LI S, ZHANG X H, WANG X, MA L. Mitigation technologies for organized emissions of ammonia and greenhouse gas from livestock farms[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1821−1838. DOI: 10.12357/cjea.20230238
Citation: LI S, ZHANG X H, WANG X, MA L. Mitigation technologies for organized emissions of ammonia and greenhouse gas from livestock farms[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1821−1838. DOI: 10.12357/cjea.20230238

Mitigation technologies for organized emissions of ammonia and greenhouse gas from livestock farms

Funds: This study was supported by the Key Research and Development Program of Hebei Province (20327305D, 20327301D), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2021095), and Hebei Province Modern Agricultural Industrial Technology System Dairy Cow Industry Innovation Team Project (HBCT2018120206).
More Information
  • Corresponding author:

    MA Lin, E-mail: malin1979@sjziam.ac.cn

  • Received Date: May 03, 2023
  • Revised Date: May 20, 2023
  • Accepted Date: May 20, 2023
  • Available Online: May 21, 2023
  • The end treatment technology for ammonia and greenhouse gas emissions (NH3, N2O, CH4) from livestock farms has received widespread attention and continuous research from scholars both domestically and internationally in recent years. However, the gas emission patterns and priorities of control in different livestock manure management stages are still unclear. A comprehensive comparison of treatment effects, costs, and applicable scenarios of different treatment technologies are uncertain, lacking a technical system for multi gas reduction. Therefore, this study systematically reviewed the published literatures and used data mining methods to analyze the gas emission characteristics, priority characteristics, emission reduction technologies, and application potential of the livestock house, solid manure storage, liquid manure storage, and solid manure composting processes of pig, chicken, cattle, and sheep manure management. The emission reduction technology characteristics that match the gas emissions priority were summarized. The emission reduction technologies for NH3, N2O, and CH4 were discussed. The various technical principles and potential effects of NH3, N2O, and CH4 emission reduction were discussed, and the priority and potential technical approaches for gas resistance control in various stages of manure pollution management process were explored. These works could provide support for the combination and design of different technologies for the treatment of tail gas discharged from livestock farms to achieve the goal of reducing ammonia and greenhouse gas emissions. Pointing to the shortcomings of existing end treatment technologies, this study looked forward to the research direction of NH3, N2O, and CH4 end treatment technology, aiming to provide a basis for the design of tail gas treatment processes and future technology research and development in livestock farms.
  • [1]
    ZHUANG M H, LU X, CARO D, et al. Emissions of non-CO2 greenhouse gases from livestock in China during 2000–2015: magnitude, trends and spatiotemporal patterns[J]. Journal of Environmental Management, 2019, 242: 40−45
    [2]
    WANG Y C, HAN M F, JIA T P, et al. Emissions, measurement, and control of odor in livestock farms: a review[J]. Science of the Total Environment, 2021, 776: 145735 doi: 10.1016/j.scitotenv.2021.145735
    [3]
    邓隆华. 好氧堆肥恶臭气体排放特征及其生物法去除应用研究[D]. 广州: 广东工业大学, 2022

    DENG L H. Study on emission characteristics of malodorous gases from aerobic composting and its biological removal application[D]. Guangzhou: Guangdong University of Technology, 2022
    [4]
    HOU Y, VELTHOF G L, OENEMA O. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment[J]. Global Change Biology, 2015, 21(3): 1293−1312 doi: 10.1111/gcb.12767
    [5]
    王悦, 赵同科, 邹国元, 等. 畜禽养殖舍氨气排放特性及减排技术研究进展[J]. 动物营养学报, 2017, 29(12): 4249−4259

    WANG Y, ZHAO T K, ZOU G Y, et al. Research statues of ammonia emission characteristics and mitigation technologies from livestock houses[J]. Chinese Journal of Animal Nutrition, 2017, 29(12): 4249−4259
    [6]
    梅林德, 陈军辉, 熊文朋, 等. 基于实测法的畜禽养殖氨排放特征研究[C]. 中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场, 2021, 10

    MEI L D, CHEN J H, XIONG W P, et al. Study on ammonia emission characteristics of livestock and poultry breeding based on measurement method[C]. 2021 Annual Conference of Science and Technology of Chinese Society For Environmental Sciences— Environmental Engineering Technology Innovation and Application Sub Venue, 2021, 10
    [7]
    王悦, 杨金凤, 薛文涛, 等. 规模化笼养蛋鸡舍冬季氨气和颗粒物排放特征研究[J]. 农业工程学报, 2018, 34(23): 170−178

