Citation: | GUO B, YANG H, LI J C, ZHU C Y, ZHAO Y H, CAO J S, SHEN Y J. Rainfall partitioning patterns by Pinus tabulaeformis forest in Taihang Mountains[J]. Chinese Journal of Eco-Agriculture, 2023, 31(12): 2011−2021. DOI: 10.12357/cjea.20230172 |
[1] |
吴爱民, 李长青, 徐彦泽, 等. 华北平原地下水可持续利用的主要问题及对策建议[J]. 南水北调与水利科技, 2010, 8(6): 110−113, 128
WU A M, LI C Q, XU Y Z, et al. Key issues influencing sustainable groundwater utilization and its countermeasures in North China Plain[J]. South-to-North Water Transfers and Water Science & Technology, 2010, 8(6): 110−113, 128
|
[2] |
杜军凯, 贾仰文, 郝春沣, 等. 太行山区蓝水绿水沿垂直带演变规律及其归因分析[J]. 南水北调与水利科技, 2018, 16(2): 64−73
DU J K, JIA Y W, HAO C F, et al. Evolution law and attribution analysis of vertical distribution of blue water and green water in Taihang mountain region[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(2): 64−73
|
[3] |
LIU M Z, PEI H W, SHEN Y J. Evaluating dynamics of GRACE groundwater and its drought potential in Taihang Mountain Region, China[J]. Journal of Hydrology, 2022, 612: 128156 doi: 10.1016/j.jhydrol.2022.128156
|
[4] |
曹建生, 张万军, 阳辉, 等. 北方土石山区生态修复与水源涵养研究进展与展望[J]. 中国生态农业学报, 2018, 26(10): 1546−1554
CAO J S, ZHANG W J, YANG H, et al. Practice and prospect of ecological restoration and water conservation for the rocky mountain areas in North China[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1546−1554
|
[5] |
LI R N, ZHENG H, O'CONNOR P, et al. Time and space catch up with restoration programs that ignore ecosystem service trade-offs[J]. Science Advances, 2021, 7(14): eabf8650 doi: 10.1126/sciadv.abf8650
|
[6] |
LIAN X, ZHAO W L, GENTINE P. Recent global decline in rainfall interception loss due to altered rainfall regimes[J]. Nature Communications, 2022, 13: 7642 doi: 10.1038/s41467-022-35414-y
|
[7] |
CROCKFORD R H, RICHARDSON D P. Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate[J]. Hydrological Processes, 2000, 14(16/17): 2903−2920
|
[8] |
MUZYLO A, LLORENS P, VALENTE F, et al. A review of rainfall interception modelling[J]. Journal of Hydrology, 2009, 370(1/2/3/4): 191−206
|
[9] |
王根绪, 夏军, 李小雁, 等. 陆地植被生态水文过程前沿进展: 从植物叶片到流域[J]. 科学通报, 2021, 66(28): 3667−3683
WANG G X, XIA J, LI X Y, et al. Critical advances in understanding ecohydrological processes of terrestrial vegetation: from leaf to watershed scale[J]. Chinese Science Bulletin, 2021, 66(28): 3667−3683
|
[10] |
ZHANG Y F, YUAN C, CHEN N, et al. Rainfall partitioning by vegetation in China: a quantitative synthesis[J]. Journal of Hydrology, 2023, 617: 128946 doi: 10.1016/j.jhydrol.2022.128946
|
[11] |
郭建平. 植物对降水截留的研究进展[J]. 应用气象学报, 2020, 31(6): 641−652 doi: 10.11898/1001-7313.20200601
GUO J P. Research progress of precipitation interception by plants[J]. Journal of Applied Meteorological Science, 2020, 31(6): 641−652 doi: 10.11898/1001-7313.20200601
|
[12] |
DENG J F, YU Y F, SHAO J, et al. Rainfall interception using the revised Gash analytical model for Pinus sylvestris var. mongolica in a semi-humid region of NE China[J]. Ecological Indicators, 2022, 143: 109399 doi: 10.1016/j.ecolind.2022.109399
