ZHENG Y C, ZHANG L Q, LIU B B. Characteristics of root-associated microbiomes and their responses to soil nitrogen levels in different wheat cultivars[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1708−1720. DOI: 10.12357/cjea.20230069
Citation: ZHENG Y C, ZHANG L Q, LIU B B. Characteristics of root-associated microbiomes and their responses to soil nitrogen levels in different wheat cultivars[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1708−1720. DOI: 10.12357/cjea.20230069

Characteristics of root-associated microbiomes and their responses to soil nitrogen levels in different wheat cultivars

Funds: The study was supported by the National Natural Science Foundation of China (U22A60009) and the National Key Research and Development Program of China (2021YFF1000403).
More Information
  • Corresponding author:

    LIU Binbin, E-mail: binbinliu@sjziam.ac.cn

  • Received Date: February 10, 2023
  • Accepted Date: May 15, 2023
  • Available Online: August 09, 2023
  • Plant root-associated microorganisms play important roles in nutrient uptake and plant growth. In order to illustrate the differences in the root-associated microbial community structure of different wheat cultivars, four wheat cultivars (i.e., ‘Kenong 9204’ ‘Kenong 2011’ ‘Jing 411’ and ‘Bainong 207’) were planted under 0 kg(N)·hm−2 (low nitrogen level) and 300 kg(N)·hm−2 (high nitrogen level), and the rhizosphere and root samples were collected at the tillering, jointing, and filling stages. The bacterial diversity and community structure in the rhizosphere and root endosphere of different wheat cultivars were analyzed using 16S rRNA high-throughput sequencing, and the physiological parameters of wheat were determined. Compared with the other three cultivars, ‘Ke-nong 9204’ had higher aboveground nitrogen accumulation at the three growth stages and under two nitrogen levels, except at the tillering stage with a low nitrogen level. Proteobacteria and Actinobacteria were the dominant bacteria in the wheat rhizosphere and root endosphere. Compared to the other three cultivars, ‘Kenong 9204’ enriched Rhizobiales and Gemmatimonas in the rhizosphere soil bacterial community under low nitrogen level at the jointing stage and enriched Frankiales under high nitrogen level at the filling stage. Correlation analysis showed that Arthrobacter, Streptomyces, Rubrobacter, and Nocardioides in the rhizosphere soil bacterial communities were significantly positively correlated with aboveground biomass and nitrogen accumulation; Massilia, Arenimonas, Pseudomonas, and Flavobacterium were significantly positively correlated with aboveground nitrogen content. Our results indicate that wheat may affect nutrient uptake by regulating the composition of the microbial community in the root zone and that this effect is cultivar-specific. This study provides useful information for understanding plant-microbe interactions in wheat and harnessing beneficial microbes for agricultural production.
  • [1]
    MÜLLER D B, VOGEL C, BAI Y, et al. The plant microbiota: systems-level insights and perspectives[J]. Annual Review of Genetics, 2016, 50: 211−234 doi: 10.1146/annurev-genet-120215-034952
    [2]