    WANG Y, YANG J F, XUE W T, et al. Study of ammonia and particulate matter emission characteristics from large-scale cage layer house in winter[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23): 170−178
    [8]
    周忠凯, 杨殿林, 张海芳, 等. 冬季侧窗通风猪舍氨气和温室气体排放特征[J]. 农业环境科学学报, 2020, 39(6): 1359−1367

    ZHOU Z K, YANG D L, ZHANG H F, et al. Ammonia and greenhouse gas emissions from enclosed pig house with side-vent ventilation in winter season[J]. Journal of Agro-Environment Science, 2020, 39(6): 1359−1367
    [9]
    赵婉莹, 许立新, 王朝元, 等. 不同地面形式自然通风奶牛舍冬季温室气体和氨气排放量[J]. 中国农业大学学报, 2020, 25(1): 142−151

    ZHAO W Y, XU L X, WANG C Y, et al. Greenhouse gas and ammonia emissions of naturally ventilated cowsheds with different floor types in winter[J]. Journal of China Agricultural University, 2020, 25(1): 142−151
    [10]
    赵彦超, 王瑞宁, 李祥龙, 等. 不同季节不同类型羊舍空气质量分析[J]. 家畜生态学报, 2020, 41(3): 57−61

    ZHAO Y C, WANG R N, LI X L, et al. Analysis on air quality in sheep shed in different seasons[J]. Acta Ecologae Animalis Domastici, 2020, 41(3): 57−61
    [11]
    周忠凯, 朱志平, 董红敏, 等. 笼养肉鸡生长过程NH3、N2O、CH4和CO2的排放[J]. 环境科学, 2013, 34(6): 2098−2106

    ZHOU Z K, ZHU Z P, DONG H M, et al. NH3, N2O, CH4 and CO2 emissions from growing process of caged broilers[J]. Environmental Science, 2013, 34(6): 2098−2106
    [12]
    朱伟, 冯培功, 马君军, 等. 环境温度对肉羊有害气体排放、环境微生物和血清生化指标的影响[J]. 动物营养学报, 2018, 30(11): 4460−4469

    ZHU W, FENG P G, MA J J, et al. Effects of ambient temperature on harmful gas emission, environmental microorganism and serum biochemical indexes of mutton sheep[J]. Chinese Journal of Animal Nutrition, 2018, 30(11): 4460−4469
    [13]
    朱志平, 康国虎, 董红敏, 等. 垫料型猪舍春夏育肥季节的氨气和温室气体状况测试[J]. 中国农业气象, 2011, 32(3): 356−361

    ZHU Z P, KANG G H, DONG H M, et al. Measurement of ammonia and GHGs concentration of hoop structure barn for finishing pigs in summer and spring season[J]. Chinese Journal of Agrometeorology, 2011, 32(3): 356−361
    [14]
    焦伟娜. 新疆南北疆地区两集约化羊场羊舍四季环境变化及羔羊健康比较研究[D]. 乌鲁木齐: 新疆农业大学, 2019

    JIAO W N. Comparative study on four seasons environmental changes and lamb health in two intensive sheep farms and sheds in northern and southern Xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2019
    [15]
    AMON B, KRYVORUCHKO V, AMON T, et al. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment[J]. Agriculture, Ecosystems & Environment, 2006, 112(2/3): 153−162
    [16]
    ZHUANG M H, SHAN N, WANG Y C, et al. Different characteristics of greenhouse gases and ammonia emissions from conventional stored dairy cattle and swine manure in China[J]. Science of the Total Environment, 2020, 722: 137693 doi: 10.1016/j.scitotenv.2020.137693
    [17]
    MISSELBROOK T, HUNT J, PERAZZOLO F, et al. Greenhouse gas and ammonia emissions from slurry storage: impacts of temperature and potential mitigation through covering (pig slurry) or acidification (cattle slurry)[J]. Journal of Environmental Quality, 2016, 45(5): 1520−1530 doi: 10.2134/jeq2015.12.0618
    [18]
    MISSELBROOK T H, VAN DER WEERDEN T J, PAIN B F, et al. Ammonia emission factors for UK agriculture[J]. Atmospheric Environment, 2000, 34(6): 871−880 doi: 10.1016/S1352-2310(99)00350-7
    [19]
    LI H, XIN H. Lab-scale assessment of gaseous emissions from laying-hen manure storage as affected by physical and environmental factors[J]. Transactions of the ASABE, 2010, 53(2): 593−604 doi: 10.13031/2013.29574
    [20]
    袁玉玲, 王立刚, 李虎, 等. 猪粪固体自然堆放方式下含氮气体排放规律及其影响因素研究[J]. 农业环境科学学报, 2014, 33(7): 1422−1428