|
[13] |
SU L, YANG J, ZHAO X, et al. Effects of fire on interception loss in a coniferous and broadleaved mixed forest[J]. Journal of Hydrology, 2022, 613: 128425 doi: 10.1016/j.jhydrol.2022.128425
|
[14] |
GASH J H C. An analytical model of rainfall interception by forests[J]. Quarterly Journal of the Royal Meteorological Society, 1979, 105(443): 43−55 doi: 10.1002/qj.49710544304
|
[15] |
LIU S G. A new model for the prediction of rainfall interception in forest canopies[J]. Ecological Modelling, 1997, 99(2/3): 151−159
|
[16] |
LIU S G. Evaluation of the Liu model for predicting rainfall interception in forests world-wide[J]. Hydrological Processes, 2001, 15(12): 2341−2360 doi: 10.1002/hyp.264
|
[17] |
CARLYLE-MOSES D E, PARK A D, CAMERON J L. Modelling rainfall interception loss in forest restoration trials in Panama[J]. Ecohydrology, 2010, 3(3): 272−283 doi: 10.1002/eco.105
|
[18] |
GASH J H C, LLOYD C R, LACHAUD G. Estimating sparse forest rainfall interception with an analytical model[J]. Journal of Hydrology, 1995, 170(1/2/3/4): 79−86
|
[19] |
SHI Z J, WANG Y H, XU L H, et al. Fraction of incident rainfall within the canopy of a pure stand of Pinus armandii with revised Gash model in the Liupan Mountains of China[J]. Journal of Hydrology, 2010, 385(1/2/3/4): 44−50
|
[20] |
YANG J J, HE Z B, FENG J M, et al. Rainfall interception measurements and modeling in a semiarid evergreen spruce (Picea crassifolia) forest[J]. Agricultural and Forest Meteorology, 2023, 328: 109257 doi: 10.1016/j.agrformet.2022.109257
|
[21] |
TU L H, XIONG W, WANG Y H, et al. Integrated effects of rainfall regime and canopy structure on interception loss: A comparative modelling analysis for an artificial larch forest[J]. Ecohydrology, 2021, 14(4): e2283
|
[22] |
王晓燕, 鲁绍伟, 杨新兵, 等. 北京密云油松人工林林冠截留模拟[J]. 西北农林科技大学学报(自然科学版), 2012, 40(2): 85−91
WANG X Y, LU S W, YANG X B, et al. Canopy interception simulation of pine plantation in Miyun of Beijing[J]. Journal of Northwest A & F University (Natural Science Edition), 2012, 40(2): 85−91
|
[23] |
SADEGHI S M M, VAN STAN J T, PYPKER T G, et al. Canopy hydrometeorological dynamics across a chronosequence of a globally invasive species, Ailanthus altissima (Mill., tree of heaven)[J]. Agricultural and Forest Meteorology, 2017, 240/241: 10−17 doi: 10.1016/j.agrformet.2017.03.017
|
[24] |
CARLYLE-MOSES D E, PRICE A G. Modelling canopy interception loss from a Madrean pine-oak stand, northeastern Mexico[J]. Hydrological Processes, 2007, 21(19): 2572−2580 doi: 10.1002/hyp.6790
|
[25] |
次仁曲西. 晋西黄土区人工油松林降雨再分配及林内降雨空间异质性研究[D]. 北京: 北京林业大学, 2014
CIRENQUXI. Study on rainfall redistribution and spatial heterogeneity of rainfall in artificial Pinus tabulaeformis forest in loess region of western Shanxi Province[D]. Beijing: Beijing Forestry University, 2014
|
[26] |
钱金平, 王仁德, 白洁, 等. 太行山区不同人工林林冠截留降水的比较研究[J]. 水土保持通报, 2012, 32(4): 164−167