    FITZPATRICK C R, SALAS-GONZÁLEZ I, CONWAY J M, et al. The plant microbiome: from ecology to reductionism and beyond[J]. Annual Review of Microbiology, 2020, 74: 81−100 doi: 10.1146/annurev-micro-022620-014327
    [3]
    BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478−486 doi: 10.1016/j.tplants.2012.04.001
    [4]
    VERBON E H, LIBERMAN L M. Beneficial microbes affect endogenous mechanisms controlling root development[J]. Trends in Plant Science, 2016, 21(3): 218−229 doi: 10.1016/j.tplants.2016.01.013
    [5]
    SCHLEMPER T R, LEITE M F A, LUCHETA A R, et al. Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils[J]. FEMS Microbiology Ecology, 2017, 93(8): 1−11
    [6]
    LI T, LI Y Z, GAO X C, et al. Rhizobacterial communities and crop development in response to long-term tillage practices in maize and soybean fields on the Loess Plateau of China[J]. Catena, 2021, 202: 105319 doi: 10.1016/j.catena.2021.105319
    [7]
    YU P, HE X M, BAER M, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation[J]. Nature Plants, 2021, 7(4): 481−499 doi: 10.1038/s41477-021-00897-y
    [8]
    KWAK M J, KONG H G, CHOI K, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology, 2018, 36(11): 1100−1109 doi: 10.1038/nbt.4232
    [9]
    MENDES L W, RAAIJMAKERS J M, DE HOLLANDER M, et al. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function[J]. The ISME Journal, 2018, 12(1): 212−224 doi: 10.1038/ismej.2017.158
    [10]
    CHAI X, WANG L, YANG Y, et al. Apple rootstocks of different nitrogen tolerance affect the rhizosphere bacterial community composition[J]. Journal of Applied Microbiology, 2019, 126(2): 595−607 doi: 10.1111/jam.14121
    [11]
    MAHONEY A K, YIN C T, HULBERT S H. Community structure, species variation, and potential functions of rhizosphere-associated bacteria of different winter wheat (Triticum aestivum) cultivars[J]. Frontiers in Plant Science, 2017, 8: 132
    [12]
    KAVAMURA V N, ROBINSON R J, HUGHES D, et al. Wheat dwarfing influences selection of the rhizosphere microbiome[J]. Scientific Reports, 2020, 10(1): 1452 doi: 10.1038/s41598-020-58402-y
    [13]
    KRAISER T, GRAS D E, GUTIÉRREZ A G, et al. A holistic view of nitrogen acquisition in plants[J]. Journal of Experimental Botany, 2011, 62(4): 1455−1466 doi: 10.1093/jxb/erq425
    [14]
    GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008−1010 doi: 10.1126/science.1182570
    [15]
    LIU X J, ZHANG F S. Nitrogen fertilizer induced greenhouse gas emissions in China[J]. Current Opinion in Environmental Sustainability, 2011, 3(5): 407−413 doi: 10.1016/j.cosust.2011.08.006
    [16]
    CHEN S M, WAGHMODE T R, SUN R B, et al. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization[J]. Microbiome, 2019, 7(1): 136 doi: 10.1186/s40168-019-0750-2
    [17]
    ZHU S S, VIVANCO J M, MANTER D K. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize[J]. Applied Soil Ecology, 2016, 107: 324−333 doi: 10.1016/j.apsoil.2016.07.009
    [18]
    CHEN L, LI K K, SHI W J, et al. Negative impacts of excessive nitrogen fertilization on the abundance and diversity of diazotrophs in black soil under maize monocropping[J]. Geoderma, 2021, 393: 114999 doi: 10.1016/j.geoderma.2021.114999
    [19]
    熊艺, 郑璐, 沈仁芳, 等. 缺氮胁迫对小麦根际土壤微生物群落结构特征的影响[J]. 土壤学报, 2022, 59(1): 218−230

