FENG Y, GUO Y, CHEN X L, LIU M Z, SHEN Y J. Classification of major crops using MODIS data in the Songhua River Basin[J]. Chinese Journal of Eco-Agriculture, 2023, 31(10): 1602−1612. DOI: 10.12357/cjea.20230087
Citation: FENG Y, GUO Y, CHEN X L, LIU M Z, SHEN Y J. Classification of major crops using MODIS data in the Songhua River Basin[J]. Chinese Journal of Eco-Agriculture, 2023, 31(10): 1602−1612. DOI: 10.12357/cjea.20230087

Classification of major crops using MODIS data in the Songhua River Basin

Funds: This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28020503, XDA28020500) and the Fund of Key Laboratory of Agricultural Water Resources of Chinese Academy of Sciences (ZDKT201801).
More Information
  • Corresponding author:

    GUO Ying, E-mail: guoy@sjziam.ac.cn

    SHEN Yanjun, E-mail: yjshen@sjziam.ac.cn

  • Received Date: February 18, 2023
  • Accepted Date: March 30, 2023
  • Available Online: June 06, 2023
  • In 2000, China launched a series of positive policies to promote agricultural development in Northeast China, thus causing a rapid expansion of the cropping scale and a change of cropping structure in the Songhua River Basin. It is important to reveal the changes in cropping structure in the Songhua River Basin to improve its future supply capacity, ensure national food security, and achieve the adjustment of food production. In this study, we selected the Songhua River Basin, a major grain-producing area in China, as the study area. Based on the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and land surface water index (LSWI) from MODIS data, a decision tree model was constructed by combining the phenological periods of different crops. The results of crop extraction were verified using observed datasets, verification points selected in Google Earth, and statistical almanac data. The values of extraction accuracy for rice, maize, and soybean were 0.9090, 0.9026, and 0.8200, respectively, with a Kappa coefficient of 0.79 and an overall accuracy of 0.84. The crop types in the Songhua River Basin were dominated by maize and supplemented by rice and soybean, forming a crop pattern of “soybean in the north, maize in the south, and rice near rivers”. The entire crop planting area of the Songhua River Basin was in a state of continuous expansion from 2000 to 2020, with the total planting area increasing from 95 556.26 km2 to 173 070.00 km2, an increase of 81.12%. The planting area of rice, maize, and soybean increased by 24 911.36 km2, 54 432.07 km2, and 20 719.77 km2, respectively. Overall, the proportion of the rice planting area to the total planting area increased by 8.56%, and those of maize and soybean increased by 16.86% and 0.39%, respectively. The planting areas of rice and maize increased significantly in most areas of the Songhua River Basin, and the rice expanded mainly in the areas near rivers. The planting area of soybean increased significantly in the eastern part of the northern part of the basin. The cities in the Songhua River Basin have formed a distinctive cropping structure, with most areas changing from a double-crop-dominant type to a maize-dominant type. In 2020, there was the addition of rice-dominant cities in the basin, the disappearance of maize-rice dominant cities and soybean-rice dominant cities, and the transformation of both maize-rice dominant cities and maize-soybean dominant cities into maize-dominant cities, with a gradual concentration of crop cropping types. The results of this study provide a scientific understanding of the adjustment of cropping structure and guidance of agricultural production in the Songhua River Basin.
  • [1]
    胡琼, 吴文斌, 宋茜, 等. 农作物种植结构遥感提取研究进展[J]. 中国农业科学, 2015, 48(10): 1900−1914 doi: 10.3864/j.issn.0578-1752.2015.10.004

    HU Q, WU W B, SONG Q, et al. Recent progresses in research of crop patterns mapping by using remote sensing[J]. Scientia Agricultura Sinica, 2015, 48(10): 1900−1914 doi: 10.3864/j.issn.0578-1752.2015.10.004
    [2]
    申文明, 王文杰, 罗海江, 等. 基于决策树分类技术的遥感影像分类方法研究[J]. 遥感技术与应用, 2007, 22(3): 333−338 doi: 10.3969/j.issn.1004-0323.2007.03.006