    YUAN Y L, WANG L G, LI H, et al. Nitrogenous gas emissions from solid swine manure under natural composting conditions[J]. Journal of Agro-Environment Science, 2014, 33(7): 1422−1428
    [21]
    ZHU Z P, LI L L, DONG H M, et al. Ammonia and greenhouse gas emissions of different types of livestock and poultry manure during storage[J]. Transactions of the ASABE, 2020, 63: 1723−1733 doi: 10.13031/trans.14079
    [22]
    朱海生, 左福元, 董红敏, 等. 堆体规模对牛粪堆肥氨气和温室气体排放的影响[J]. 西北农林科技大学学报(自然科学版), 2018, 46(5): 77−84

    ZHU H S, ZUO F Y, DONG H M, et al. Effect of pile scale on emissions of ammonia and greenhouse gas during cattle manure composting[J]. Journal of Northwest A& F University (Natural Science Edition), 2018, 46(5): 77−84
    [23]
    CHEN B T, KOZIEL J A, BANIK C, et al. Emissions from swine manure treated with current products for mitigation of odors and reduction of NH3, H2S, VOC, and GHG emissions[J]. Data, 2020, 5(2): 54 doi: 10.3390/data5020054
    [24]
    VELASCO-VELASCO J, PARKINSON R, KURI V. Ammonia emissions during vermicomposting of sheep manure[J]. Bioresource Technology, 2011, 102(23): 10959−10964 doi: 10.1016/j.biortech.2011.09.047
    [25]
    周海宾, 丁京涛, 孟海波, 等. 中国畜禽粪污资源化利用技术应用调研与发展分析[J]. 农业工程学报, 2022, 38(9): 237−246

    ZHOU H B, DING J T, MENG H B, et al. Survey and development analysis of resource utilization technology of livestock and poultry wastes in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 237−246
    [26]
    张克强, 杜连柱, 杜会英, 等. 国内外畜禽养殖粪肥还田利用研究进展[J]. 农业环境科学学报, 2021, 40(11): 2472−2481

    ZHANG K Q, DU L Z, DU H Y, et al. Application of livestock and poultry waste to agricultural land: a review[J]. Journal of Agro-Environment Science, 2021, 40(11): 2472−2481
    [27]
    VANDERZAAG A C, GORDON R J, JAMIESON R C, et al. Permeable synthetic covers for controlling emissions from liquid dairy manure[J]. Applied Engineering in Agriculture, 2010, 26(2): 287−297 doi: 10.13031/2013.29544
    [28]
    MCGINN S M, COATES T, FLESCH T K, et al. Ammonia emission from dairy cow manure stored in a lagoon over summer[J]. Canadian Journal of Soil Science, 2008, 88(4): 611−615 doi: 10.4141/CJSS08002
    [29]
    LOHITA SARI B, RURIANTI W, SIMANJUNTAK P. Toksisitas, aktivitas antioksidan Dan antibakteri ekstrak air kulit kayu massoi (Cryptocarpa Massoy (lauraceae))[J]. FITOFARMAKA: Jurnal Ilmiah Farmasi, 2015, 4(1): 18−26 doi: 10.33751/jf.v4i1.183
    [30]
    AROGO J, WESTERMAN P W, HEBER A J. A review of ammonia emissions from confined swine feeding operations[J]. Transactions of the ASAE, 2003, 46(3): 805−817
    [31]
    LEYTEM A B, DUNGAN R S, BJORNEBERG D L, et al. Greenhouse gas and ammonia emissions from an open-freestall dairy in southern Idaho[J]. Journal of Environmental Quality, 2013, 42(1): 10−20 doi: 10.2134/jeq2012.0106
    [32]
    NI J Q, HEBER A J, SUTTON A L, et al. Mechanisms of gas releases from swine wastes[J]. Transactions of the ASABE, 2009, 52(6): 2013−2025 doi: 10.13031/2013.29203
    [33]
    王悦. 猪场沼液贮存过程碳氮气体排放及机理研究[D]. 北京: 中国农业科学院, 2016

