fenton chemistry and reactive oxygen species in soil: Abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cycling[J]. Earth-Science Reviews, 2021, 214: 103525 doi: 10.1016/j.earscirev.2021.103525
|
[13] |
段勋, 李哲, 刘淼, 等. 铁介导的土壤有机碳固持和矿化研究进展[J]. 地球科学进展, 2022, 37(2): 202−211
DUAN X, LI Z, LIU M, et al. Progress of the iron-mediated soil organic carbon preservation and mineralization[J]. Advances in Earth Science, 2022, 37(2): 202−211
|
[14] |
王璐莹, 秦雷, 吕宪国, 等. 铁促进土壤有机碳累积作用研究进展[J]. 土壤学报, 2018, 55(5): 1041−1050
WANG L Y, QIN L, LYU X G, et al. Progress in researches on effect of iron promoting accumulation of soil organic carbon[J]. Acta Pedologica Sinica, 2018, 55(5): 1041−1050
|
[15] |
CHEN C M, HALL S J, COWARD E, et al. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communications, 2020, 11(1): 1−13 doi: 10.1038/s41467-019-13993-7
|
[16] |
HUANG W J, HALL S J. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter[J]. Nature Communications, 2017, 8(1): 1−10 doi: 10.1038/s41467-016-0009-6
|
[17] |
HOU T, XU R K, ZHAO A Z. Interaction between electric double layers of kaolinite and Fe/Al oxides in suspensions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 297(1/3): 91−94
|
[18] |
DUBINSKY E A, SILVER W L, FIRESTONE M K. Tropical forest soil microbial communities couple iron and carbon biogeochemistry[J]. Ecology, 2010, 91(9): 2604−2612 doi: 10.1890/09-1365.1
|
[19] |
袁程, 王月, 韩晓日, 等. 长期定位施肥对土壤铁、锰形态及剖面分布的影响[J]. 植物营养与肥料学报, 2012, 18(1): 115−122
YUAN C, WANG Y, HAN X R, et al. Effects of long-term fertilization distributions on forms of Fe and Mn and their distributions in soil profiles[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(1): 115−122
|
[20] |
WANG Y L, TANG J W, ZHANG H L, et al. Aggregate-associated organic carbon and nitrogen impacted by the long-term application of fertilizers, rice straw, and pig manure[J]. Soil Science, 2014, 179(10/11): 522−528
|
[21] |
KEMPER W D, ROSENAU R C. Aggregate stability and size distribution[M]//KLUTE A. Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. Madision, WI: ASA, 1986: 425–442
|
[22] |
杨瑞吉, 杨祁峰, 牛俊义. 表征土壤肥力主要指标的研究进展[J]. 甘肃农业大学学报, 2004, 39(1): 86−91
YANG R J, YANG Q F, NIU J Y. Research progress on soil fertility major indexes[J]. Journal of Gansu Agricultural University, 2004, 39(1): 86−91
|
[23] |
王小利, 苏以荣, 黄道友, 等. 土地利用对亚热带红壤低山区土壤有机碳和微生物碳的影响[J]. 中国农业科学, 2006, 39(4): 750−757
WANG X L, SU Y R, HUANG D Y, et al. Effects of land use on soil organic C and microbial biomass C in hilly red soil region in subtropical China[J]. Scientia Agricultura Sinica, 2006, 39(4): 750−757
|
[24] |
CAI Z J, WANG B R, XU M G, et al. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of Southern China[J]. Journal of Soils and Sediments, 2015, 15(2): 260−270 doi: 10.1007/s11368-014-0989-y
|
[25] |
KALBITZ K, SOLINGER S, PARK J H, et al. Controls on the dynamics of dissolved organic matter in soils: a review[J]. Soil Science, 2000, 165(4): 277−304 doi: 10.1097/00010694-200004000-00001
|
[26] |
鲁艳红. 长期施肥条件下红壤性水稻土有机质特征及其与土壤质量的关系[D]. 长沙: 湖南农业大学, 2011
LU Y H. Studies on characteristics of soil organic matter and its relate to soil quality in reddish paddy soil under long-term fertilization[D]. Changsha: Hunan Agricultural University, 2011
|
[27] |
曾希柏, 柴彦君, 俄胜哲, 等. 长期施肥对灌漠土团聚体及其稳定性的影响[J]. 土壤通报, 2014, 45(4): 783−788
ZENG X B, CHAI Y J, E S Z, et al. Effects of long-term fertilization on soil aggregate and its stability in irrigated desert soil of China[J]. Chinese Journal of Soil Science, 2014, 45(4): 783−788
|
[28] |
张久明, 迟凤琴, 韩锦泽, 等. 长期不同施肥黑土团聚体有机碳分布特征[J]. 土壤与作物, 2017, 6(1): 49−54
ZHANG J M, CHI F Q, HAN J Z, et al. SOC distribution characteristics of mollisols aggregates in different long-term fertilization systems[J]. Soils and Crops, 2017, 6(1): 49−54
|
[29] |
蔡岸冬, 张文菊, 杨品品, 等. 基于Meta-Analysis研究施肥对中国农田土壤有机碳及其组分的影响[J]. 中国农业科学, 2015, 48(15): 2995−3004
