GAO Y, LIU H, BAO L J, SHI L, WU J. Estimation and simulation of carbon emissions in Great Xi’an based on grid and patch-generated land-use simulation models[J]. Chinese Journal of Eco-Agriculture, 2023, 31(10): 1553−1564. DOI: 10.12357/cjea.20230081
Citation: GAO Y, LIU H, BAO L J, SHI L, WU J. Estimation and simulation of carbon emissions in Great Xi’an based on grid and patch-generated land-use simulation models[J]. Chinese Journal of Eco-Agriculture, 2023, 31(10): 1553−1564. DOI: 10.12357/cjea.20230081

Estimation and simulation of carbon emissions in Great Xi’an based on grid and patch-generated land-use simulation models

Funds: This study was supported by the Internal Scientific Research Project of Shaanxi Land Engineering Construction Group (DJNY2022-13) and the Provincial State-Owned Capital Management Budget Science and Technology Innovation Special Fund Project (Digital Key Technology Research on High Standard Farmland Management and Modern Agricultural Demonstration Area) in 2022.
More Information
  • Corresponding author:

    LIU Huan, E-mail: 382108315@qq.com

  • Received Date: February 16, 2023
  • Accepted Date: May 18, 2023
  • Available Online: July 06, 2023
  • Land use change leads to substantial changes in regional carbon emissions, and estimating changes in carbon emissions caused by land use change provides an important practical reference for promoting the regional realization of “dual carbon” goals. This study aimed to investigate the spatial and temporal evolution patterns of land use types and their carbon emission effects in the Great Xi’an area from 1990 to 2020 and to predict its future carbon emission characteristics. Therefore, in this study, carbon emissions and carbon intensity involving the study area were estimated based on the emission factor method on two scales, administrative units and grids, and carbon emission characteristics of the study area in 2025 and 2030 were simulated using a patch-generated land-use simulation model. The results showed that: 1) from 1990 to 2020, the area of cultivated land continued to decrease, with an average annual decrease of 21.86 km2; the fluctuation of forest land, grassland, and water areas decreased, with an average annual decrease of 0.28 km2, 1.69 km2 and 0.08 km2, respectively; and construction land area continued to expand, with an average annual expansion area of 23.88 km2. The area of unused land fluctuated and increased by 1.14 km2. 2) From 1990 to 2020, carbon emissions in Great Xi’an increased from 280.00 t∙a−1 to 2342.27 t∙a−1, with an average annual growth of 68.74 t. From 2005 to 2010, it had the fastest growth rate of carbon emissions with an average annual growth of 125.86 t, whereas from 1990 to 2000, these grew at the slowest rate, averaging only 10.06 t per year. Whereas spatial distribution patterns were generally high in the south and low in the north, carbon emissions of Chang’an District in the south of the study area were much higher than those of Yanliang District in the north. 3) From 1990 to 2020, the maximum carbon emission intensity in Great Xi’an increased from 7461.94 t(C)∙km−2∙a−1 to 45 400.90 t(C)∙km−2∙a−1, an increase of nearly five-fold. In terms of space, the carbon emission intensity in the region always exhibited a distribution pattern of high in the north and low in the south, the carbon emission intensity of the main city of Great Xi’an was much higher than that of other regions. 4) Between 2025 and 2030, cropland and forest land will continue to be the primary land-use types in the Great Xi’an area, with the sum of their areas accounting for 63.53% and 62.45% of the total study area, respectively. From 2020 to 2030, the areas of cropland, forest land, water, and unused land in the region will continue to decrease, whereas the areas of grassland and construction land will increase. The total carbon emission increased by 2.96×107 t(C)∙a−1, and the carbon emission intensity revealed a distribution pattern of high in the east and low in the west. Carbon emissions and their intensity in the Great Xi’an region have increased rapidly over the past 30 years.
  • [1]
    刘纪远, 邵全琴, 延晓冬, 等. 土地利用变化对全球气候影响的研究进展与方法初探[J]. 地球科学进展, 2011, 26(10): 1015−1022

    LIU J Y, SHAO Q Q, YAN X D, et al. An overview of the progress and research framework on the effects of land use change upon global climate[J]. Advances in Earth Sciences, 2011, 26(10): 1015−1022
    [2]
    CORINNE L Q, ROBBIE M A, PIERRE F, et al. Global carbon budget 2018[J]. Earth System Science Data, 2018, 10(4): 2141−2194 doi: 10.5194/essd-10-2141-2018
    [3]
    巴黎气候变化大会通过新协定将全球平均气温升高控制在2℃之内[J]. 中国环境科学, 2016, 36(1): 49

