GUO B, YANG H, LI J C, ZHU C Y, ZHAO Y H, CAO J S, SHEN Y J. Rainfall partitioning patterns by Pinus tabulaeformis forest in Taihang Mountains[J]. Chinese Journal of Eco-Agriculture, 2023, 31(12): 2011−2021. DOI: 10.12357/cjea.20230172
Citation: GUO B, YANG H, LI J C, ZHU C Y, ZHAO Y H, CAO J S, SHEN Y J. Rainfall partitioning patterns by Pinus tabulaeformis forest in Taihang Mountains[J]. Chinese Journal of Eco-Agriculture, 2023, 31(12): 2011−2021. DOI: 10.12357/cjea.20230172

Rainfall partitioning patterns by Pinus tabulaeformis forest in Taihang Mountains

Funds: The study was supported by the Project for Innovative Research Group of the Natural Science Foundation of Hebei Province (D2021503001) , the Special Investigation Project for Scientific and Technological Basic Resources of China (2022FY100104) and the key R & D Project of Hebei Province (20324203D).
More Information
  • Corresponding author:

    CAO Jiansheng, E-mail: caojs@sjziam.ac.cn

    SHEN Yanjun, E-mail: yjshen@sjziam.ac.cn

  • Received Date: April 02, 2023
  • Revised Date: June 29, 2023
  • Accepted Date: June 01, 2023
  • Available Online: August 14, 2023
  • The Taihang Mountain Region is the ecological barrier and water source of North China Plain. In recent decades, with the implementation of Taihang Mountains Greening Project and other projects, the vegetation coverage in Taihang Mountain Region is recovering continuously, but the runoff in the mountains is rapidly declining. The mechanism of how the vegetation restoration affects the water yield is not clear. The process of rainfall partitioning is an important part of hydrological cycle. It is of great significance for the formation process of regional water yield and water resources. Pinus tabulaeformis is the main afforestation tree species in Taihang Mountain Region, and it affects regional water resources. The rainfall partitioning of P. tabulaeformis forest in Taihang Mountain Region remains poorly understood. It is required to assess the applicability of the revised Gash model and revised Liu model. In this study, the rainfall partitioning in P. tabulaeformis forest is examined from July to November of 2022. The canopy interception was simulated by revised Gash model and revised Liu model. The results showed that 1) the rainfall amount was 450.8 mm during the study period, the average rainfall duration was 10.4 h, and the average rainfall intensity was 2.7 mm∙h−1. Furthermore, we found that the rainfall during the study period was mainly light rain. The canopy interception, throughfall and stemflow of P. tabulaeformis forest were 105.5, 338.2 and 7.1 mm, respectively, accounting for 23.4%, 75.0% and 1.6% of the rainfall amount. 2) Throughfall and stemflow began to occur when the rainfall amount reached 1.7 and 5.5 mm, respectively. Significant linear relationships were found between the rainfall amount and throughfall amount. However, the relationship between rainfall amount and interception followed a power function. The throughfall percentage increased quickly with increasing rainfall amount, but when rainfall amount reached 11 mm, the throughfall percentage increased slowly. The interception percentage firstly decreased and then stabilized with increasing rainfall amount. 3) Based on the revised Gash model, the canopy interception, throughfall, and stemflow were calculated to be 105.3, 340.7, and 4.6 mm, respectively. The relative errors between the measured and simulated values were 0.2%, 0.8%, and 34.7%. According to the revised Gash model simulation results, we found that the interception amount was dominated by canopy evaporation during rainfall, accounting for 55.0% of the interception simulation, followed by evaporation after cessation of rainfall, accounting for 27.8% of the interception simulation. The revised Liu model calculated the interception as 96.0 mm, with a relative error of 9.0% between the measured and simulated values. The revised Gash model had lower relative errors in the simulation than the Liu model. 4) Sensitivity of the revised Gash model parameters were mean evapotranspiration rate > mean rainfall intensity > canopy storage capacity > canopy cover > trunk storage capacity > stemflow coefficient. These results indicate that typical P. tabulaeformis forests in the Taihang Mountains can intercept 23.4% of rainfall, with 75.0% throughfall and 1.6% stemflow. The revised Gash model can be used to predict canopy interception in P. tabulaeformis forests and provides a theoretical basis for water resource assessment and water conservation capacity improvement in mountainous areas.
  • [1]
    吴爱民, 李长青, 徐彦泽, 等. 华北平原地下水可持续利用的主要问题及对策建议[J]. 南水北调与水利科技, 2010, 8(6): 110−113, 128