    SHEN W M, WANG W J, LUO H J, et al. Classification methods of remote sensing image based on decision tree technologies[J]. Remote Sensing Technology and Application, 2007, 22(3): 333−338 doi: 10.3969/j.issn.1004-0323.2007.03.006
    [3]
    周静平, 李存军, 史磊刚, 等. 基于决策树和面向对象的作物分布信息遥感提取[J]. 农业机械学报, 2016, 47(9): 318−326, 333 doi: 10.6041/j.issn.1000-1298.2016.09.043

    ZHOU J P, LI C J, SHI L G, et al. Crops distribution information extracted by remote sensing based on decision tree and object-oriented method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 318−326, 333 doi: 10.6041/j.issn.1000-1298.2016.09.043
    [4]
    陈睿, 赵超, 刘兴冉, 等. 基于多源卫星数据的黑河中游绿洲区土地利用分类与作物类型提取及其时空变化分析[J]. 中国生态农业学报, 2018, 26(9): 1415−1422 doi: 10.13930/j.cnki.cjea.180088

    CHEN R, ZHAO C, LIU X R, et al. Land classification and spatio-temporal changes of wheat and corn in the middle reaches oasis of Heihe using multi-satellite data[J]. Chinese Journal of Eco-Agriculture, 2018, 26(9): 1415−1422 doi: 10.13930/j.cnki.cjea.180088
    [5]
    陈晓璐, 王彦芳, 张红梅, 等. 基于ESTARFM NDVI的察汗淖尔流域灌溉耕地提取方法研究[J]. 中国生态农业学报(中英文), 2021, 29(6): 1105−1116

    CHEN X L, WANG Y F, ZHANG H M, et al. Extraction method of irrigated arable land in the Chahannur Basin based on the ESTARFM NDVI[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1105−1116
    [6]
    李鑫川, 徐新刚, 王纪华, 等. 基于时间序列环境卫星影像的作物分类识别[J]. 农业工程学报, 2013, 29(2): 169−176, 298

    LI X C, XU X G, WANG J H, et al. Crop classification recognition based on time-series images from HJ satellite[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2): 169−176, 298
    [7]
    黄健熙, 贾世灵, 武洪峰, 等. 基于GF-1 WFV影像的作物面积提取方法研究[J]. 农业机械学报, 2015, 46(S1): 253−259 doi: 10.6041/j.issn.1000-1298.2015.S0.041

    HUANG J X, JIA S L, WU H F, et al. Extraction method of crop planted area based on GF-1 WFV image[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(S1): 253−259 doi: 10.6041/j.issn.1000-1298.2015.S0.041
    [8]
    郝卫平, 梅旭荣, 蔡学良, 等. 基于多时相遥感影像的东北三省作物分布信息提取[J]. 农业工程学报, 2011, 27(1): 201−207 doi: 10.3969/j.issn.1002-6819.2011.01.033

    HAO W P, MEI X R, CAI X L, et al. Crop planting extraction based on multi-temporal remote sensing data in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 201−207 doi: 10.3969/j.issn.1002-6819.2011.01.033
    [9]
    李奇峰, 张海林, 陈阜. 东北农作区粮食作物种植格局变化的特征分析[J]. 中国农业大学学报, 2008, 13(3): 74−79, 84 doi: 10.3321/j.issn:1007-4333.2008.03.013

    LI Q F, ZHANG H L, CHEN F. Changes in spatial distribution and planting structure of major crops in northeast China[J]. Journal of China Agricultural University, 2008, 13(3): 74−79, 84 doi: 10.3321/j.issn:1007-4333.2008.03.013
    [10]
    LIU M Z, GUO Y, ZHANG X L, et al. China’s Black Soil Granary is increasingly facing extreme hydrological drought threats[J]. Science Bulletin, 2023, 68(5): 481−484 doi: 10.1016/j.scib.2023.02.010
    [11]
    LU S B, BAI X, ZHANG J, et al. Impact of virtual water export on water resource security associated with the energy and food bases in Northeast China[J]. Technological Forecasting and Social Change, 2022, 180: 121635 doi: 10.1016/j.techfore.2022.121635
    [12]
    HUANG Q, ZHOU Q B, WU W B, et al. Extraction of planting areas of major crops and crop growth monitoring in northeast China[J]. Intelligent Automation & Soft Computing, 2012, 18(8): 1023−1033
    [13]
    李正国, 杨鹏, 唐华俊, 等. 气候变化背景下东北三省主要作物典型物候期变化趋势分析[J]. 中国农业科学, 2011, 44(20): 4180−4189