    The Paris Climate Change Conference adopted a new agreement to control the global average temperature rise within 2℃[J]. China Environmental Science, 2016, 36(1): 49
    [4]
    李缘缘, 魏伟, 周俊菊, 等. 中国土地利用碳排放变化及协调分区[J]. 环境科学, 2023, 44(3): 1267−1276

    LI Y Y, WEI W, ZHOU J J, et al. Changes in land use carbon emissions and coordinated zoning in China[J]. Environmental Science, 2023, 44(3): 1267−1276
    [5]
    LIU L W, CHEN C X, ZHAO Y F, et al. China’s carbon-emissions trading: Overview, challenges and future[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 254−266 doi: 10.1016/j.rser.2015.04.076
    [6]
    吴健生, 晋雪茹, 王晗, 等. 中国碳排放及影响因素的市域尺度分析[J]. 环境科学, 2023, 44(5): 2974−2982

    WU J S, JIN X R, WANG H, et al. Analysis of carbon emissions and influencing factors in China based on city scale[J]. Environmental Science, 2023, 44(5): 2974−2982
    [7]
    夏四友, 杨宇. 基于主体功能区的京津冀城市群碳收支时空分异与碳补偿分区[J]. 地理学报, 2022, 77(3): 679−696

    XIA S Y, YANG Y. Spatio-temporal differentiation of carbon budget and carbon compensation zoning in Beijing-Tianjin-Hebei Urban Agglomeration based on the Plan for Major Function-oriented Zones[J]. Acta Geographica Sinica, 2022, 77(3): 679−696
    [8]
    LIN Q W, ZHANG L, QIU B K, et al. Spatiotemporal analysis of land use patterns on carbon emissions in China[J]. Land, 2021, 10(2): 141 doi: 10.3390/land10020141
    [9]
    王艳军, 王孟杰, 柳林, 等. DMSP/OLS夜光数据的珠三角碳排放时空差异性分析[J]. 遥感学报, 2022, 26(9): 1824−1837

    WANG Y J, WANG M J, LIU L, et al. Analyzing the spatiotemporal differences of carbon emission in the Pearl River Delta using DMSP/OLS nighttime light images[J]. Journal of Remote Sensing, 2022, 26(9): 1824−1837
    [10]
    ALI G, PUMIJUMNONG N, CUI S H. Valuation and validation of carbon sources and sinks through land cover/use change analysis: The case of Bangkok metropolitan area[J]. Land Use Policy, 2018, 70: 471−478 doi: 10.1016/j.landusepol.2017.11.003
    [11]
    WU H J, DENG K L, DONG Z F, et al. Comprehensive assessment of land use carbon emissions of a coal resource-based city, China[J]. Journal of Cleaner Production, 2022, 379: 134706 doi: 10.1016/j.jclepro.2022.134706
    [12]
    王丹, 荆延德, 韩善梅, 等. 基于格网的南四湖流域土地利用碳排放与其生态系统服务价值时空关系分析[J]. 生态学报, 2022, 42(23): 9604−9614

    WANG D, JING Y D, HAN S M, et al. Spatio-temporal relationship of land-use carbon emission and ecosystem service value in Nansi Lake Basin based upon a grid square[J]. Acta Ecologica Sinica, 2022, 42(23): 9604−9614
    [13]
    王萍, 刘康, 李婷. 2000—2010年西安市土地利用/土地覆被变化及其建成区扩张研究[J]. 中国人口·资源与环境, 2015, 25(S1): 109−112

    WANG P, LIU K, LI T. Land use/cover change and built-up area expansion in Xi’an City during the year of 2000–2010[J]. China Population, Resources and Environment, 2015, 25(S1): 109−112
    [14]
    周勇, 赵伟. 西安市土地利用结构碳排放核算及低碳优化研究[J]. 生态经济, 2018, 34(5): 21−25

    ZHOU Y, ZHAO W. Study on carbon emission accounting and low-carbon optimization of land use structure in Xi’an[J]. Ecological Economy, 2018, 34(5): 21−25
    [15]
    徐新良, 刘纪远, 张树文, 等. 中国多时期土地利用土地覆被遥感监测数据集(CNLUCC)[DB/OL]. 资源环境科学与数据中心. [2018]. https://www.resdc.cn/DOI/doi.aspx?DOIid=54. DOI: 10.12078/2018070201