    WANG Y. Study on carbon and nitrogen gas emission and mechanism during storage of biogas slurry in pig farm[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016
    [34]
    HANSEN M N, SOMMER S G, HENRIKSEN K. Methane emissions from livestock manure-effects of storage conditions and climate[R]//GHG inventories for agriculture in the nordic countries. Helsingor, Denmark: DIAS (Danish Institute of Agricultural Science), 2002: 45–53
    [35]
    FUNK T L, HUSSEY R, ZHANG Y, et al. Synthetic covers for emissions control from earthen embanked swine lagoons partⅠ: positive pressure lagoon cover[J]. Applied Engineering in Agriculture, 2004, 20(2): 233−238 doi: 10.13031/2013.15889
    [36]
    FUNK T L, MUTLU A, ZHANG Y, et al. Synthetic covers for emissions control from earthen embanked swine lagoons partⅡ: negative pressure lagoon cover[J]. Applied Engineering in Agriculture, 2004, 20(2): 239−242 doi: 10.13031/2013.15890
    [37]
    AYILARA M, OLANREWAJU O, BABALOLA O, et al. Waste management through composting: challenges and potentials[J]. Sustainability, 2020, 12(11): 4456 doi: 10.3390/su12114456
    [38]
    NGUYEN M K, LIN C, HOANG H G, et al. Evaluate the role of biochar during the organic waste composting process: a critical review[J]. Chemosphere, 2022, 299: 134488 doi: 10.1016/j.chemosphere.2022.134488
    [39]
    余鑫. 腐熟堆肥基料生物滤池对猪粪沼渣堆肥过程氨气减排效果研究[D]. 北京: 中国农业科学院, 2020

    YU X. Study on ammonia emission reduction effect of bio-filter based on decomposed compost during composting of pig manure and biogas residue[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020
    [40]
    董春欣, 王玉军. 鸡粪堆肥过程中的挥发性气体控制效果分析[J]. 吉林农业大学学报, 2014, 36(6): 680−684

    DONG C X, WANG Y J. Analysis of the control effect of volatile gas during chicken manure composting[J]. Journal of Jilin Agricultural University, 2014, 36(6): 680−684
    [41]
    LIU T, KUMAR AWASTHI M, VERMA S, et al. Evaluation of cornstalk as bulking agent on greenhouse gases emission and bacterial community during further composting[J]. Bioresource Technology, 2021, 340: 125713 doi: 10.1016/j.biortech.2021.125713
    [42]
    AWASTHI M K, DUAN Y M, AWASTHI S K, et al. Effect of biochar on emission, maturity and bacterial dynamics during sheep manure compositing[J]. Renewable Energy, 2020, 152: 421−429 doi: 10.1016/j.renene.2020.01.065
    [43]
    PAGANS E, BARRENA R, FONT X, et al. Ammonia emissions from the composting of different organic wastes. Dependency on process temperature[J]. Chemosphere, 2006, 62(9): 1534−1542 doi: 10.1016/j.chemosphere.2005.06.044
    [44]
    李顺义, 张红娟, 郭夏丽, 等. 畜禽粪便堆肥过程中氨挥发及调控措施[J]. 农机化研究, 2010, 32(1): 13−17 doi: 10.3969/j.issn.1003-188X.2010.01.004

    LI S Y, ZHANG H J, GUO X L, et al. Ammonia volatilization and the regulation measures in the livestock manure compost[J]. Journal of Agricultural Mechanization Research, 2010, 32(1): 13−17 doi: 10.3969/j.issn.1003-188X.2010.01.004
    [45]
    OSADA T, KURODA K, YONAGA M. Determination of nitrous oxide, methane, and ammonia emissions from a swine waste composting process[J]. Journal of Material Cycles and Waste Management, 2000, 2(1): 51−56
    [46]
    万合锋. 猪粪堆肥及其在蔬菜地利用全过程中温室气体(N2O、CH4)和NH3排放特征研究[D]. 南昌: 南昌大学, 2012: 27–40