    LI Z G, YANG P, TANG H J, et al. Trend analysis of typical phenophases of major crops under climate change in the three provinces of northeast China[J]. Scientia Agricultura Sinica, 2011, 44(20): 4180−4189
    [14]
    杜保佳, 张晶, 王宗明, 等. 应用Sentinel-2A NDVI时间序列和面向对象决策树方法的农作物分类[J]. 地球信息科学学报, 2019, 21(5): 740−751 doi: 10.12082/dqxxkx.2019.180412

    DU B J, ZHANG J, WANG Z M, et al. Crop mapping based on Sentinel-2A NDVI time series using object-oriented classification and decision tree model[J]. Journal of Geo-Information Science, 2019, 21(5): 740−751 doi: 10.12082/dqxxkx.2019.180412
    [15]
    姜伊兰, 陈保旺, 黄玉芳, 等. 基于Google Earth Engine和NDVI时序差异指数的作物种植区提取[J]. 地球信息科学学报, 2021, 23(5): 938−947 doi: 10.12082/dqxxkx.2021.200291

    JIANG Y L, CHEN B W, HUANG Y F, et al. Crop planting area extraction based on Google Earth Engine and NDVI time series difference index[J]. Journal of Geo-Information Science, 2021, 23(5): 938−947 doi: 10.12082/dqxxkx.2021.200291
    [16]
    尚雪, 何钊全, 张铜会. 增强型植被指数时空变化特征及其驱动机理[J]. 森林与环境学报, 2020, 40(5): 478−485

    SHANG X, HE Z Q, ZHANG T H. Spatial and temporal variations and the driving mechanism of the enhanced vegetation index[J]. Journal of Forest and Environment, 2020, 40(5): 478−485
    [17]
    吴昊. 基于MODIS和Landsat时序影像的东北典型农作物识别[D]. 阜新: 辽宁工程技术大学, 2022: 20–22

    WU H. Identification of typical crops in Northeast China using MODIS and Landsat time series data[D]. Fuxin: Liaoning Technical University, 2022: 20–22
    [18]
    张友水, 谢元礼. MODIS影像的NDVI和LSWI植被水分含量估算[J]. 地理科学, 2008, 28(1): 72−76 doi: 10.3969/j.issn.1000-0690.2008.01.013

    ZHANG Y S, XIE Y L. Vegetation water content estimation using NDVI and LSWI from MODIS images[J]. Scientia Geographica Sinica, 2008, 28(1): 72−76 doi: 10.3969/j.issn.1000-0690.2008.01.013
    [19]
    刘元亮, 李艳, 吴剑亮. 基于LSWI和NDVI时间序列的水田信息提取研究[J]. 地理与地理信息科学, 2015, 31(3): 32−37, 2 doi: 10.3969/j.issn.1672-0504.2015.03.007

    LIU Y L, LI Y, WU J L. Study on extraction of paddy fields based on LSWI and time-series NDVI[J]. Geography and Geo-Information Science, 2015, 31(3): 32−37, 2 doi: 10.3969/j.issn.1672-0504.2015.03.007
    [20]
    李儒, 张霞, 刘波, 等. 遥感时间序列数据滤波重建算法发展综述[J]. 遥感学报, 2009, 13(2): 335−341 doi: 10.11834/jrs.20090257

    LI R, ZHANG X, LIU B, et al. Review on methods of remote sensing time-series data reconstruction[J]. Journal of Remote Sensing, 2009, 13(2): 335−341 doi: 10.11834/jrs.20090257
    [21]
    张雅芳, 郭英, 沈彦俊, 等. 华北平原种植结构变化对农业需水的影响[J]. 中国生态农业学报(中英文), 2020, 28(1): 8−16

