WANG X N, LIU X, LI X F, WANG X Y, ZHAO W J, SUN J J, TAN J L. Effects of nitrogen application on physiological characteristics and nitrogen uptake and utilization of watermelon under chloride stress[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1758−1767. DOI: 10.12357/cjea.20230162
Citation: WANG X N, LIU X, LI X F, WANG X Y, ZHAO W J, SUN J J, TAN J L. Effects of nitrogen application on physiological characteristics and nitrogen uptake and utilization of watermelon under chloride stress[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1758−1767. DOI: 10.12357/cjea.20230162

Effects of nitrogen application on physiological characteristics and nitrogen uptake and utilization of watermelon under chloride stress

Funds: This study was supported by the National Natural Science Foundation of China (31860590, 31460546), Ningxia Natural Science Foundation (2022AAC02013), Innovation and Entrepreneurship Training Program for College Students of Ningxia Hui Autonomous Region (S202210749082, S202310749097), and the Innovation and Entrepreneurship Training Program for College Students of Ningxia University (202210749557).
More Information
  • Corresponding author:

    TAN Junli, E-mail: tanjl@nxu.edu.cn

  • Received Date: March 29, 2023
  • Revised Date: July 05, 2023
  • Accepted Date: July 05, 2023
  • Available Online: August 09, 2023
  • Chloride stress is one of the main factors limiting the yield and quality of watermelon in Ningxia due to long-term irrigation with underground chlorinated brackish water. Nitrogen could alleviate the chlorine toxicity of crops. Therefore, it is crucial to explore the regulatory mechanism of nitrogen on the chloride stress by applying nitrogen fertilizer rationally and controlling chlorosis of watermelon under chloride stress. In this study, a soil culture experiment was conducted to determine the effects of different nitrogen application rates [0, 0.10, 0.15, 0.20, 0.25 g∙kg1 (oven-dry soil)] on anion-cation balance, organic osmotic regulators, antioxidant enzyme activity, oxidative damage, and nitrogen uptake and utilization in watermelon seedlings under chloride stress of 160 mg(Cl1)∙kg1 (oven-dry soil). The test crop was the ‘Jincheng No. 5’ variety of watermelon. The results showed that nitrogen application considerably reduced Cl and Na+ contents in the roots, stems, and leaves of watermelon while significantly increased NO3 and K+ contents at P<0.05; thus the ratios of Cl/NO3 and Na+/K+ of the whole plant decreased by 46.0%−69.5% and 31.0%−54.3% compared with that of 0 g∙kg1 nitrogen rate, respectively. Moreover, the contents of soluble sugar and proline, the activities of superoxide dismutase (SOD) and catalase (CAT) in leaves all reached the maximum levels at 0.15 g∙kg1 N, which statistically increased by 75.6%, 70.1%, 55.8%, and 54.8% at P<0.05 compared with those at 0 g∙kg1 N, respectively; while the content of malondialdehyde (MDA) significantly decreased by 59.3%. Moreover, when nitrogen was applied at 0.15 g∙kg1, the nitrogen accumulation of watermelon increased by 157.7%, activity of nitrate reductase (NR) increased by 62.4%, and nitrogen uptake efficiency and nitrogen use efficiency were 26.25% and 97.10%, respectively. Thus, the fresh and dry weights of the plant increased by 96.9% and 29.0% at P<0.05, respectively. Cluster and correlation analyses of nitrogen application rate and physiological growth indexes of watermelon showed that the mitigation effect of nitrogen application on watermelon chloride stress was 0.15 g∙kg1 > 0.20 g∙kg1 > 0.10 g∙kg1 > 0.25 g∙kg1. There was significant positive correlation between biomass and dry matter accumulation with nitrogen uptake, utilization efficiency, and nitrogen accumulation; while there were also significant positive correlations between nitrogen accumulation and antioxidant enzyme activity and osmo-modulator content, and negative correlations with Na+/K+ ratio, Cl/NO3 ratio, and MDA content. Based on the curve fitting results of each index, the nitrogen application rate of 0.14−0.18 g∙kg1 was available for the growth and physiological activity of watermelon when the chloride concentration was 160 mg(Cl1)∙kg1(oven-dry soil). This indicates that appropriate nitrogen application under chloride salt stress can maintain ion homeostasis in plants by adjusting the Na+/K+ and Cl/NO3 ratios, as well as improve the content of osmoregulatory substances and antioxidant enzyme activities, thereby reducing cell membrane oxidative damage, enhancing the physiological resistance of watermelon plants, and achieving a regulatory effect on chloride stress.
  • [1]
    马瑞, 王西娜, 田里, 等. 施氯量对压砂西瓜生长、产量及品质的影响[J]. 东北农业大学学报, 2022, 53(9): 58−66