    WAN H F. Study on emission characteristics of greenhouse gases (N2O, CH4) and NH3 during pig manure composting and its utilization in vegetable fields[D]. Nanchang: Nanchang University, 2012: 27–40
    [47]
    SEREDYCH M, PETIT C, TAMASHAUSKY A V, et al. Role of graphite precursor in the performance of graphite oxides as ammonia adsorbents[J]. Carbon, 2009, 47(2): 445−456 doi: 10.1016/j.carbon.2008.10.020
    [48]
    MOCHIZUKI T, KUBOTA M, MATSUDA H, et al. Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation[J]. Fuel Processing Technology, 2016, 144: 164−169 doi: 10.1016/j.fuproc.2015.12.012
    [49]
    YU Q Q, XIA D, LI H, et al. Effectiveness and mechanisms of ammonium adsorption on biochars derived from biogas residues[J]. RSC Advances, 2016, 6(91): 88373−88381 doi: 10.1039/C6RA16913A
    [50]
    LIU Y, YAN C J, ZHAO J J, et al. Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water[J]. Journal of Cleaner Production, 2018, 202: 11−22 doi: 10.1016/j.jclepro.2018.08.128
    [51]
    ZENG S J, WANG J L, LI P F, et al. Efficient adsorption of ammonia by incorporation of metal ionic liquids into silica gels as mesoporous composites[J]. Chemical Engineering Journal, 2019, 370: 81−88 doi: 10.1016/j.cej.2019.03.180
    [52]
    MARTINS T H, SOUZA T S O, FORESTI E. Ammonium removal from landfill leachate by clinoptilolite adsorption followed by bioregeneration[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 63−68 doi: 10.1016/j.jece.2016.11.024
    [53]
    ROH H, KIM D, SHIN J, et al. Effect of scrubbing liquid type on ammonia removal efficiency of wet scrubber[J]. Journal of Animal Environmental Science, 2021, 23(1): 14−20 doi: 10.11109/JAES.2021.23.1.014
    [54]
    VAN DER HEYDEN C, BRUSSELMAN E, VOLCKE E I P, et al. Continuous measurements of ammonia, nitrous oxide and methane from air scrubbers at pig housing facilities[J]. Journal of Environmental Management, 2016, 181: 163−171 doi: 10.1016/j.jenvman.2016.06.006
    [55]
    MELSE R W, MOSQUERA J. Nitrous oxide (N2O) emissions from biotrickling filters used for ammonia removal at livestock facilities[J]. Water Science and Technology, 2014, 69(5): 994−1003 doi: 10.2166/wst.2013.826
    [56]
    MELSE R W, OGINK N W M. Air scrubbing techniques for ammonia and odor reduction at livestock operations: review of on-farm research in the Netherlands[J]. Transactions of the ASAE, 2005, 48(6): 2303−2313 doi: 10.13031/2013.20094
    [57]
    BRAVO D, FERRERO P, PENYA-ROJA J M, et al. Control of VOCs from printing press air emissions by anaerobic bioscrubber: performance and microbial community of an on-site pilot unit[J]. Journal of Environmental Management, 2017, 197: 287−295
    [58]
    BARBUSINSKI K, KALEMBA K, KASPERCZYK D, et al. Biological methods for odor treatment: a review[J]. Journal of Cleaner Production, 2017, 152: 223−241 doi: 10.1016/j.jclepro.2017.03.093
    [59]
    KANG J, WANG T, XIN H W, et al. A laboratory study of microalgae-based ammonia gas mitigation with potential application for improving air quality in animal production operations[J]. Journal of the Air & Waste Management Association, 2014, 64(3): 330−339
    [60]
    LIU F, FIENCKE C, GUO J B, et al. Performance evaluation and optimization of field-scale bioscrubbers for intensive pig house exhaust air treatment in northern Germany[J]. Science of the Total Environment, 2017, 579: 694−701 doi: 10.1016/j.scitotenv.2016.11.039
    [61]
    NISOLA G M, CHO E, ORATA J D, et al. NH3 gas absorption and bio-oxidation in a single bioscrubber system[J]. Process Biochemistry, 2009, 44(2): 161−167 doi: 10.1016/j.procbio.2008.10.004
    [62]
    BAQUERIZO G, GAMISANS X, GABRIEL D, et al. A dynamic model for ammonia abatement by gas-phase biofiltration including pH and leachate modelling[J]. Biosystems Engineering, 2007, 97(4): 431−440 doi: 10.1016/j.biosystemseng.2007.03.031
    [63]
    MELSE R W, HOL J M G. Biofiltration of exhaust air from animal houses: evaluation of removal efficiencies and practical experiences with biobeds at three field sites[J]. Biosystems Engineering, 2017, 159: 59−69 doi: 10.1016/j.biosystemseng.2017.04.007
    [64]
    DEMEESTERE K, VAN LANGENHOVE H, SMET E. Regeneration of a compost biofilter degrading high loads of ammonia by addition of gaseous methanol[J]. Journal of the Air & Waste Management Association, 2002, 52(7): 796−804
    [65]
    MORRAL E, GABRIEL D, DORADO A D, et al. A review of biotechnologies for the abatement of ammonia emissions[J]. Chemosphere, 2021, 273: 128606 doi: 10.1016/j.chemosphere.2020.128606
    [66]
    AKDENIZ N, JANNI K A. Full-scale biofilter reduction efficiencies assessed using portable 24-hour sampling units[J]. Journal of the Air & Waste Management Association, 2012, 62(2): 170−182
    [67]
    MUDLIAR S, GIRI B, PADOLEY K, et al. Bioreactors for treatment of VOCs and odours−A review[J]. Journal of Environmental Management, 2010, 91(5): 1039−1054 doi: 10.1016/j.jenvman.2010.01.006
    [68]
    ANDREASEN R R, RIIS A L, MORTENSE K. Removal efficiencies in full-scale biotrickling filters used to clean pig house exhaust air[J]. Agricultural Engineering International: CIGR Journal, 2015, 17(3): 33−42
    [69]
    TSANG Y F, WANG L, CHUA H. Effects of high ammonia loads on nitrogen mass balance and treatment performance of a biotrickling filter[J]. Process Safety and Environmental Protection, 2015, 98: 253−260 doi: 10.1016/j.psep.2015.08.008
    [70]
    GIRARD M, RAMIREZ A A, BUELNA G, et al. Biofiltration of methane at low concentrations representative of the piggery industry−influence of the methane and nitrogen concentrations[J]. Chemical Engineering Journal, 2011, 168(1): 151−158 doi: 10.1016/j.cej.2010.12.054
    [71]
    LIU F, FIENCKE C, GUO J B, et al. Optimisation of bioscrubber systems to simultaneously remove methane and purify wastewater from intensive pig farms[J]. Environmental Science and Pollution Research, 2019, 26(16): 15847−15856 doi: 10.1007/s11356-019-04924-6
    [72]
    PAN K L, PAN G T, CHONG S, et al. Removal of VOCs from gas streams with double perovskite-type catalysts[J]. Journal of Environmental Sciences, 2018, 69: 205−216 doi: 10.1016/j.jes.2017.10.012
    [73]
    TANG P, ZHU Q J, WU Z X, et al. Methane activation: the past and future[J]. Energy & Environmental Science, 2014, 7(8): 2580−2591
    [74]
    LI S N, ZHANG Y G, WANG Z N, et al. Morphological effect of CeO2 catalysts on their catalytic performance in lean methane combustion[J]. Chemistry Letters, 2020, 49(5): 461−464 doi: 10.1246/cl.200049
    [75]
    PERIANA R A, TAUBE D J, EVITT E R, et al. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol[J]. Science, 1993, 259(5093): 340−343 doi: 10.1126/science.259.5093.340
    [76]
    曹敏敏, 王雪峰, 王荀, 等. 煤矿低浓度甲烷利用技术研究进展[J]. 煤炭技术, 2022, 41(1): 101−105