    XU X L, LIU J Y, ZHANG S W, et al. China multi-period land use and land cover remote sensing monitoring data set (CNLUCC)[DB/OL]. Resource and Environment Science Data Center. [2018]. https://www.resdc.cn/DOI/doi.aspx?DOIid=54. DOI: 10.12078/2018070201
    [16]
    PENG S Z, DING Y X, LIU W Z, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 2019, 11(4): 1931−1946 doi: 10.5194/essd-11-1931-2019
    [17]
    徐新良. 中国GDP空间分布公里网格数据集[DB/OL]. 资源环境科学数据注册与出版系统. [2017]. https://www.resdc.cn/DOI/DOI.aspx?DOIID=33. DOI: 10.12078/2017121102

    XU X L. China’s GDP spatial distribution kilometer grid data set[DB/OL]. Resource and Environment Science Data Center. [2017]. https://www.resdc.cn/DOI/DOI.aspx?DOIID=33. DOI: 10.12078/2017121102
    [18]
    徐新良. 中国人口空间分布公里网格数据集[DB/OL]. 资源环境科学数据注册与出版系统. [2017]. https://www.resdc.cn/DOI/DOI.aspx?DOIID=32. DOI: 10.12078/2017121101

    XU X L. China’s population spatial distribution kilometer grid data set[DB/OL]. Resource and Environment Science Data Center. [2017]. https://www.resdc.cn/DOI/DOI.aspx?DOIID=32. DOI: 10.12078/2017121101
    [19]
    HENDRIKS I E, ESCOLANO-MOLTÓ A, FLECHA S, et al. Mediterranean seagrasses as carbon sinks: methodological and regional differences[J]. Biogeosciences, 2022, 19(18): 4619−4637 doi: 10.5194/bg-19-4619-2022
    [20]
    HE X A, CHEN L Y, HUANG Y. A study of forest carbon sink increment from the perspective of efficiency evaluation based on an inverse DEA model[J]. Forests, 2022, 13(10): 1563 doi: 10.3390/f13101563
    [21]
    杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学(生命科学), 2022, 52(4): 534−574

    YANG Y H, SHI Y, SUN W J, et al. Characteristics of carbon sources and sinks in China and global terrestrial ecosystems and their contribution to carbon neutralization[J]. Scientia Sinica (Vitae), 2022, 52(4): 534−574
    [22]
    张余, 姜博, 赵映慧, 等. 东北三省土地利用碳排放时空格局及影响因素研究[J]. 地域研究与开发, 2022, 41(4): 150−156

    ZHANG Y, JIANG B, ZHAO Y H, et al. Temporal and spatial pattern changes and influencing factors of land use carbon emissions in the three provinces of Northeast China[J]. Areal Research and Development, 2022, 41(4): 150−156
    [23]
    赵伟. 低碳经济视角下西安市土地利用结构的优化研究[D]. 西安: 西安建筑科技大学, 2018

    ZHAO W. Study on the optimization of land use structure in Xi’an from the perspective of low-carbon economy[D]. Xi’an: Xi’an University of Architecture and Technology, 2018
    [24]
    徐影, 郭楠, 茹凯丽, 等. 碳中和视角下福建省国土空间分区特征与优化策略[J]. 应用生态学报, 2022, 33(2): 500−508

    XU Y, GUO N, RU K L, et al. Characteristics and optimization strategies of territorial space zone in Fujian Province, China based on carbon neutrality[J]. Chinese Journal of Applied Ecology, 2022, 33(2): 500−508
    [25]
    赖力, 黄贤金, 刘伟良, 等. 基于投入产出技术的区域生态足迹调整分析−以2002年江苏省经济为例[J]. 生态学报, 2006, 26(4): 1285−1292

    LAI L, HUANG X J, LIU W L, et al. Adjustment for regional ecological footprint based on input-output technique: a case study of Jiangsu Province in 2002[J]. Acta Ecologica Sinica, 2006, 26(4): 1285−1292
    [26]
    LIANG X, GUAN Q F, CLARKE K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China[J]. Computers, Environment and Urban Systems, 2021, 85: 101569 doi: 10.1016/j.compenvurbsys.2020.101569
    [27]
    杨朔, 苏昊, 赵国平. 基于PLUS模型的城市生态系统服务价值多情景模拟−以汉中市为例[J]. 干旱区资源与环境, 2022, 36(10): 86−95

    YANG S, SU H, ZHAO G P. Multi-scenario simulation of urban ecosystem service value based on PLUS model: A case study of Hanzhong City[J]. Journal of Arid Land Resources and Environment, 2022, 36(10): 86−95
    [28]
    胡丰, 张艳, 郭宇, 等. 基于PLUS和InVEST模型的渭河流域土地利用与生境质量时空变化及预测[J]. 干旱区地理, 2022, 45(4): 1125−1136