    WU A M, LI C Q, XU Y Z, et al. Key issues influencing sustainable groundwater utilization and its countermeasures in North China Plain[J]. South-to-North Water Transfers and Water Science & Technology, 2010, 8(6): 110−113, 128
    [2]
    杜军凯, 贾仰文, 郝春沣, 等. 太行山区蓝水绿水沿垂直带演变规律及其归因分析[J]. 南水北调与水利科技, 2018, 16(2): 64−73

    DU J K, JIA Y W, HAO C F, et al. Evolution law and attribution analysis of vertical distribution of blue water and green water in Taihang mountain region[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(2): 64−73
    [3]
    LIU M Z, PEI H W, SHEN Y J. Evaluating dynamics of GRACE groundwater and its drought potential in Taihang Mountain Region, China[J]. Journal of Hydrology, 2022, 612: 128156 doi: 10.1016/j.jhydrol.2022.128156
    [4]
    曹建生, 张万军, 阳辉, 等. 北方土石山区生态修复与水源涵养研究进展与展望[J]. 中国生态农业学报, 2018, 26(10): 1546−1554

    CAO J S, ZHANG W J, YANG H, et al. Practice and prospect of ecological restoration and water conservation for the rocky mountain areas in North China[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1546−1554
    [5]
    LI R N, ZHENG H, O'CONNOR P, et al. Time and space catch up with restoration programs that ignore ecosystem service trade-offs[J]. Science Advances, 2021, 7(14): eabf8650 doi: 10.1126/sciadv.abf8650
    [6]
    LIAN X, ZHAO W L, GENTINE P. Recent global decline in rainfall interception loss due to altered rainfall regimes[J]. Nature Communications, 2022, 13: 7642 doi: 10.1038/s41467-022-35414-y
    [7]
    CROCKFORD R H, RICHARDSON D P. Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate[J]. Hydrological Processes, 2000, 14(16/17): 2903−2920
    [8]
    MUZYLO A, LLORENS P, VALENTE F, et al. A review of rainfall interception modelling[J]. Journal of Hydrology, 2009, 370(1/2/3/4): 191−206
    [9]
    王根绪, 夏军, 李小雁, 等. 陆地植被生态水文过程前沿进展: 从植物叶片到流域[J]. 科学通报, 2021, 66(28): 3667−3683

    WANG G X, XIA J, LI X Y, et al. Critical advances in understanding ecohydrological processes of terrestrial vegetation: from leaf to watershed scale[J]. Chinese Science Bulletin, 2021, 66(28): 3667−3683
    [10]
    ZHANG Y F, YUAN C, CHEN N, et al. Rainfall partitioning by vegetation in China: a quantitative synthesis[J]. Journal of Hydrology, 2023, 617: 128946 doi: 10.1016/j.jhydrol.2022.128946
    [11]
    郭建平. 植物对降水截留的研究进展[J]. 应用气象学报, 2020, 31(6): 641−652 doi: 10.11898/1001-7313.20200601

