CHEN X, XU B, WU Y, XU H, CAI H M, SUN D Y, YU M, LIU L Z, ZHENG B Q, LI J C. Effects of returns of full straws of different seasons on summer maize root exudates[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1403−1415. DOI: 10.12357/cjea.20230122
Citation: CHEN X, XU B, WU Y, XU H, CAI H M, SUN D Y, YU M, LIU L Z, ZHENG B Q, LI J C. Effects of returns of full straws of different seasons on summer maize root exudates[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1403−1415. DOI: 10.12357/cjea.20230122

Effects of returns of full straws of different seasons on summer maize root exudates

Funds: This study was supported by the Open Fund of Anhui Provincial Key Laboratory of Farmland Ecological Conservation and Pollution Prevention and Control (FECPP202001), Anhui Provincial Major Science and Technology Project (202003b06020021), and Anhui Agricultural University Smart Agriculture Research Institute Open Fund (IAR2021A01).
More Information
  • Corresponding author:

    LI Jincai, E-mail: ljc5122423@126.com

  • Received Date: March 07, 2023
  • Accepted Date: May 23, 2023
  • Available Online: May 24, 2023
  • Root exudates are carriers of material exchange, and could improve the rhizosphere environment and play an important role in the response of plants to environmental changes through chemical information exchange and energy transfer between plants and microenvironments. Different straw-returning modes change the growth environment of summer maize roots. Furthermore, the composition and quantity of maize root exudates have different response characteristics to different straw-returning modes. Screening suitable straw-returning modes is a key issue that needs to be clarified to obtain a high yield, high quality, and efficient development of maize production. In this study, we explored the effects of returens of full straw from different seasons on maize root secretions in the lime concretion black soil area in the Huaibei Plain. Four straw returning modes were developed for collecting root exudates: wheat single-season straw full smashed mulching and returning to the field (T1), wheat straw full smashed mulching and returning to the field + maize straw full crushed burying and returning to the field (T2), maize single-season straw full crushed burying and returning to the field (T3), and straw not returned to the field (CK). The metabolomics of root exudates collected under different straw-returning modes was investigated using non-targeted metabolomics combined with gas chromatography-mass spectrometry (GC-MS). The results showed that root length, surface area, dry matter weight, root vigor of T1 and T2 treatments were significantly increased compared with CK by 9.8%, 21.2%, 20.9%, 16.4%, and 12.4%, 23.9%, 29.2%, 21.3%, respectively. T1, T2, and T3 screened 60, 38, and 39 differential metabolites, respectively, compared to CK. There were nine categories of differential metabolites, and returning straw to the field mainly influenced carbohydrates and amino acids in root exudates. Compared with CK, T1, T2, and T3 treatments were significantly enriched in 45, 56, and 39 metabolic pathways, respectively. Straw returns mainly influenced carbohydrate and amino acid metabolic pathways. Compared with CK, glycerol and melibiose in the root exudates of T2 treatment were upregulated, which upregulated the galactose metabolism pathway. The upregulation of amino acids in the root exudates of T2 treatment, such as L-tyrosine and L-glutamine, significantly increased the metabolism of alanine, aspartic acid, glutamic acid, and tyrosine. Organic acids in the root exudates of the T2 treatment, such as 5-aminosalicylic acid, succinic acid, and aminoethyl phosphate, were upregulated. The results indicated that T2 treatment promoted the growth of maize roots by increasing the relative content of sugars, amino acids, and organic acids in maize root exudates, increasing the accumulation of dry matter in the aboveground and underground parts, coordinating the relationship between the aboveground and underground parts, and promoting the coordinated growth of roots and canopies. This study provides a theoretical basis for the efficient utilization of straw resources and the high yield, high quality, and efficient development of summer maize in the lime concretion black soil area of the Huaibei Plain.
  • [1]
    吴雪梅, 陈源泉, 李宗新, 等. 玉米空间布局种植方式研究进展评述[J]. 玉米科学, 2012, 20(3): 115−121