QIAN J P, WANG R D, BAI J, et al. Canopy rainfall interception of different planted forests in Taihang Mountainous region[J]. Bulletin of Soil and Water Conservation, 2012, 32(4): 164−167
|
[27] |
陈丽华, 杨新兵, 鲁绍伟, 等. 华北土石山区油松人工林耗水分配规律[J]. 北京林业大学学报, 2008, 30(S2): 182−187
CHEN L H, YANG X B, LU S W, et al. Distribution of water consumption of Pinus tabulaeformis plantation in rocky mountain areas in Northern China[J]. Journal of Beijing Forestry University, 2008, 30(S2): 182−187
|
[28] |
肖洋, 陈丽华, 余新晓, 等. 北京密云水库油松人工林对降水分配的影响[J]. 水土保持学报, 2007, 21(3): 154−157
XIAO Y, CHEN L H, YU X X, et al. Influence on precipitation distribution of Pinus tabuleaefomis forest in Miyun Reservoir[J]. Journal of Soil and Water Conservation, 2007, 21(3): 154−157
|
[29] |
赵鸿雁, 吴钦孝, 刘国彬. 黄土高原人工油松林水文生态效应[J]. 生态学报, 2003, 23(2): 376−379
ZHAO H Y, WU Q X, LIU G B. Studies on hydro-ecological effects of artificial Chinese pine stand in Loess Plateau[J]. Acta Ecologica Sinica, 2003, 23(2): 376−379
|
[30] |
董世仁, 郭景唐, 满荣洲. 华北油松人工林的透流、干流和树冠截留[J]. 北京林业大学学报, 1987, 9(1): 58−68
DONG S R, GUO J T, MAN R Z. Throughfall, stemflow and canopy interception in a Pinus tabulaeformis plantation of North China[J]. Journal of Beijing Forestry University, 1987, 9(1): 58−68
|
[31] |
胡珊珊, 于静洁, 胡垄, 等. 华北石质山区油松林对降水再分配过程的影响[J]. 生态学报, 2010, 30(7): 1751−1757
HU S S, YU J J, HU L, et al. Impacts of Chinese pine (Pinus tabulaeformis) plantations on rainfall redistribution processes: a case study for the mountainous area of North China[J]. Acta Ecologica Sinica, 2010, 30(7): 1751−1757
|
[32] |
方书敏, 赵传燕, 荐圣淇, 等. 陇中黄土高原油松人工林林冠截留特征及模拟[J]. 应用生态学报, 2013, 24(6): 1509−1516
FANG S M, ZHAO C Y, JIAN S Q, et al. Canopy interception of Pinus tabulaeformis plantation on Longzhong Loess Plateau, Northwest China: characteristics and simulation[J]. Chinese Journal of Applied Ecology, 2013, 24(6): 1509−1516
|
[33] |
LIANG W J. Simulation of Gash model to rainfall interception of Pinus tabulaeformis[J]. Forest Systems, 2014, 23(2): 300 doi: 10.5424/fs/2014232-03410
|
[34] |
武秀荣, 金铭, 赵维俊, 等. 运用Gash修正模型对祁连山北麓中段青海云杉林降水截留的模拟[J]. 水土保持学报, 2020, 34(5): 216−222
WU X R, JIN M, ZHAO W J, et al. Application of modified Gash model to simulate rainfall interception of Picea crassi folia forest in the middle of the northern slope of Qilian Mountain[J]. Journal of Soil and Water Conservation, 2020, 34(5): 216−222
|
[35] |
PANAHANDEH T, ATTAROD P, SADEGHI S M M, et al. The performance of the reformulated Gash rainfall interception model in the Hyrcanian temperate forests of northern Iran[J]. Journal of Hydrology, 2022, 612: 128092 doi: 10.1016/j.jhydrol.2022.128092
|
[36] |
FRANCIS J R, WUDDIVIRA M N, FARRICK K K. Exotic tropical pine forest impacts on rainfall interception: canopy, understory, and litter[J]. Journal of Hydrology, 2022, 609: 127765 doi: 10.1016/j.jhydrol.2022.127765
|
[37] |
YUE K, DE FRENNE P, FORNARA D A, et al. Global patterns and drivers of rainfall partitioning by trees and shrubs[J]. Global Change Biology, 2021, 27(14): 3350−3357 doi: 10.1111/gcb.15644
|
[38] |
黄团冲, 贺康宁, 王先棒. 青海大通白桦林冠层降雨再分配与冠层结构关系研究[J]. 西北林学院学报, 2018, 33(3): 1−6, 20