    MA R, WANG X N, TIAN L, et al. Effects of chlorine application on growth, yield and quality of watermelon planting in gravel-sand-mulched field[J]. Journal of Northeast Agricultural University, 2022, 53(9): 58−66
    [2]
    SHAO A, SUN Z C, FAN S G, et al. Moderately low nitrogen application mitigate the negative effects of salt stress on annual ryegrass seedlings[J]. PeerJ, 2020, 8: e10427 doi: 10.7717/peerj.10427
    [3]
    WANG H, ZHANG M S, GUO R, et al. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.)[J]. BMC Plant Biology, 2012, 12: 194 doi: 10.1186/1471-2229-12-194
    [4]
    BORZOUEI A, ESKANDARI A, KAFI M, et al. Wheat yield, some physiological traits and nitrogen use efficiency response to nitrogen fertilization under salinity stress[J]. Indian Journal of Plant Physiology, 2014, 19(1): 21−27 doi: 10.1007/s40502-014-0064-0
    [5]
    VANACKER H, SANDALIO L, JIMÉNEZ A, et al. Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition[J]. Journal of Experimental Botany, 2006, 57(8): 1735−1745 doi: 10.1093/jxb/erl012
    [6]
    隋利, 易家宁, 王康才, 等. 不同氮素形态及其配比对盐胁迫下紫苏生理特性的影响[J]. 生态学杂志, 2018, 37(11): 3277−3283

    SUI L, YI J N, WANG K C, et al. Effects of different forms and ratios of nitrogen on physiological characteristics of Perilla frutescens (L.) Britt under salt stress[J]. Chinese Journal of Ecology, 2018, 37(11): 3277−3283
    [7]
    贾向阳, 种培芳, 陆文涛, 等. 叶施NO对NaCl胁迫下红砂幼苗叶片和根系中氮代谢酶及营养物质的影响[J]. 西北植物学报, 2020, 40(10): 1722−1731

    JIA X Y, CHONG P F, LU W T, et al. Effect of foliar-spraying nitric oxide on the nitrogen metabolism enzyme activities and nutrients in leaves and roots of Reaumuria soongorica seedlings under NaCl stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(10): 1722−1731
    [8]
    张艳艳, 刘俊, 刘友良. 一氧化氮缓解盐胁迫对玉米生长的抑制作用[J]. 植物生理与分子生物学学报, 2004, 30(4): 455−459

    ZHANG Y Y, LIU J, LIU Y L. Nitric oxide alleviates growth inhibition of maize seedlings under NaCl stress[J]. Acta Photophysiologica Sinica, 2004, 30(4): 455−459
    [9]
    田甜, 王海江, 王金刚, 等. 盐胁迫下施加氮素对饲用油菜有机渗透调节物质积累的影响[J]. 草业学报, 2021, 30(10): 125−136

    TIAN T, WANG H J, WANG J G, et al. Effects of nitrogen application on accumulation of organic osmotic regulating substances in forage rapeseed (Brassica napus) under salt stress[J]. Acta Prataculturae Sinica, 2021, 30(10): 125−136
    [10]
    马瑞. 微咸水灌溉下氯在土壤中的累积及西瓜氯吸收特性与耐氯临界值研究[D]. 银川: 宁夏大学, 2022

    MA R. Chlorine accumulation in soil under brackish water irrigation and its effect on watermeion chlorine absorption and chlorine tolerance threshold[D]. Yinchuan: Ningxia University, 2022
    [11]
    高博文, 孙德玺, 刘君璞, 等. 盐胁迫对西瓜幼苗生理生化特性的影响[J]. 中国瓜菜, 2022, 35(8): 35−41