    WU X M, CHEN Y Q, LI Z X, et al. Research progress of maize planting spatial layout pattern[J]. Journal of Maize Sciences, 2012, 20(3): 115−121
    [2]
    熊鹏, 郭自春, 李玮, 等. 淮北平原砂姜黑土玉米产量与土壤性质的区域分析[J]. 土壤, 2021, 53(2): 391−397

    XIONG P, GUO Z C, LI W, et al. Regional analysis of maize yield and physiochemical properties of Shajiang black soil (vertisol) in Huaibei Plain[J]. Soils, 2021, 53(2): 391−397
    [3]
    李德成, 张甘霖, 龚子同. 我国砂姜黑土土种的系统分类归属研究[J]. 土壤, 2011, 43(4): 623−629

    LI D C, ZHANG G L, GONG Z T. On taxonomy of Shajiang black soils in China[J]. Soils, 2011, 43(4): 623−629
    [4]
    张义丰, 王又丰, 刘录祥. 淮北平原砂姜黑土旱涝(渍)害与水土关系及作用机理[J]. 地理科学进展, 2001, 20(2): 169−176

    ZHANG Y F, WANG Y F, LIU L X. Function mechanism between the drought and waterlogging disaster and the soil-structure of the Shajiang soil in Huaibei Plain[J]. Progress in Geography, 2001, 20(2): 169−176
    [5]
    刘晓永, 李书田. 中国秸秆养分资源及还田的时空分布特征[J]. 农业工程学报, 2017, 33(21): 1−19

    LIU X Y, LI S T. Temporal and spatial distribution characteristics of crop straw nutrient resources and returning to farmland in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21): 1−19
    [6]
    王帅, 朱涵宇, 杨占惠, 等. 秸秆还田方式对不同土壤条件下玉米苗期生长发育的影响[J]. 生态学杂志, 2022, 41(3): 479−486

    WANG S, ZHU H Y, YANG Z H, et al. Effects of straw returning modes on maize seedling growth under different soil conditions[J]. Chinese Journal of Ecology, 2022, 41(3): 479−486
    [7]
    杨竣皓, 骆永丽, 陈金, 等. 秸秆还田对我国主要粮食作物产量效应的整合(Meta)分析[J]. 中国农业科学, 2020, 53(21): 4415−4429

    YANG J H, LUO Y L, CHEN J, et al. Effects of main food yield under straw return in China: a Meta-analysis[J]. Scientia Agricultura Sinica, 2020, 53(21): 4415−4429
    [8]
    DOUSSAN C, PIERRET A, GARRIGUES E, et al. Water uptake by plant roots: Ⅱ–Modelling of water transfer in the soil root-system with explicit account of flow within the root system–Comparison with experiments[J]. Plant and Soil, 2006, 283(1/2): 99−117
    [9]
    FAGERIA N K. Influence of dry matter and length of roots on growth of five field crops at varying soil zinc and copper levels[J]. Journal of Plant Nutrition, 2005, 27(9): 1517−1523 doi: 10.1081/PLN-200025995
    [10]
    徐莹莹, 王俊河, 刘玉涛, 等. 秸秆不同还田方式对土壤物理性状、玉米产量的影响[J]. 玉米科学, 2018, 26(5): 78−84

    XU Y Y, WANG J H, LIU Y T, et al. Effects of different returning methods of straw on soil physical property, yield of corn[J]. Journal of Maize Sciences, 2018, 26(5): 78−84
    [11]
    慕平, 张恩和, 王汉宁, 等. 不同年限全量玉米秸秆还田对玉米生长发育及土壤理化性状的影响[J]. 中国生态农业学报, 2012, 20(3): 291−296 doi: 10.3724/SP.J.1011.2012.00291

    MU P, ZHANG E H, WANG H N, et al. Effects of continuous straw return to soil on maize growth and soil chemical and physical characteristics[J]. Chinese Journal of Eco-Agriculture, 2012, 20(3): 291−296 doi: 10.3724/SP.J.1011.2012.00291
    [12]
    CHAI Y N, SCHACHTMAN D P. Root exudates impact plant performance under abiotic stress[J]. Trends in Plant Science, 2022, 27(1): 80−91 doi: 10.1016/j.tplants.2021.08.003
    [13]
    王胜楠, 邹洪涛, 张玉龙, 等. 秸秆集中深还田两年后对土壤主要性状及玉米根系的影响[J]. 干旱地区农业研究, 2015, 33(3): 68−71, 78