    GUO J P. Research progress of precipitation interception by plants[J]. Journal of Applied Meteorological Science, 2020, 31(6): 641−652 doi: 10.11898/1001-7313.20200601
    [12]
    DENG J F, YU Y F, SHAO J, et al. Rainfall interception using the revised Gash analytical model for Pinus sylvestris var. mongolica in a semi-humid region of NE China[J]. Ecological Indicators, 2022, 143: 109399 doi: 10.1016/j.ecolind.2022.109399
    [13]
    SU L, YANG J, ZHAO X, et al. Effects of fire on interception loss in a coniferous and broadleaved mixed forest[J]. Journal of Hydrology, 2022, 613: 128425 doi: 10.1016/j.jhydrol.2022.128425
    [14]
    GASH J H C. An analytical model of rainfall interception by forests[J]. Quarterly Journal of the Royal Meteorological Society, 1979, 105(443): 43−55 doi: 10.1002/qj.49710544304
    [15]
    LIU S G. A new model for the prediction of rainfall interception in forest canopies[J]. Ecological Modelling, 1997, 99(2/3): 151−159
    [16]
    LIU S G. Evaluation of the Liu model for predicting rainfall interception in forests world-wide[J]. Hydrological Processes, 2001, 15(12): 2341−2360 doi: 10.1002/hyp.264
    [17]
    CARLYLE-MOSES D E, PARK A D, CAMERON J L. Modelling rainfall interception loss in forest restoration trials in Panama[J]. Ecohydrology, 2010, 3(3): 272−283 doi: 10.1002/eco.105
    [18]
    GASH J H C, LLOYD C R, LACHAUD G. Estimating sparse forest rainfall interception with an analytical model[J]. Journal of Hydrology, 1995, 170(1/2/3/4): 79−86
    [19]
    SHI Z J, WANG Y H, XU L H, et al. Fraction of incident rainfall within the canopy of a pure stand of Pinus armandii with revised Gash model in the Liupan Mountains of China[J]. Journal of Hydrology, 2010, 385(1/2/3/4): 44−50
    [20]
    YANG J J, HE Z B, FENG J M, et al. Rainfall interception measurements and modeling in a semiarid evergreen spruce (Picea crassifolia) forest[J]. Agricultural and Forest Meteorology, 2023, 328: 109257 doi: 10.1016/j.agrformet.2022.109257
    [21]
    TU L H, XIONG W, WANG Y H, et al. Integrated effects of rainfall regime and canopy structure on interception loss: A comparative modelling analysis for an artificial larch forest[J]. Ecohydrology, 2021, 14(4): e2283
    [22]
    王晓燕, 鲁绍伟, 杨新兵, 等. 北京密云油松人工林林冠截留模拟[J]. 西北农林科技大学学报(自然科学版), 2012, 40(2): 85−91

    WANG X Y, LU S W, YANG X B, et al. Canopy interception simulation of pine plantation in Miyun of Beijing[J]. Journal of Northwest A & F University (Natural Science Edition), 2012, 40(2): 85−91
    [23]
    SADEGHI S M M, VAN STAN J T, PYPKER T G, et al. Canopy hydrometeorological dynamics across a chronosequence of a globally invasive species, Ailanthus altissima (Mill., tree of heaven)[J]. Agricultural and Forest Meteorology, 2017, 240/241: 10−17 doi: 10.1016/j.agrformet.2017.03.017
    [24]
    CARLYLE-MOSES D E, PRICE A G. Modelling canopy interception loss from a Madrean pine-oak stand, northeastern Mexico[J]. Hydrological Processes, 2007, 21(19): 2572−2580 doi: 10.1002/hyp.6790
    [25]
    次仁曲西. 晋西黄土区人工油松林降雨再分配及林内降雨空间异质性研究[D]. 北京: 北京林业大学, 2014

    CIRENQUXI. Study on rainfall redistribution and spatial heterogeneity of rainfall in artificial Pinus tabulaeformis forest in loess region of western Shanxi Province[D]. Beijing: Beijing Forestry University, 2014
    [26]
    钱金平, 王仁德, 白洁, 等. 太行山区不同人工林林冠截留降水的比较研究[J]. 水土保持通报, 2012, 32(4): 164−167

    QIAN J P, WANG R D, BAI J, et al. Canopy rainfall interception of different planted forests in Taihang Mountainous region[J]. Bulletin of Soil and Water Conservation, 2012, 32(4): 164−167
    [27]
    陈丽华, 杨新兵, 鲁绍伟, 等. 华北土石山区油松人工林耗水分配规律[J]. 北京林业大学学报, 2008, 30(S2): 182−187

    CHEN L H, YANG X B, LU S W, et al. Distribution of water consumption of Pinus tabulaeformis plantation in rocky mountain areas in Northern China[J]. Journal of Beijing Forestry University, 2008, 30(S2): 182−187
    [28]
    肖洋, 陈丽华, 余新晓, 等. 北京密云水库油松人工林对降水分配的影响[J]. 水土保持学报, 2007, 21(3): 154−157

    XIAO Y, CHEN L H, YU X X, et al. Influence on precipitation distribution of Pinus tabuleaefomis forest in Miyun Reservoir[J]. Journal of Soil and Water Conservation, 2007, 21(3): 154−157
    [29]
    赵鸿雁, 吴钦孝, 刘国彬. 黄土高原人工油松林水文生态效应[J]. 生态学报, 2003, 23(2): 376−379