    CAO M M, WANG X F, WANG X, et al. Research progress on utilization technology of low concentration methane in coal mine[J]. Coal Technology, 2022, 41(1): 101−105
    [77]
    KVIST T, ARYAL N. Methane loss from commercially operating biogas upgrading plants[J]. Waste Management, 2019, 87: 295−300 doi: 10.1016/j.wasman.2019.02.023
    [78]
    曲思建, 董卫国, 李雪飞, 等. 低浓度煤层气脱氧浓缩工艺技术开发与应用[J]. 煤炭学报, 2014, 39(8): 1539−1544

    QU S J, DONG W G, LI X F, et al. Research and application of the low concentrated coal bed methane upgrading technique[J]. Journal of China Coal Society, 2014, 39(8): 1539−1544
    [79]
    MARÍN P, YANG Z X, XIA Y D, et al. Concentration of unconventional methane resources using microporous membranes: process assessment and scale-up[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103420 doi: 10.1016/j.jngse.2020.103420
    [80]
    JI Z M, FAN Q H, LIU X D. Simulation and analysis of low-temperature liquefaction and distillation process of low-concentration CBM[J]. Coal Technology, 2010, 29(6): 11−13
    [81]
    鲁长海. N2O催化分解技术在处理己二酸尾气中的应用[J]. 河北化工, 2009(9): 20−21