    WANG S N, ZOU H T, ZHANG Y L, et al. Effects of deeply and concentratedly returned straw on soil main properties and corn root system[J]. Agricultural Research in the Arid Areas, 2015, 33(3): 68−71, 78
    [14]
    GUYONNET J P, CANTAREL A A M, SIMON L, et al. Root exudation rate as functional trait involved in plant nutrient-use strategy classification[J]. Ecology and Evolution, 2018, 8(16): 8573−8581 doi: 10.1002/ece3.4383
    [15]
    张丽华, 徐晨, 于江, 等. 半湿润区秸秆还田对土壤水分、温度及玉米产量的影响[J]. 水土保持学报, 2021, 35(4): 299−306

    ZHANG L H, XU C, YU J, et al. Effects of straw returning on soil moisture, temperature and maize yield in semi-humid area[J]. Journal of Soil and Water Conservation, 2021, 35(4): 299−306
    [16]
    USELMAN S M, QUALLS R G, THOMAS R B. Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L.)[J]. Plant and Soil, 2000, 222(1/2): 191−202
    [17]
    吴宇, 蔡洪梅, 许波, 等. 不同季秸秆全量还田对小麦根系分泌物的影响[J]. 中国生态农业学报(中英文), 2022, 30(12): 1938−1948

    WU Y, CAI H M, XU B, et al. Effects of all straw return on root secretions of wheat in different seasons[J]. Chinese Journal of Eco-Agriculture, 2022, 30(12): 1938−1948
    [18]
    SUN C X, WANG D, SHEN X B, et al. Effects of biochar, compost and straw input on root exudation of maize (Zea mays L.): from function to morphology[J]. Agriculture, Ecosystems & Environment, 2020, 297: 106952
    [19]
    SCHMIDT H, GÜNTHER C, WEBER M, et al. Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition[J]. PLoS One, 2014, 9(7): e102444 doi: 10.1371/journal.pone.0102444
    [20]
    中华人民共和国农业部. 土壤检测 第1部分: 土壤样品的采集、处理和贮存: NY/T 1121.1—2006[S]. 北京: 中华人民共和国农业部, 2006

    Ministry of Agriculture of the People’s Republic of China. Soil Testing Part 1: Soil Sampling, Processing and Repostion[S]. Beijing: Ministry of Agriculture of the People’s Republic of China, 2006
    [21]
    罗燕, 樊卫国. 不同施磷水平下4种柑橘砧木的根际土壤有机酸、微生物及酶活性[J]. 中国农业科学, 2014, 47(5): 955−967

    LUO Y, FAN W G. Organic acid content, microbial quantity and enzyme activity in rhizosphere soil of four Citrus rootstocks under different phosphorus levels[J]. Scientia Agricultura Sinica, 2014, 47(5): 955−967
    [22]
    杨峰, 娄莹, 廖敦平, 等. 玉米–大豆带状套作行距配置对作物生物量、根系形态及产量的影响[J]. 作物学报, 2015, 41(4): 642−650 doi: 10.3724/SP.J.1006.2015.00642

    YANG F, LOU Y, LIAO D P, et al. Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system[J]. Acta Agronomica Sinica, 2015, 41(4): 642−650 doi: 10.3724/SP.J.1006.2015.00642
    [23]
    高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006