    HU F, ZHANG Y, GUO Y, et al. Spatial and temporal changes in land use and habitat quality in the Weihe River Basin based on the PLUS and InVEST models and predictions[J]. Arid Land Geography, 2022, 45(4): 1125−1136
    [29]
    陈鸿基, 杨庆媛, 彭立娴, 等. 三峡库区县域“三生空间”时空演变特征与情景模拟[J]. 农业工程学报, 2022, 38(13): 285−294

    CHEN H J, YANG Q Y, PENG L X, et al. Spatiotemporal evolution characteristics and scenario simulation of production-living-ecological space at county level in Three Gorges Reservoir areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(13): 285−294
    [30]
    张经度, 梅志雄, 吕佳慧, 等. 纳入空间自相关的FLUS模型在土地利用变化多情景模拟中的应用[J]. 地球信息科学学报, 2020, 22(3): 531−542

    ZHANG J D, MEI Z X, LYU J H, et al. Simulating multiple land use scenarios based on the FLUS model considering spatial autocorrelation[J]. Journal of Geo-Information Science, 2020, 22(3): 531−542
    [31]
    李玉玲, 李世平, 祁静静. 陕西省土地利用碳排放影响因素及脱钩效应分析[J]. 水土保持研究, 2018, 25(1): 382−390

    LI Y L, LI S P, QI J J. Influencing factors on carbon emissions of land uses and analysis of their decoupling effects in Shaanxi Province[J]. Research of Soil and Water Conservation, 2018, 25(1): 382−390
    [32]
    张余, 姜博, 赵映慧, 等. 东北地区城市土地利用碳排放效应研究[J]. 环境科学与技术, 2022, 45(7): 209−217

    ZHANG Y, JIANG B, ZHAO Y H, et al. Temporal and spatial pattern changes and influencing factors of land use carbon emissions in the three provinces of northeast China[J]. Environmental Science and Technology, 2022, 45(7): 209−217
    [33]
    马磊. 西安市低碳经济发展研究[D]. 西安: 西安工业大学, 2012

    MA L. Research on development of low-carbon economy of Xi’an[D]. Xi’an: Xi’an Technological University, 2012
    [34]
    刘欢. 西安市土地利用变化的碳排放量研究[J]. 价值工程, 2019, 38(32): 233−235

    LIU H. Study on carbon emission of land use change in Xi’an City[J]. Value Engineering, 2019, 38(32): 233−235
    [35]
    任志杰. 陕西省CO2排放计算及减排潜力分析[D]. 西安: 西安建筑科技大学, 2020

    REN Z J. Calculation of CO2 emissions and analysis of potential emission reduction in Shaanxi Province[D]. Xi’an: Xi’an University of Architecture and Technology, 2020
    [36]
    康铭敏. 西安市碳排放峰值预测及控制策略研究[D]. 西安: 西安建筑科技大学, 2020

    KANG M M. Research on Xi’an carbon emission peak forecast and control strategy[D]. Xi’an: Xi’an University of Architecture and Technology, 2020
    [37]
    黄仁全, 曾倩. 西安市碳排放动态演变及等级评估研究[J]. 环境科学导刊, 2023, 42(2): 1−8

    HUANG R Q, ZENG Q. Research on the dynamic evolution and grade assessment of carbon emissions in Xi’an[J]. Environmental Science Survey, 2023, 42(2): 1−8
  • Related Articles