    GAO B W, SUN D X, LIU J P, et al. Salt stress affects physiological and biochemical characteristics of water-melon seedlings[J]. China Cucurbits and Vegetables, 2022, 35(8): 35−41
    [12]
    TAVAKKOLI E, RENGASAMY P, MCDONALD G K. High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress[J]. Journal of Experimental Botany, 2010, 61(15): 4449−4459 doi: 10.1093/jxb/erq251
    [13]
    高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006

    GAO J F. Experimental Guidance for Plant Physiology[M]. Beijing: Higher Education Press, 2006
    [14]
    李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000

    LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2000
    [15]
    梁继华, 李伏生, 唐梅, 等. 分根区交替灌溉对盆栽甜玉米水分及氮素利用的影响[J]. 农业工程学报, 2006, 22(10): 68−72 doi: 10.3321/j.issn:1002-6819.2006.10.014

    LIANG J H, LI F S, TANG M, et al. Effects of alternate partial root-zone irrigation on water and nitrogen utilization of pot-grown sweet corn[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(10): 68−72 doi: 10.3321/j.issn:1002-6819.2006.10.014
    [16]
    赵振杰, 张海龙, 王明晶, 等. 植物耐盐性相关细胞内pH和离子稳态的调控机制[J]. 植物生理学报, 2020, 56(3): 337−344

    ZHAO Z J, ZHANG H L, WANG M J, et al. Salt stress-related regulation mechanism of intracellular pH and ion homeostasis in plants[J]. Plant Physiology Journal, 2020, 56(3): 337−344
    [17]
    KHANNA R R, JAHAN B, IQBAL N, et al. GABA reverses salt-inhibited photosynthetic and growth responses through its influence on NO-mediated nitrogen-sulfur assimilation and antioxidant system in wheat[J]. Journal of Biotechnology, 2021, 325: 73−82 doi: 10.1016/j.jbiotec.2020.11.015
    [18]
    BYUN M O, KWON H B, PARK S C. Recent advances in genetic engineering of potato crops for drought and saline stress tolerance[M]//JENKS M A, HASEGAWA P M, JAIN S M. Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Dordrecht: Springer, 2007: 713–737
    [19]
    ABASS A M, CHENG Q, NAHEEDA B, et al. Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation[J]. BMC Plant Biology, 2019, 19(1): 479 doi: 10.1186/s12870-019-2085-3
    [20]
    刘梅, 郑青松, 刘兆普, 等. 盐胁迫下氮素形态对油菜和水稻幼苗离子运输和分布的影响[J]. 植物营养与肥料学报, 2015, 21(1): 181−189 doi: 10.11674/zwyf.2015.0120

    LIU M, ZHENG Q S, LIU Z P, et al. Effects of nitrogen forms on transport and accumulation of ions in canola (Brassic napus L.) and rice (Oryza sativa L.) under saline stress[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 181−189 doi: 10.11674/zwyf.2015.0120
    [21]
    杨柳, 李絮花, 胡斌, 等. 轻度盐胁迫下施氮量对小麦苗期的生理响应[J]. 中国土壤与肥料, 2020(3): 16−22

    YANG L, LI X H, HU B, et al. Physiological response of nitrogen fertilization to wheat seedling under mild salt stress[J]. Soil and Fertilizer Sciences in China, 2020(3): 16−22
    [22]
    孙立荣, 郝福顺, 吕建洲, 等. 外源一氧化氮对盐胁迫下黑麦草幼苗生长及生理特性的影响[J]. 生态学报, 2008, 28(11): 5714−5722 doi: 10.3321/j.issn:1000-0933.2008.11.058

    SUN L R, HAO F S, LYU J Z, et al. Effects of exogenous nitric oxide on growth and physiological characteristics of ryegrass seedlings under salt stress[J]. Acta Ecologica Sinica, 2008, 28(11): 5714−5722 doi: 10.3321/j.issn:1000-0933.2008.11.058
    [23]
    CHEN W P, HOU Z N, WU L S, et al. Effects of salinity and nitrogen on cotton growth in arid environment[J]. Plant and Soil, 2010, 326(1): 61−73
    [24]
    DUAN P, DING F, WANG F, et al. Priming of seeds with nitric oxide donor sodium nitroprusside (SNP) alleviates the inhibition on wheat seed germination by salt stress[J]. Journal of Plant Physiology and Molecular Biology, 2007, 33(3): 244−250
    [25]
    苏兰茜, 白亭玉, 赵顺松, 等. 基于盐胁迫条件下施用氮钾肥对面包果养分吸收及渗透物质积累的影响[J]. 热带作物学报, 2021, 42(8): 2275−2282 doi: 10.3969/j.issn.1000-2561.2021.08.021