    GAO J F. Experimental Guidance for Plant Physiology[M]. Beijing: Higher Education Press, 2006
    [24]
    YUAN P, DING G D, CAI H M, et al. A novel Brassica-rhizotron system to unravel the dynamic changes in root system architecture of oilseed rape under phosphorus deficiency[J]. Annals of Botany, 2016, 118(2): 173−184 doi: 10.1093/aob/mcw083
    [25]
    DENG Y P, MEN C B, QIAO S F, et al. Tolerance to low phosphorus in rice varieties is conferred by regulation of root growth[J]. The Crop Journal, 2020, 8(4): 534−547 doi: 10.1016/j.cj.2020.01.002
    [26]
    ZHANG W F, YANG S Q, JIN Y H, et al. The effects of straw mulching combined with nitrogen applications on the root distributions and nitrogen utilization efficiency of summer maize[J]. Scientific Reports, 2020, 10(1): 1−10 doi: 10.1038/s41598-019-56847-4
    [27]
    FAN Y F, GAO J L, SUN J Y, et al. Potentials of straw return and potassium supply on maize (Zea mays L.) photosynthesis, dry matter accumulation and yield[J]. Scientific Reports, 2022, 12(1): 1−10 doi: 10.1038/s41598-021-99269-x
    [28]
    殷文, 陈桂平, 郭瑶, 等. 春小麦秸秆还田对后茬玉米干物质积累及产量形成的调控效应[J]. 中国生态农业学报(中英文), 2020, 28(8): 1210−1218

    YIN W, CHEN G P, GUO Y, et al. Responses of dry matter accumulation and yield in a following maize crop to spring wheat straw returning[J]. Chinese Journal of Eco-Agriculture, 2020, 28(8): 1210−1218
    [29]
    褚光, 徐冉, 陈松, 等. 优化栽培模式对水稻根-冠生长特性、水氮利用效率和产量的影响[J]. 中国水稻科学, 2021, 35(6): 586−594

    CHU G, XU R, CHEN S, et al. Effects of improved crop management on growth characteristic of root and shoot, water and nitrogen use efficiency, and grain yield in rice[J]. Chinese Journal of Rice Science, 2021, 35(6): 586−594
    [30]
    RASMANN S, TURLINGS T C. Root signals that mediate mutualistic interactions in the rhizosphere[J]. Current Opinion in Plant Biology, 2016, 32: 62−68 doi: 10.1016/j.pbi.2016.06.017
    [31]
    LI X, DONG J L, CHU W Y, et al. The relationship between root exudation properties and root morphological traits of cucumber grown under different nitrogen supplies and atmospheric CO2 concentrations[J]. Plant and Soil, 2018, 425(1): 415−432
    [32]
    ROOSTERMAN D, COTTRELL G S. Rethinking the citric acid cycle: connecting pyruvate carboxylase and citrate synthase to the flow of energy and material[J]. International Journal of Molecular Sciences, 2021, 22(2): 604 doi: 10.3390/ijms22020604
    [33]
    HUNG W L, WANG Y. A targeted mass spectrometry-based metabolomics approach toward the understanding of host responses to huanglongbing disease[J]. Journal of Agricultural and Food Chemistry, 2018, 66(40): 10651−10661 doi: 10.1021/acs.jafc.8b04033
    [34]
    LAING W A, WRIGHT M A, COONEY J, et al. The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9534−9539 doi: 10.1073/pnas.0701625104
    [35]
    聂云, 张雅蓉, 李渝, 等. 秸秆还田对黄壤农田氮、磷养分平衡的影响[J]. 玉米科学, 2022, 30(4): 150−156

    NIE Y, ZHANG Y R, LI Y, et al. Effects of straw returning on nutrient balance of nitrogen and phosphorus in yellow soil farmland[J]. Journal of Maize Sciences, 2022, 30(4): 150−156
    [36]
    萨如拉, 杨恒山, 高聚林, 等. 西辽河平原区免耕秸秆还田方式对土壤微生物群落组成的影响[J]. 土壤通报, 2022, 53(5): 1067−1078