HUANG T C, HE K N, WANG X B. Relationship between rainfall redistribution and canop structure of Betula platyphylla canopy in Datong, Qinghai[J]. Journal of Northwest Forestry University, 2018, 33(3): 1−6, 20
|
[39] |
EXLER J L, MOORE R D. Quantifying throughfall, stemflow and interception loss in five vegetation communities in a maritime raised bog[J]. Agricultural and Forest Meteorology, 2022, 327: 109202 doi: 10.1016/j.agrformet.2022.109202
|
[40] |
MA C K, LI X D, LUO Y, et al. The modelling of rainfall interception in growing and dormant seasons for a pine plantation and a black locust plantation in semi-arid Northwest China[J]. Journal of Hydrology, 2019, 577: 123849 doi: 10.1016/j.jhydrol.2019.06.021
|
[41] |
刘效东, 龙凤玲, 陈修治, 等. 基于修正的Gash模型对南亚热带季风常绿阔叶林林冠截留的模拟[J]. 生态学杂志, 2016, 35(11): 3118−3125
LIU X D, LONG F L, CHEN X Z, et al. An assessment of the revised Gash interception model in a monsoon evergreen broadleaved forest in lower subtropical China[J]. Chinese Journal of Ecology, 2016, 35(11): 3118−3125
|
[42] |
柴汝杉, 蔡体久, 满秀玲, 等. 基于修正的Gash模型模拟小兴安岭原始红松林降雨截留过程[J]. 生态学报, 2013, 33(4): 1276−1284 doi: 10.5846/stxb201209241347
CHAI R S, CAI T J, MAN X L, et al. Simulation of rainfall interception process of primary Korean pine forest in Xiaoxing’an Mountains by using the modified Gash model[J]. Acta Ecologica Sinica, 2013, 33(4): 1276−1284 doi: 10.5846/stxb201209241347
|
[43] |
张继辉, 郑路, 陈琳, 等. 降雨特征对南亚热带马尾松人工林降水分配格局的影响[J]. 水土保持学报, 2021, 35(1): 174−180
ZHANG J H, ZHENG L, CHEN L, et al. Effects of rainfall characteristics on rainfall partitioning in plantation of Pinus massoniana in south subtropical[J]. Journal of Soil and Water Conservation, 2021, 35(1): 174−180
|
[44] |
FAN J L, OESTERGAARD K T, GUYOT A, et al. Measuring and modeling rainfall interception losses by a native Banksia woodland and an exotic pine plantation in subtropical coastal Australia[J]. Journal of Hydrology, 2014, 515: 156−165 doi: 10.1016/j.jhydrol.2014.04.066
|
[45] |
LLORENS P, DOMINGO F. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe[J]. Journal of Hydrology, 2007, 335(1/2): 37–54
|
1. |
王凯,潘凌洁,徐志豪,李佳丹,张弦,詹柴. 水稻红螯螯虾综合种养模式对土壤肥力的影响. 安徽农业科学. 2025(01): 94-97 .
![]() | |
2. |
陈心怡,刘钰钦,陈淼,王文峰. 作物多样性(轮作)下砖红壤溶解性有机质含量及光谱特征. 农业资源与环境学报. 2025(01): 149-158 .
![]() | |
3. |
梁以豪,倪才英,黎衍亮,肖罗长,简敏菲. 稻田土壤溶解性有机质组成及其与Cd~(2+)络合过程研究. 土壤学报. 2025(01): 153-164 .
![]() | |
4. |
余俊杰,刘洋,罗文浩,赵婧,周丹丹,王霞,朱丽花. 稻田共作模式中重金属的污染特征及有效性控制研究. 中国生态农业学报(中英文). 2025(02): 374-386 .
![]() | |
5. |
章绍康,吴静琳,弓晓峰,王玉秀,倪妍. 苔草溶解性有机质对土壤吸附Cu~(2+)影响研究. 环境科学与技术. 2024(05): 127-133 .
![]() | |
6. |
潘红卫,陈惠茹,史利利,雷宏军,王逸飞,孔海康,杨光. 不同有机肥对生菜生育期土壤剖面DOM分布的影响. 光谱学与光谱分析. 2024(09): 2683-2691 .
![]() | |
7. |
许元钊,宋庆洋,王辉,易建华,毕永红,米武娟,宋高飞. 稻虾综合种养对土壤肥力及微生物群落的影响. 水生生物学报. 2024(12): 2018-2028 .
![]() | |
8. |
朱晓艳,卢禹晗,武忠,董向前,王琪琛,柳钟惠,路永正. 外源氮磷输入对泥炭地DOM结构复杂性的影响. 中国环境科学. 2024(12): 6807-6816 .
![]() | |
9. |
徐烨红,巴雯雯,陆超,郭德杰,罗佳,马艳. 化学氮肥有机替代下设施菜地可溶性碳氮淋溶特征. 植物营养与肥料学报. 2024(12): 2281-2295 .
![]() | |
10. |
岳勇,张书海,董响红,王桢璐. 稻田综合种养研究进展及其在贵州省的发展现状. 山地农业生物学报. 2023(05): 46-51 .
![]() |