    ZHAO H Y, WU Q X, LIU G B. Studies on hydro-ecological effects of artificial Chinese pine stand in Loess Plateau[J]. Acta Ecologica Sinica, 2003, 23(2): 376−379
    [30]
    董世仁, 郭景唐, 满荣洲. 华北油松人工林的透流、干流和树冠截留[J]. 北京林业大学学报, 1987, 9(1): 58−68

    DONG S R, GUO J T, MAN R Z. Throughfall, stemflow and canopy interception in a Pinus tabulaeformis plantation of North China[J]. Journal of Beijing Forestry University, 1987, 9(1): 58−68
    [31]
    胡珊珊, 于静洁, 胡垄, 等. 华北石质山区油松林对降水再分配过程的影响[J]. 生态学报, 2010, 30(7): 1751−1757

    HU S S, YU J J, HU L, et al. Impacts of Chinese pine (Pinus tabulaeformis) plantations on rainfall redistribution processes: a case study for the mountainous area of North China[J]. Acta Ecologica Sinica, 2010, 30(7): 1751−1757
    [32]
    方书敏, 赵传燕, 荐圣淇, 等. 陇中黄土高原油松人工林林冠截留特征及模拟[J]. 应用生态学报, 2013, 24(6): 1509−1516

    FANG S M, ZHAO C Y, JIAN S Q, et al. Canopy interception of Pinus tabulaeformis plantation on Longzhong Loess Plateau, Northwest China: characteristics and simulation[J]. Chinese Journal of Applied Ecology, 2013, 24(6): 1509−1516
    [33]
    LIANG W J. Simulation of Gash model to rainfall interception of Pinus tabulaeformis[J]. Forest Systems, 2014, 23(2): 300 doi: 10.5424/fs/2014232-03410
    [34]
    武秀荣, 金铭, 赵维俊, 等. 运用Gash修正模型对祁连山北麓中段青海云杉林降水截留的模拟[J]. 水土保持学报, 2020, 34(5): 216−222

    WU X R, JIN M, ZHAO W J, et al. Application of modified Gash model to simulate rainfall interception of Picea crassi folia forest in the middle of the northern slope of Qilian Mountain[J]. Journal of Soil and Water Conservation, 2020, 34(5): 216−222
    [35]
    PANAHANDEH T, ATTAROD P, SADEGHI S M M, et al. The performance of the reformulated Gash rainfall interception model in the Hyrcanian temperate forests of northern Iran[J]. Journal of Hydrology, 2022, 612: 128092 doi: 10.1016/j.jhydrol.2022.128092
    [36]
    FRANCIS J R, WUDDIVIRA M N, FARRICK K K. Exotic tropical pine forest impacts on rainfall interception: canopy, understory, and litter[J]. Journal of Hydrology, 2022, 609: 127765 doi: 10.1016/j.jhydrol.2022.127765
    [37]
    YUE K, DE FRENNE P, FORNARA D A, et al. Global patterns and drivers of rainfall partitioning by trees and shrubs[J]. Global Change Biology, 2021, 27(14): 3350−3357 doi: 10.1111/gcb.15644
    [38]
    黄团冲, 贺康宁, 王先棒. 青海大通白桦林冠层降雨再分配与冠层结构关系研究[J]. 西北林学院学报, 2018, 33(3): 1−6, 20

    HUANG T C, HE K N, WANG X B. Relationship between rainfall redistribution and canop structure of Betula platyphylla canopy in Datong, Qinghai[J]. Journal of Northwest Forestry University, 2018, 33(3): 1−6, 20
    [39]
    EXLER J L, MOORE R D. Quantifying throughfall, stemflow and interception loss in five vegetation communities in a maritime raised bog[J]. Agricultural and Forest Meteorology, 2022, 327: 109202 doi: 10.1016/j.agrformet.2022.109202
    [40]
    MA C K, LI X D, LUO Y, et al. The modelling of rainfall interception in growing and dormant seasons for a pine plantation and a black locust plantation in semi-arid Northwest China[J]. Journal of Hydrology, 2019, 577: 123849 doi: 10.1016/j.jhydrol.2019.06.021
    [41]
    刘效东, 龙凤玲, 陈修治, 等. 基于修正的Gash模型对南亚热带季风常绿阔叶林林冠截留的模拟[J]. 生态学杂志, 2016, 35(11): 3118−3125