    SA R L, YANG H S, GAO J L, et al. Effects of no tillage straw returning on soil microbial community composition in the West Liaohe Plain[J]. Chinese Journal of Soil Science, 2022, 53(5): 1067−1078
    [37]
    PHILLIPS D A, FOX T C, KING M D, et al. Microbial products trigger amino acid exudation from plant roots[J]. Plant Physiology, 2004, 136(1): 2887−2894 doi: 10.1104/pp.104.044222
    [38]
    MEENA M, DIVYANSHU K, KUMAR S, et al. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions[J]. Heliyon, 2019, 5(12): e02952 doi: 10.1016/j.heliyon.2019.e02952
    [39]
    REBEILLE F, DOUCE R. Biosynthesis of vitamins in plants part B: Vitamins B6, B8, B9, C, E, K[M]//KADER J C, DELSENY M. Advance in Botanical Research. Pittsburgh: Academic Press, 2011
    [40]
    韦一昊. 小麦谷氨酰胺合成酶同工酶的定位、表达与功能研究[D]. 郑州: 河南农业大学, 2020

    WEI Y H. Study on cellular lcalization, expression and function of glutamine synthetase isozymes in wheat[D]. Zhengzhou: Henan Agricultural University, 2020
    [41]
    徐悦, 陈翔, 王擎运, 等. 小麦玉米秸秆长期还田对砂姜黑土磷库组成的影响[J]. 农业环境科学学报, 2022, 41(8): 1768−1777

    XU Y, CHEN X, WANG Q Y, et al. Effects of long-term wheat and maize straw incorporation on phosphorus fractions in lime concretion black soil[J]. Journal of Agro-Environment Science, 2022, 41(8): 1768−1777
    [42]
    OFOE R, GUNUPURU L R, WANG-PRUSKI G, et al. Seed priming with pyroligneous acid mitigates aluminum stress, and promotes tomato seed germination and seedling growth[J]. Plant Stress, 2022, 4: 100083 doi: 10.1016/j.stress.2022.100083
    [43]
    CHEN Y T, WANG Y, YEH K C. Role of root exudates in metal acquisition and tolerance[J]. Current Opinion in Plant Biology, 2017, 39: 66−72 doi: 10.1016/j.pbi.2017.06.004
    [44]
    MA J F, RYAN P R, DELHAIZE E. Aluminium tolerance in plants and the complexing role of organic acids[J]. Trends in Plant Science, 2001, 6(6): 273−278 doi: 10.1016/S1360-1385(01)01961-6
    [45]
    JAUREGUI I, APARICIO-TEJO P M, AVILA C, et al. Root and shoot performance of Arabidopsis thaliana exposed to elevated CO2: a physiologic, metabolic and transcriptomic response[J]. Journal of Plant Physiology, 2015, 189: 65−76 doi: 10.1016/j.jplph.2015.09.012
    [46]
    孙治军, 马丽, 张民, 等. 山东主要果园土壤的粘土矿物组成及其吸附特性[J]. 水土保持学报, 2007, 21(3): 57−60

    SUN Z J, MA L, ZHANG M, et al. Composition of clay minerals and adsorption characteristics of main orchard soils in Shandong[J]. Journal of Soil and Water Conservation, 2007, 21(3): 57−60
    [47]
    ADELEKE R, NWANGBURUKA C, OBOIRIEN B. Origins, roles and fate of organic acids in soils: a review[J]. South African Journal of Botany, 2017, 108: 393−406 doi: 10.1016/j.sajb.2016.09.002
    [48]
    JONES D L, DENNIS P G, OWEN A G, et al. Organic acid behavior in soils—misconceptions and knowledge gaps[J]. Plant and Soil, 2003, 248: 31−41 doi: 10.1023/A:1022304332313
  • Cited by

    Periodical cited type(3)

    1. 师仁增,邓霞,王君竹,柳雯雯,李桂花,郭子轩,焦子伟. 不同种植年限薰衣草根系分泌物研究. 生物学杂志. 2024(05): 61-69 .
    2. 周勋勋,程永豪,于雪娇,叶文玲,鲁洪娟,张国漪. 烟沫有机肥部分替代化肥对玉米生长和根系分泌物及土壤微生物群落结构的影响. 土壤通报. 2024(05): 1440-1452 .
    3. 袁洁,吴晓晴,石琨,王磊,纪程,钟月华,冯冰,朱国鹏,孙丽,汪吉东,张永春. 丛枝菌根真菌对甘薯生物量、养分吸收和根系分泌物的影响. 江苏农业学报. 2024(11): 2073-2082 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (432) PDF downloads (103) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return