    LU C H. The application of N2O catalytic technology in abatement adipic acid off-gas[J]. Hebei Chemical Engineering and Industry, 2009(9): 20−21
    [82]
    ZHANG X Y, SHEN Q, HE C, et al. N2O catalytic reduction by NH3 over Fe-zeolites: effective removal and active site[J]. Catalysis Communications, 2012, 18: 151−155 doi: 10.1016/j.catcom.2011.11.029
    [83]
    ZHANG C, ZHANG Z P, SUI C, et al. Inside cover: catalytic decomposition of N2O over Co-Ti oxide catalysts: interaction between Co and Ti oxide (ChemCatChem 12/2016)[J]. ChemCatChem, 2016, 8(12): 1992 doi: 10.1002/cctc.201600683
    [84]
    于泳, 王亚涛. 己二酸尾气中N2O处理技术进展[J]. 工业催化, 2016, 24(7): 17−20 doi: 10.3969/j.issn.1008-1143.2016.07.003

    YU Y, WANG Y T. Advance in treatment technology of N2O in exhaust gas of adipic acid production[J]. Industrial Catalysis, 2016, 24(7): 17−20 doi: 10.3969/j.issn.1008-1143.2016.07.003
    [85]
    孙浩杰, 施耀华, 杨益江. N2O的工业分解方法[J]. 内江科技, 2009, 30(6): 84

    SUN H J, SHI Y H, YANG Y J. Industrial decomposition method of N2O[J]. Neijiang Keji, 2009, 30(6): 84
    [86]
    HUANG C Y, MA Z, MIAO C X, et al. Catalytic decomposition of N2O over Rh/Zn-Al2O3 catalysts[J]. RSC Advances, 2017, 7(8): 4243−4252 doi: 10.1039/C6RA25388A
    [87]
    ZUMFT W G. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Reviews: MMBR, 1997, 61(4): 533−616
    [88]
    FRUTOS O D, ARVELO I A, PÉREZ R, et al. Continuous nitrous oxide abatement in a novel denitrifying off-gas bioscrubber[J]. Applied Microbiology and Biotechnology, 2015, 99(8): 3695−3706 doi: 10.1007/s00253-014-6329-8
    [89]
    RAMEZANI M, ZAMIR S M. Treatment of nitrous oxide in a trickling bioreactor in the presence of glucose or phenol as the carbon source: performance, kinetic study, and characterization of microbial community shift[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108763 doi: 10.1016/j.jece.2022.108763
    [90]
    KUO S, PEDRAM E O, HINES A L. Analysis of ammonia adsorption on silica gel using the modified potential theory[J]. Journal of Chemical & Engineering Data, 1985, 30(3): 330−332
    [91]
    ASILIAN H, MORTAZAVI S, KAZEMIAN H, et al. Removal of ammonia from air, using three Iranian natural zeolites[J]. Iranian Journal of Public Health, 2004, 33: 45−51
    [92]
    BERNAL M P, LOPEZ-REAL J M. Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials[J]. Bioresource Technology, 1993, 43(1): 27−33 doi: 10.1016/0960-8524(93)90078-P
    [93]
    GABRIEL D, DESHUSSES M A. Technical and economical analysis of the conversion of a full-scale scrubber to a biotrickling filter for odor control[J]. Water Science and Technology, 2004, 50(4): 309−318 doi: 10.2166/wst.2004.0292
    [94]
    ESTRADA J M, KRAAKMAN N J R B, MUÑOZ R, et al. A comparative analysis of odour treatment technologies in wastewater treatment plants[J]. Environmental Science & Technology, 2011, 45(3): 1100−1106
    [95]
    HADLOCON L J, ZHAO L Y. Production of ammonium sulfate fertilizer using acid spray wet scrubbers[J]. Agricultural Engineering International: The CIGR Journal, 2015, 14: 41−51
    [96]
    JAMALUDIN Z, ROLLINGS-SCATTERGOOD S, LUTES K, et al. Evaluation of sustainable scrubbing agents for ammonia recovery from anaerobic digestate[J]. Bioresource Technology, 2018, 270: 596−602 doi: 10.1016/j.biortech.2018.09.007
    [97]
    ALINEZHAD E, HAGHIGHI M, RAHMANI F, et al. Technical and economic investigation of chemical scrubber and bio-filtration in removal of H2S and NH3 from wastewater treatment plant[J]. Journal of Environmental Management, 2019, 241: 32−43 doi: 10.1016/j.jenvman.2019.04.003
    [98]
    谢珊珊. 低湿度生物滤池去除NH3及H2S的实验研究[D]. 扬州: 扬州大学, 2019