    LIU X D, LONG F L, CHEN X Z, et al. An assessment of the revised Gash interception model in a monsoon evergreen broadleaved forest in lower subtropical China[J]. Chinese Journal of Ecology, 2016, 35(11): 3118−3125
    [42]
    柴汝杉, 蔡体久, 满秀玲, 等. 基于修正的Gash模型模拟小兴安岭原始红松林降雨截留过程[J]. 生态学报, 2013, 33(4): 1276−1284 doi: 10.5846/stxb201209241347

    CHAI R S, CAI T J, MAN X L, et al. Simulation of rainfall interception process of primary Korean pine forest in Xiaoxing’an Mountains by using the modified Gash model[J]. Acta Ecologica Sinica, 2013, 33(4): 1276−1284 doi: 10.5846/stxb201209241347
    [43]
    张继辉, 郑路, 陈琳, 等. 降雨特征对南亚热带马尾松人工林降水分配格局的影响[J]. 水土保持学报, 2021, 35(1): 174−180

    ZHANG J H, ZHENG L, CHEN L, et al. Effects of rainfall characteristics on rainfall partitioning in plantation of Pinus massoniana in south subtropical[J]. Journal of Soil and Water Conservation, 2021, 35(1): 174−180
    [44]
    FAN J L, OESTERGAARD K T, GUYOT A, et al. Measuring and modeling rainfall interception losses by a native Banksia woodland and an exotic pine plantation in subtropical coastal Australia[J]. Journal of Hydrology, 2014, 515: 156−165 doi: 10.1016/j.jhydrol.2014.04.066
    [45]
    LLORENS P, DOMINGO F. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe[J]. Journal of Hydrology, 2007, 335(1/2): 37–54
  • Cited by

    Periodical cited type(10)

    1. 王凯,潘凌洁,徐志豪,李佳丹,张弦,詹柴. 水稻红螯螯虾综合种养模式对土壤肥力的影响. 安徽农业科学. 2025(01): 94-97 .
    2. 陈心怡,刘钰钦,陈淼,王文峰. 作物多样性(轮作)下砖红壤溶解性有机质含量及光谱特征. 农业资源与环境学报. 2025(01): 149-158 .
    3. 梁以豪,倪才英,黎衍亮,肖罗长,简敏菲. 稻田土壤溶解性有机质组成及其与Cd~(2+)络合过程研究. 土壤学报. 2025(01): 153-164 .
    4. 余俊杰,刘洋,罗文浩,赵婧,周丹丹,王霞,朱丽花. 稻田共作模式中重金属的污染特征及有效性控制研究. 中国生态农业学报(中英文). 2025(02): 374-386 . 本站查看
    5. 章绍康,吴静琳,弓晓峰,王玉秀,倪妍. 苔草溶解性有机质对土壤吸附Cu~(2+)影响研究. 环境科学与技术. 2024(05): 127-133 .
    6. 潘红卫,陈惠茹,史利利,雷宏军,王逸飞,孔海康,杨光. 不同有机肥对生菜生育期土壤剖面DOM分布的影响. 光谱学与光谱分析. 2024(09): 2683-2691 .
    7. 许元钊,宋庆洋,王辉,易建华,毕永红,米武娟,宋高飞. 稻虾综合种养对土壤肥力及微生物群落的影响. 水生生物学报. 2024(12): 2018-2028 .
    8. 朱晓艳,卢禹晗,武忠,董向前,王琪琛,柳钟惠,路永正. 外源氮磷输入对泥炭地DOM结构复杂性的影响. 中国环境科学. 2024(12): 6807-6816 .
    9. 徐烨红,巴雯雯,陆超,郭德杰,罗佳,马艳. 化学氮肥有机替代下设施菜地可溶性碳氮淋溶特征. 植物营养与肥料学报. 2024(12): 2281-2295 .
    10. 岳勇,张书海,董响红,王桢璐. 稻田综合种养研究进展及其在贵州省的发展现状. 山地农业生物学报. 2023(05): 46-51 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (333) PDF downloads (69) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return