    SU L X, BAI T Y, ZHAO S S, et al. Effect of application of nitrogen and potassium fertilizers on nutrient absorption and osmotic accumulation of breadfruit [Artocarpus altilis (Parkinson) Fosberg] under salt stress[J]. Chinese Journal of Tropical Crops, 2021, 42(8): 2275−2282 doi: 10.3969/j.issn.1000-2561.2021.08.021
    [26]
    CHOUDHARY A, KUMAR A, KAUR N. ROS and oxidative burst: roots in plant development[J]. Plant Diversity, 2020, 42(1): 33−43 doi: 10.1016/j.pld.2019.10.002
    [27]
    LI J P, LIU J, ZHU T T, et al. The role of melatonin in salt stress responses[J]. International Journal of Molecular Sciences, 2019, 20(7): 1735 doi: 10.3390/ijms20071735
    [28]
    DOGAN M, TIPIRDAMAZ R, DEMIR Y. Effective salt criteria in callus-cultured tomato genotypes[J]. Zeitschrift Für Naturforschung C, 2010, 65(9/10): 613−618
    [29]
    孙晓梵, 张一龙, 李培英, 等. 不同施氮量对干旱下狗牙根抗氧化酶活性及渗透调节物质含量的影响[J]. 草业学报, 2022, 31(6): 69−78 doi: 10.11686/cyxb2021179

    SUN X F, ZHANG Y L, LI P Y, et al. Effects of different nitrogen application rates on antioxidant activity and content of substances involved in osmotic adjustment in Cynodon dactylon under drought stress[J]. Acta Prataculturae Sinica, 2022, 31(6): 69−78 doi: 10.11686/cyxb2021179
    [30]
    郭文琦, 陈兵林, 刘瑞显, 等. 施氮量对花铃期短期渍水棉花叶片抗氧化酶活性和内源激素含量的影响[J]. 应用生态学报, 2010, 21(1): 53−60

    GUO W Q, CHEN B L, LIU R X, et al. Effects of nitrogen application rate on cotton leaf antioxidant enzyme activities and endogenous hormone contents under short-term waterlogging at flowering and boll-forming stage[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 53−60
    [31]
    SIKDER R K, WANG X R, ZHANG H H, et al. Nitrogen enhances salt tolerance by modulating the antioxidant defense system and osmoregulation substance content in Gossypium hirsutum[J]. Plants, 2020, 9(4): 450 doi: 10.3390/plants9040450
    [32]
    CHEN L, LIU L T, LU B, et al. Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.)[J]. PLoS One, 2020, 15(1): e0228241 doi: 10.1371/journal.pone.0228241
    [33]
    NEMAT ALLA M M, HASSAN N M. Nitrogen alleviates NaCl toxicity in maize seedlings by regulating photosynthetic activity and ROS homeostasis[J]. Acta Physiologiae Plantarum, 2020, 42(6): 1−10
    [34]
    CHOURASIA K N, MORE S J, KUMAR A, et al. Salinity responses and tolerance mechanisms in underground vegetable crops: an integrative review[J]. Planta, 2022, 255(3): 1−25
    [35]
    樊怀福, 郭世荣, 李娟, 等. 外源一氧化氮对盐胁迫下黄瓜幼苗生长和渗透调节物质含量的影响[J]. 生态学杂志, 2007, 26(12): 2045−2050

    FAN H F, GUO S R, LI J, et al. Effects of exogenous nitric oxide on Cucumis sativus seedlings growth and osmoatic adjustment substances contents under NaCl stress[J]. Chinese Journal of Ecology, 2007, 26(12): 2045−2050
    [36]
    尹丽, 刘永安, 谢财永, 等. 干旱胁迫与施氮对麻疯树幼苗渗透调节物质积累的影响[J]. 应用生态学报, 2012, 23(3): 632−638