    [1]LI Ying, CHEN Huailiang, LIANG Chen, SU Wei, HE Tian. Estimation and spatio-temporal characteristics of winter wheat evapotranspiration in Henan Province based on NPP VIIRS data and SEBS model[J]. Chinese Journal of Eco-Agriculture, 2023, 31(4): 587-597. DOI: 10.12357/cjea.20220422
    [2]LUO Shuqi, HU Xiaomeng, SUN Yuan, YAN Cai, ZHANG Xin. Multi-scenario land use change and its impact on carbon storage based on coupled Plus-Invest model[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 300-314. DOI: 10.12357/cjea.20220520
    [3]ZHANG Meng, GAO Yanmei, ZHANG Yongqing. Sensitivity analysis and calibration of the APSIM next-generation model under different irrigation and sowing density in wheat[J]. Chinese Journal of Eco-Agriculture, 2023, 31(1): 102-112. DOI: 10.12357/cjea.20220384
    [4]WU Mengqin, LI Chengfang, SHENG Feng, FENG Junheng, HU Quanyi, CHEN Yukun, ZHOU Haozhi, LIU Tianqi. Assessment of the annual greenhouse gases emissions under different rice-based cropping systems in Hubei Province based on the denitrification-decomposition (DNDC) model[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1480-1492. DOI: 10.13930/j.cnki.cjea.210099
    [5]YANG Jie, XIE Baopeng, ZHANG Degang. Spatio-temporal evolution of carbon stocks in the Yellow River Basin based on InVEST and CA-Markov models[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1018-1029. DOI: 10.13930/j.cnki.cjea.200746
    [6]LI Ya, ZHANG Liming, CHEN Hanyue, YUAN Yuqi, XING Shihe. Estimation of changes in soil organic carbon in farmlands in Fuzhou City using Landsat vegetation data and 1:50 000 soil database[J]. Chinese Journal of Eco-Agriculture, 2019, 27(4): 581-590. DOI: 10.13930/j.cnki.cjea.180753
    [7]WU Haoyue, HE Yanqiu, CHEN Rou. Assessment of agricultural carbon emission performance and stochastic con-vergence in China using SBM-Undesirable model and panel unit root test[J]. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1381-1391. DOI: 10.13930/j.cnki.cjea.170147
    [8]WANG Deying, YAO Yanmin, SI Haiqing, TANG Pengqin. Using DNDC model to simulate and predict changes in black soil organic carbon[J]. Chinese Journal of Eco-Agriculture, 2014, 22(3): 277-283. DOI: 10.3724/SP.J.1011.2014.30983
    [9]GUO Zhong-Lu, ZHENG Min-Jiao, DING Shu-Wen, LI Zhao-Xia, CAI Chong-Fa. CO2 and N2O emissions in the red soils of agro-forestry (grass) systems conversed from cropland in subtropical hilly region of China[J]. Chinese Journal of Eco-Agriculture, 2012, 20(9): 1191-1196. DOI: 10.3724/SP.J.1011.2012.01191
    [10]ZHANG Qiang, JU Xiao-Tang, ZHANG Fu-Suo. Re-estimation of direct nitrous oxide emission from agricultural soils of China via revised IPCC2006 guideline method[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1): 7-13. DOI: 10.3724/SP.J.1011.2010.00007
  • Cited by

    Periodical cited type(11)

    1. 朱小梅,邢锦城,洪立洲,王建红,刘冲,董静,孙果丽,何苏南. 不同施氮处理下黑麦草翻压还田对滩涂盐渍土碳氮与细菌群落结构的影响. 浙江农业学报. 2025(01): 159-168 .
    2. 艾辉辉. 广西国有大桂山林场桉树套种绿肥的生长影响试验分析. 绿色科技. 2024(03): 165-168 .
    3. 唐志红,范以撒,廖永峰,文倩. 黄土高原人工刺槐林土壤碳氮和微生物生物量碳氮特征. 中国水土保持. 2024(05): 55-58 .
    4. 张杰,白雪源,郝胜磊,马雯秋,陈永亮,王广进,张福锁. 考虑微生物要素的土壤质量综合评价——以北京市平谷区为例. 农业资源与环境学报. 2024(03): 645-655 .
    5. 卫雨西,陈丽娟,冯起,席海洋,郭瑞,张成琦. 干旱区盐碱土微生物特征及其影响因素研究进展. 中国沙漠. 2024(03): 18-30 .
    6. 杨铭,王红军,贾利元. 轮耕方式与生物炭还田对土壤碳氮组分及小麦产量的影响. 江苏农业科学. 2024(17): 246-252 .
    7. 高帆,鞠玺凯,郭琪琳,李清华,刘庆. 豌豆茎秆在土壤中的腐解与养分释放特征. 青岛农业大学学报(自然科学版). 2023(03): 220-226 .
    8. 谢雪,鲁艳红,廖育林,聂军,张江林,孙玉桃,曹卫东,高雅洁. 紫云英与稻草还田替代部分化肥对双季稻产量和土壤活性有机碳的影响. 中国农业科学. 2023(18): 3585-3598 .
    9. 闫茂鲁,王晓鹏,郑云珠,陈志宏,唐龙翔. 有机肥对我国盐碱地土壤改良及作物生长的影响. 农业工程. 2023(08): 56-62 .
    10. 王从,孙会峰,张继宁,张鲜鲜,周胜. 覆盖作物土壤固碳效应和影响因素研究进展. 浙江农业科学. 2023(12): 3012-3019 .
    11. 王晓春,杨炜迪,高婷. 盐碱地紫花苜蓿根际土壤细菌群落多样性分析. 北方园艺. 2023(23): 75-82 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (358) PDF downloads (69) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return