    XIONG Y, ZHENG L, SHEN R F, et al. Effects of nitrogen deficiency on microbial community structure in rhizosphere soil of wheat[J]. Acta Pedologica Sinica, 2022, 59(1): 218−230
    [20]
    童依平, 李继云, 李振声. 不同小麦品种吸收利用氮素效率的差异及有关机理研究 Ⅰ. 吸收和利用效率对产量的影响[J]. 西北植物学报, 1999, 19(2): 270−277

    TONG Y P, LI J Y, LI Z S. Genotypic variations for nitrogen use efficiency in winter wheatⅠ. Effects of N uptake and utilization efficiency on grain yields[J]. Acta Botanica Boreali-Occidentalia Sinica, 1999, 19(2): 270−277
    [21]
    SHI X L, CUI F, HAN X Y, et al. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204[J]. Molecular Plant, 2022, 15(9): 1440−1456 doi: 10.1016/j.molp.2022.07.008
    [22]
    王晓婧, 代兴龙, 马鑫, 等. 不同小麦品种产量和氮素吸收利用的差异[J]. 麦类作物学报, 2017, 37(8): 1065−1071 doi: 10.7606/j.issn.1009-1041.2017.08.09

    WANG X J, DAI X L, MA X, et al. Differences of grain yield, nitrogen uptake and utilization efficiency of different wheat varieties[J]. Journal of Triticeae Crops, 2017, 37(8): 1065−1071 doi: 10.7606/j.issn.1009-1041.2017.08.09
    [23]
    LIU J J, ZHANG Q, MENG D Y, et al. QMrl-7B enhances root system, biomass, nitrogen accumulation and yield in bread wheat[J]. Plants, 2021, 10(4): 764 doi: 10.3390/plants10040764
    [24]
    WANG Y X, WANG C N, GU Y Z, et al. The variability of bacterial communities in both the endosphere and ectosphere of different niches in Chinese chives (Allium tuberosum)[J]. PLoS One, 2020, 15(1): e0227671 doi: 10.1371/journal.pone.0227671
    [25]
    BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 2019, 37(8): 852−857 doi: 10.1038/s41587-019-0209-9
    [26]
    GLÖCKNER F O, YILMAZ P, QUAST C, et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools[J]. Journal of Biotechnology, 2017, 261: 169−176 doi: 10.1016/j.jbiotec.2017.06.1198
    [27]
    GLICK B R. Plant growth-promoting bacteria: mechanisms and applications[J]. Scientifica, 2012, 2012: 963401
    [28]
    CASTRILLO G, TEIXEIRA P J P L, PAREDES S H, et al. Root microbiota drive direct integration of phosphate stress and immunity[J]. Nature, 2017, 543(7646): 513−518 doi: 10.1038/nature21417
    [29]
    LIU H W, LI J Y, CARVALHAIS L C, et al. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens[J]. New Phytologist, 2021, 229(5): 2873−2885 doi: 10.1111/nph.17057
    [30]
    YIN C T, MUETH N, HULBERT S, et al. Bacterial communities on wheat grown under long-term conventional tillage and no-till in the Pacific Northwest of the United States[J]. Phytobiomes Journal, 2017, 1(2): 83−90 doi: 10.1094/PBIOMES-09-16-0008-R
    [31]
    WOLIŃSKA A, KUŹNIAR A, GAŁĄZKA A. Biodiversity in the rhizosphere of selected winter wheat (Triticum aestivum L. ) cultivars—genetic and catabolic fingerprinting[J]. Agronomy, 2020, 10(7): 953 doi: 10.3390/agronomy10070953
    [32]
    SIMONIN M, DASILVA C, TERZI V, et al. Influence of plant genotype and soil on the wheat rhizosphere microbiome: evidences for a core microbiome across eight African and European soils[J]. FEMS Microbiology Ecology, 2020, 96(6): fiaa067 doi: 10.1093/femsec/fiaa067
    [33]
    ZHANG J Y, LIU Y X, ZHANG N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 2019, 37(6): 676−684 doi: 10.1038/s41587-019-0104-4
    [34]
    SALEEM M, HU J E, JOUSSET A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health[J]. Annual Review of Ecology, Evolution, and Systematics, 2019, 50: 145−168 doi: 10.1146/annurev-ecolsys-110617-062605
    [35]
    EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): E911–E920
    [36]
    WILLIAMS A, DE VRIES F T. Plant root exudation under drought: implications for ecosystem functioning[J]. New Phytologist, 2020, 225(5): 1899−1905 doi: 10.1111/nph.16223
    [37]
    XIE H T, CHEN Z M, FENG X X, et al. L-theanine exuded from Camellia sinensis roots regulates element cycling in soil by shaping the rhizosphere microbiome assembly[J]. Science of the Total Environment, 2022, 837: 155801 doi: 10.1016/j.scitotenv.2022.155801
    [38]
    付博阳, 张钧浩, 杨明晓, 等. 追氮时期对强筋小麦根际土壤微生物群落结构的影响[J]. 河北农业大学学报, 2022, 45(3): 1−8

    FU B Y, ZHANG J H, YANG M X, et al. Effects of nitrogen topdressing timing on microbial community structure in strong gluten wheat rhizosphere soil[J]. Journal of Agricultural University of Hebei, 2022, 45(3): 1−8
    [39]
    WARD L M, HEMP J, SHIH P M, et al. Evolution of phototrophy in the Chloroflexi phylum driven by horizontal gene transfer[J]. Frontiers in Microbiology, 2018, 9: 260 doi: 10.3389/fmicb.2018.00260
    [40]
    鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望[J]. 微生物学报, 2020, 60(9): 1801−1820 doi: 10.13343/j.cnki.wsxb.20200463