CAI A D, ZHANG W J, YANG P P, et al. Effect degree of fertilization practices on soil organic carbon and fraction of croplands in China based on Meta-Analysis[J]. Scientia Agricultura Sinica, 2015, 48(15): 2995−3004
|
[30] |
JIANG M B, WANG X H, LIUSUI Y H, et al. Diversity and abundance of soil animals as influenced by long-term fertilization in grey desert soil, China[J]. Sustainability, 2015(7): 10837−10853
|
[31] |
李忠佩, 张桃林, 陈碧云. 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J]. 土壤学报, 2004(4): 544−552
LI Z P, ZHANG T L, CHEN B Y. Dynamics of soluble organic carbon and its relation to mineralization of soil organic carbon[J]. Acta Pedologica Sinica, 2004(4): 544−552
|
[32] |
WANG F L, BETTANY J R. Influence of freeze-thaw and flooding on the loss of soluble organic carbon and carbon dioxide from soil[J]. Journal of Environmental Quality, 1993, 22(4): 709−714
|
[33] |
黄龙, 包维楷, 李芳兰, 等. 土壤结构和植被对土壤微生物群落的影响[J]. 应用与环境生物学报, 2021, 27(6): 1725−1731
HUANG L, BAO W K, LI F L, et al. Effects of soil structure and vegetation on microbial communities[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(6): 1725−1731
|
[34] |
李峰, 周方亮, 黄雅楠, 等. 紫云英和秸秆还田对土壤肥力性状的影响[J]. 中国土壤与肥料, 2020(3): 75−81 doi: 10.11838/sfsc.1673-6257.19202
LI F, ZHOU F L, HUANG Y N, et al. Effects of Chinese milk vetch and straw returning on soil fertility characters[J]. Soils and Fertilizers Sciences in China, 2020(3): 75−81 doi: 10.11838/sfsc.1673-6257.19202
|
[35] |
VIEUBLÉ L, CHENU C, SOULAS G. Variability of pesticide mineralization in individual soil aggregates of millimeter size[J]. Developments in Soil Science, 2002, 28: 127−136
|
[36] |
HUANG C C, LIU S, LI R Z, et al. Spectroscopic evidence of the improvement of reactive iron mineral content in red soil by long-term application of swine manure[J]. PLoS One, 2016, 11(1): e0146364 doi: 10.1371/journal.pone.0146364
|
[37] |
HUANG H, JIA Y, SUN G X, et al. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters[J]. Environmental Science & Technology, 2012, 46(4): 2163−2168
|
[38] |
SCHWERTMANN U. Inhibitory effect of soil organic matter on the crystallization of amorphous ferric hydroxide[J]. Nature, 1966, 212(5062): 645−646
|
[39] |
KODAMA H, SCHNITZER M. Effect of fulvic acid on the crystallization of Fe(Ⅲ) oxides[J]. Geoderma, 1977, 19(4): 279−291 doi: 10.1016/0016-7061(77)90070-2
|
[40] |
万丹, 王伯仁, 张璐, 等. 红壤铁氧化物对有机碳的固定及其对长期施肥的响应[J]. 中国生态农业学报(中英文), 2022, 30(4): 694−701
WAN D, WANG B R, ZHANG L, et al. Effect of long-term fertilization on the stabilization of soil organic carbon by iron oxides in red soil[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 694−701
|
[41] |
童瑶瑶. 不同水分状况下铁氧化物对水稻土有机碳矿化的影响机制[D]. 赣州: 江西理工大学, 2020
TONG Y Y. Effect mechanism of iron oxides on organic carbon mineralization in paddy soil under different water conditions[D]. Ganzhou: Jiangxi University of Science and Technology, 2020
|
[42] |
DENEF K, SIX J. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization[J]. European Journal of Soil Science, 2005, 56(4): 469−479 doi: 10.1111/j.1365-2389.2004.00682.x
|
[43] |
吴金明, 刘永红, 李学垣, 等. 我国几种地带性土壤无机胶体的表面电荷特性[J]. 土壤学报, 2002, 39(2): 177−183 doi: 10.11766/trxb200012010205
WU J M, LIU Y H, LI X Y, et al. Surface charge characteristics of soil colloids in China[J]. Acta Pedologica Sinica, 2002, 39(2): 177−183 doi: 10.11766/trxb200012010205
|
[44] |
胡国成, 章明奎. 氧化铁对土粒强胶结作用的矿物学证据[J]. 土壤通报, 2002, 33(1): 25−27
HU G C, ZHANG M K. Mineralogical evidence for strong cementation of soil particles by iron oxides[J]. Chinese Journal of Soil Science, 2002, 33(1): 25−27
|
[45] |
王小红, 杨智杰, 刘小飞, 等. 中亚热带山区土壤不同形态铁铝氧化物对团聚体稳定性的影响[J]. 生态学报, 2016, 36(9): 2588−2596
WANG X H, YANG Z J, LIU X F, et al. Effects of different forms of Fe and Al oxides on soil aggregate stability in mid-subtropical mountainous area of Southern China[J]. Acta Ecologica Sinica, 2016, 36(9): 2588−2596
|