    ZHANG Y F, GUO Y, SHEN Y J, et al. Impact of planting structure changes on agricultural water requirement in North China Plain[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1): 8−16
    [22]
    李晖, 陈雨琪, 张紫滟, 等. 基于长时间序列MODIS影像的黑龙江省主要农作物种植结构变化研究[J]. 杭州师范大学学报(自然科学版), 2021, 20(6): 658−665 doi: 10.19926/j.cnki.issn.1674-232X.2021.06.016

    LI H, CHEN Y Q, ZHANG Z Y, et al. Planting structure changes of the main crops in Heilongjiang Province based on long time series MODIS images[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2021, 20(6): 658−665 doi: 10.19926/j.cnki.issn.1674-232X.2021.06.016
    [23]
    杨钰. 东三省主要粮食作物种植结构的时空演变分析研究[D]. 大连: 辽宁师范大学, 2020: 17–28

    YANG Y. Analysis and research on the spatial and temporal evolution of planting structure of main food crops in Three Northeastern Provinces[D]. Dalian: Liaoning Normal University, 2020: 17–28
    [24]
    刘勇洪, 牛铮, 王长耀. 基于MODIS数据的决策树分类方法研究与应用[J]. 遥感学报, 2005, 9(4): 405−412 doi: 10.11834/jrs.20050459

    LIU Y H, NIU Z, WANG C Y. Research and application of the decision tree classification using MODIS data[J]. Journal of Remote Sensing, 2005, 9(4): 405−412 doi: 10.11834/jrs.20050459
    [25]
    王楠. 黑龙江省作物种植结构提取及时空变化研究[D]. 哈尔滨: 东北农业大学, 2018: 22–25

    WANG N. Study on the extraction and the change of crop planting in Heilongjiang Province[D]. Harbin: Northeast Agricultural University, 2018: 22–25
    [26]
    YOU N S, DONG J W, HUANG J X, et al. The 10-m crop type maps in Northeast China during 2017–2019[J]. Scientific Data, 2021, 8(1): 1−11 doi: 10.1038/s41597-020-00786-7
    [27]
    潘晓卉, 张平宇, 刘世薇. 东北地区主要粮食作物种植结构时空变化分析[J]. 土壤与作物, 2018, 7(3): 303−311 doi: 10.11689/j.issn.2095-2961.2018.03.005

    PAN X H, ZHANG P Y, LIU S W. Temporal-spatial changes of planting structure from main grain crops in Northeast China[J]. Soils and Crops, 2018, 7(3): 303−311 doi: 10.11689/j.issn.2095-2961.2018.03.005
    [28]
    黄青, 唐华俊, 周清波, 等. 东北地区主要作物种植结构遥感提取及长势监测[J]. 农业工程学报, 2010, 26(9): 218−223, 386 doi: 10.3969/j.issn.1002-6819.2010.09.037

    HUANG Q, TANG H J, ZHOU Q B, et al. Remote-sensing based monitoring of planting structure and growth condition of major crops in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(9): 218−223, 386 doi: 10.3969/j.issn.1002-6819.2010.09.037
    [29]
    刘冰. 基于多源遥感数据的作物种植结构提取[D]. 哈尔滨: 东北农业大学, 2019: 26–33

    LIU B. Crop planting structure extraction based on multi-source remote sensing data[D]. Harbin: Northeast Agricultural University, 2019: 26–33
    [30]
    陈水森, 柳钦火, 陈良富, 等. 粮食作物播种面积遥感监测研究进展[J]. 农业工程学报, 2005, 21(6): 166−171 doi: 10.3321/j.issn:1002-6819.2005.06.037

    CHEN S S, LIU Q H, CHEN L F, et al. Review of research advances in remote sensing monitoring of grain crop area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(6): 166−171 doi: 10.3321/j.issn:1002-6819.2005.06.037

Catalog

    Article Metrics

    Article views (488) PDF downloads (89) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return