    XIAN W D, ZHANG X T, LI W J. Research status and prospect on bacterial phylum Chloroflexi[J]. Acta Microbiologica Sinica, 2020, 60(9): 1801−1820 doi: 10.13343/j.cnki.wsxb.20200463
    [41]
    SPIECK E, SPOHN M, WENDT K, et al. Extremophilic nitrite-oxidizing Chloroflexi from Yellowstone hot springs[J]. The ISME Journal, 2020, 14(2): 364−379 doi: 10.1038/s41396-019-0530-9
    [42]
    ANDREOTE F D, CARNEIRO R T, SALLES J F, et al. Culture-independent assessment of rhizobiales-related alphaproteobacteria and the diversity of Methylobacterium in the rhizosphere and rhizoplane of transgenic Eucalyptus[J]. Microbial Ecology, 2009, 57(1): 82−93 doi: 10.1007/s00248-008-9405-8
    [43]
    NGOM M, OSHONE R, DIAGNE N, et al. Tolerance to environmental stress by the nitrogen-fixing actinobacterium Frankia and its role in actinorhizal plants adaptation[J]. Symbiosis, 2016, 70(1): 17−29
    [44]
    宁楚涵, 李文彬, 刘润进. 植物共生放线菌研究进展[J]. 生态学杂志, 2019, 38(1): 256−266 doi: 10.13292/j.1000-4890.201901.001

    NING C H, LI W B, LIU R J. Research advances in plant symbiotic actinomyces[J]. Chinese Journal of Ecology, 2019, 38(1): 256−266 doi: 10.13292/j.1000-4890.201901.001
    [45]
    XUN W B, LIU Y P, LI W, et al. Specialized metabolic functions of keystone taxa sustain soil microbiome stability[J]. Microbiome, 2021, 9(1): 35 doi: 10.1186/s40168-020-00985-9
    [46]
    WILLIAMS K P, SOBRAL B W, DICKERMAN A W. A robust species tree for the Alphaproteobacteria[J]. Journal of Bacteriology, 2007, 189(13): 4578−4586 doi: 10.1128/JB.00269-07
    [47]
    MENDES R, GARBEVA P, RAAIJMAKERS J M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. FEMS Microbiology Reviews, 2013, 37(5): 634−663 doi: 10.1111/1574-6976.12028
    [48]
    UPADHYAY S K, SINGH J S, SAXENA A K, et al. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions[J]. Plant Biology, 2012, 14(4): 605−611 doi: 10.1111/j.1438-8677.2011.00533.x
    [49]
    高金会, 张国良, 付卫东, 等. 基于宏基因组测序解析长刺蒺藜草入侵对根际土壤氮循环的影响[J]. 植物保护学报, 2022, 49(5): 1349−1357 doi: 10.13802/j.cnki.zwbhxb.2022.2022843

    GAO J H, ZHANG G L, FU W D, et al. Effects of spiny burr grass Cenchrus longispinus invasion on rhizosphere nitrogen cycle based on metagenome sequencing[J]. Journal of Plant Protection, 2022, 49(5): 1349−1357 doi: 10.13802/j.cnki.zwbhxb.2022.2022843
  • Cited by

    Periodical cited type(5)

    1. 周佳新,刘悦,徐伟慧,王志刚,陈文晶,胡云龙. 合成菌群对大豆根际和根内微生物群落的影响. 中国生态农业学报(中英文). 2024(04): 571-581 . 本站查看
    2. 陈翔,王捧娜,柳彬彬,代雯慈,蔡洪梅,郑宝强,李金才. 药隔期倒春寒对小麦根际细菌群落结构的影响. 中国农业气象. 2024(07): 756-765 .
    3. 郭辉,连延浩,赵志博,任永哲,王志强,林同保. 大豆和玉米茬口对冬小麦根际土壤细菌群落结构和功能的影响. 河南农业科学. 2024(07): 79-89 .
    4. 何梦园,沈聪,张俊华,王苑多. 连作对枸杞根区土壤理化性质、农药残留和微生物群落的影响. 环境科学. 2024(09): 5578-5590 .
    5. 李喆思,廖佳源,刘婵娟,黄路宽,冯英. 东南景天内生菌对小麦锌吸收转运的影响. 农业环境科学学报. 2024(10): 2229-2239 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (511) PDF downloads (111) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return