    XIE S S. Experimental study on removal of NH3 and H2S by low humidity biofilter[D]. Yangzhou: Yangzhou University, 2019
    [99]
    DOBSLAW D, SCHULZ A, HELBICH S, et al. VOC removal and odor abatement by a low-cost plasma enhanced biotrickling filter process[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5501−5511 doi: 10.1016/j.jece.2017.10.015
    [100]
    HERNÁNDEZ J, LAFUENTE J, PRADO Ó J, et al. Startup and long-term performance of biotrickling filters packed with polyurethane foam and poplar wood chips treating a mixture of ethylmercaptan, H2S, and NH3[J]. Journal of the Air & Waste Management Association, 2013, 63(4): 462−471
    [101]
    MOUSSAVI G, KHAVANIN A, SHARIFI A. Ammonia removal from a waste air stream using a biotrickling filter packed with polyurethane foam through the SND process[J]. Bioresource Technology, 2011, 102(3): 2517−2522 doi: 10.1016/j.biortech.2010.11.047
    [102]
    GEBERT J, GRÖNGRÖFT A. Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane[J]. Waste Management, 2006, 26(4): 399−407 doi: 10.1016/j.wasman.2005.11.007
    [103]
    STREESE J, STEGMANN R. Microbial oxidation of methane from old landfills in biofilters[J]. Waste Management, 2003, 23(7): 573−580 doi: 10.1016/S0956-053X(03)00097-7
    [104]
    YOON S, CAREY J N, SEMRAU J D. Feasibility of atmospheric methane removal using methanotrophic biotrickling filters[J]. Applied Microbiology and Biotechnology, 2009, 83(5): 949−956 doi: 10.1007/s00253-009-1977-9
    [105]
    CAI X J, HU Y H. Advances in catalytic conversion of methane and carbon dioxide to highly valuable products[J]. Energy Science & Engineering, 2019, 7(1): 4−29
    [106]
    HEO J, LEE B, LIM H. Techno-economic analysis for CO2 reforming of a medium-grade landfill gas in a membrane reactor for H2 production[J]. Journal of Cleaner Production, 2018, 172: 2585−2593 doi: 10.1016/j.jclepro.2017.11.151
    [107]
    LEE J H, TRIMM D L. Catalytic combustion of methane[J]. Fuel Processing Technology, 1995, 42(2/3): 339−359
    [108]
    KEIPI T, HANKALIN V, NUMMELIN J, et al. Techno-economic analysis of four concepts for thermal decomposition of methane: reduction of CO2 emissions in natural gas combustion[J]. Energy Conversion and Management, 2016, 110: 1−12 doi: 10.1016/j.enconman.2015.11.057
    [109]
    LOKHANDWALA K A, PINNAU I, HE Z J, et al. Membrane separation of nitrogen from natural gas: a case study from membrane synthesis to commercial deployment[J]. Journal of Membrane Science, 2010, 346(2): 270−279 doi: 10.1016/j.memsci.2009.09.046
    [110]
    曹雨来. 氧化亚氮催化分解催化剂的制备及中试实验研究[D]. 北京: 北京石油化工学院, 2017

    CAO Y L. Preparation and pilot test of catalyst for catalytic decomposition of nitrous oxide[D]. Beijing: Beijing Institute of Petrochemical Technology, 2017
    [111]
    黄思齐, 王新承, 于泳, 等. 负载型铜铁催化剂直接催化分解N2O的研究[J]. 现代化工, 2019, 39(8): 124−128, 133

    HUANG S Q, WANG X C, YU Y, et al. Study on direct catalytic decomposition of N2O by supported copper-iron catalyst[J]. Modern Chemical Industry, 2019, 39(8): 124−128, 133
  • Cited by

    Periodical cited type(3)

    1. 宋冬林,丁文龙. 农村电商对城乡统一大市场的影响机制与实证检验. 北京社会科学. 2024(06): 64-76 .
    2. 王小鹏. 甘肃省农业高质量发展系统的耦合协调度. 甘肃高师学报. 2024(06): 20-25 .
    3. 陈立. 闽台有机农业交流与合作发展对策. 台湾农业探索. 2023(03): 8-15 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (764) PDF downloads (105) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return