    YIN L, LIU Y A, XIE C Y, et al. Effects of drought stress and nitrogen fertilization rate on the accumulation of osmolytes in Jatropha curcas seedlings[J]. Chinese Journal of Applied Ecology, 2012, 23(3): 632−638
    [37]
    FU J M, HUANG B R. Effects of foliar application of nutrients on heat tolerance of creeping bentgrass[J]. Journal of Plant Nutrition, 2003, 26(1): 81−96 doi: 10.1081/PLN-120016498
    [38]
    ZAMBONI A, ASTOLFI S, ZUCHI S, et al. Nitrate induction triggers different transcriptional changes in a high and a low nitrogen use efficiency maize inbred line[J]. Journal of Integrative Plant Biology, 2014, 56(11): 1080−1094 doi: 10.1111/jipb.12214
    [39]
    SINGH M, SINGH V P, PRASAD S M. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation[J]. Plant Physiology and Biochemistry, 2016, 109: 72−83 doi: 10.1016/j.plaphy.2016.08.021
    [40]
    LAUCHLI A, LUTTGE U. Salinity: Environment-Plants-Molecules[M]: Boston: Boston Kluwer Academic Publishers, 2002
    [41]
    DLUZNIEWSKA P, GESSLER A, DIETRICH H, et al. Nitrogen uptake and metabolism in Populus × canescens as affected by salinity[J]. New Phytologist, 2007, 173(2): 279−293 doi: 10.1111/j.1469-8137.2006.01908.x
    [42]
    CHARDON F, BARTHÉLÉMY J, DANIEL-VEDELE F, et al. Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply[J]. Journal of Experimental Botany, 2010, 61(9): 2293−2302 doi: 10.1093/jxb/erq059
    [43]
    张智猛, 戴良香, 慈敦伟, 等. 生育后期干旱胁迫与施氮量对花生产量及氮素吸收利用的影响[J]. 中国油料作物学报, 2019, 41(4): 614−621 doi: 10.7505/j.issn.1007-9084.2019.04.016

    ZHANG Z M, DAI L X, CI D W, et al. Drought effects at late growth stage and nitrogen application rate on yield and N utilization of peanut[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(4): 614−621 doi: 10.7505/j.issn.1007-9084.2019.04.016
    [44]
    MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651−681 doi: 10.1146/annurev.arplant.59.032607.092911
    [45]
    PARIDA A K, DAS A B, MITTRA B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora[J]. Trees, 2004, 18(2): 167−174 doi: 10.1007/s00468-003-0293-8
    [46]
    代建龙, 卢合全, 李振怀, 等. 盐胁迫下施肥对棉花生长及氮素利用的影响[J]. 应用生态学报, 2013, 24(12): 3453−3458

    DAI J L, LU H Q, LI Z H, et al. Effects of fertilization on cotton growth and nitrogen use efficiency under salinity stress[J]. Chinese Journal of Applied Ecology, 2013, 24(12): 3453−3458
    [47]
    武荣, 李援农. 不同氮肥条件下盐分处理对小麦生长的影响分析[J]. 节水灌溉, 2013(5): 8−10, 14 doi: 10.3969/j.issn.1007-4929.2013.05.003

    WU R, LI Y N. Effect of salinity and nitrogen interaction on the growth of wheat[J]. Water Saving Irrigation, 2013(5): 8−10, 14 doi: 10.3969/j.issn.1007-4929.2013.05.003
    [48]
    宁建凤, 郑青松, 刘兆普, 等. 外源氮对NaCl胁迫下库拉索芦荟生理特性的影响[J]. 植物营养与肥料学报, 2008, 14(4): 728−733

    NING J F, ZHENG Q S, LIU Z P, et al. Effects of supplemental nitrogen on physiological characteristics of Aloe vera seedlings under NaCl stress[J]. Plant Nutrition and Fertilizer Science, 2008, 14(4): 728−733
  • Cited by

    Periodical cited type(2)

    1. 张翠玉,徐晓丽,周长明,张超. 盐胁迫条件下不同施氮水平对玉米苗期生理特性的影响. 玉米科学. 2024(07): 46-54 .
    2. 吴昕阳,陆佳昊,王彩琴,马红梅,武志明. 氮肥减施与追氮技术对甜荞生理特性的影响. 灌溉排水学报. 2024(11): 27-33 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (809) PDF downloads (63) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return