Citation: | ZHENG Y C, ZHANG L Q, LIU B B. Characteristics of root-associated microbiomes and their responses to soil nitrogen levels in different wheat cultivars[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1708−1720. DOI: 10.12357/cjea.20230069 |
[1] |
MÜLLER D B, VOGEL C, BAI Y, et al. The plant microbiota: systems-level insights and perspectives[J]. Annual Review of Genetics, 2016, 50: 211−234 doi: 10.1146/annurev-genet-120215-034952
|
[2] |
FITZPATRICK C R, SALAS-GONZÁLEZ I, CONWAY J M, et al. The plant microbiome: from ecology to reductionism and beyond[J]. Annual Review of Microbiology, 2020, 74: 81−100 doi: 10.1146/annurev-micro-022620-014327
|
[3] |
BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478−486 doi: 10.1016/j.tplants.2012.04.001
|
[4] |
VERBON E H, LIBERMAN L M. Beneficial microbes affect endogenous mechanisms controlling root development[J]. Trends in Plant Science, 2016, 21(3): 218−229 doi: 10.1016/j.tplants.2016.01.013
|
[5] |
SCHLEMPER T R, LEITE M F A, LUCHETA A R, et al. Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils[J]. FEMS Microbiology Ecology, 2017, 93(8): 1−11
|
[6] |
LI T, LI Y Z, GAO X C, et al. Rhizobacterial communities and crop development in response to long-term tillage practices in maize and soybean fields on the Loess Plateau of China[J]. Catena, 2021, 202: 105319 doi: 10.1016/j.catena.2021.105319
|
[7] |
YU P, HE X M, BAER M, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation[J]. Nature Plants, 2021, 7(4): 481−499 doi: 10.1038/s41477-021-00897-y
|
[8] |
KWAK M J, KONG H G, CHOI K, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato[J]. Nature Biotechnology, 2018, 36(11): 1100−1109 doi: 10.1038/nbt.4232
|
[9] |
MENDES L W, RAAIJMAKERS J M, DE HOLLANDER M, et al. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function[J]. The ISME Journal, 2018, 12(1): 212−224 doi: 10.1038/ismej.2017.158
|
[10] |
CHAI X, WANG L, YANG Y, et al. Apple rootstocks of different nitrogen tolerance affect the rhizosphere bacterial community composition[J]. Journal of Applied Microbiology, 2019, 126(2): 595−607 doi: 10.1111/jam.14121
|
[11] |
MAHONEY A K, YIN C T, HULBERT S H. Community structure, species variation, and potential functions of rhizosphere-associated bacteria of different winter wheat (Triticum aestivum) cultivars[J]. Frontiers in Plant Science, 2017, 8: 132
|
[12] |
KAVAMURA V N, ROBINSON R J, HUGHES D, et al. Wheat dwarfing influences selection of the rhizosphere microbiome[J]. Scientific Reports, 2020, 10(1): 1452 doi: 10.1038/s41598-020-58402-y
|
[13] |
KRAISER T, GRAS D E, GUTIÉRREZ A G, et al. A holistic view of nitrogen acquisition in plants[J]. Journal of Experimental Botany, 2011, 62(4): 1455−1466 doi: 10.1093/jxb/erq425
|
[14] |
GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008−1010 doi: 10.1126/science.1182570
|
[15] |
LIU X J, ZHANG F S. Nitrogen fertilizer induced greenhouse gas emissions in China[J]. Current Opinion in Environmental Sustainability, 2011, 3(5): 407−413 doi: 10.1016/j.cosust.2011.08.006
|
[16] |
CHEN S M, WAGHMODE T R, SUN R B, et al. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization[J]. Microbiome, 2019, 7(1): 136 doi: 10.1186/s40168-019-0750-2
|
[17] |
ZHU S S, VIVANCO J M, MANTER D K. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize[J]. Applied Soil Ecology, 2016, 107: 324−333 doi: 10.1016/j.apsoil.2016.07.009
|
[18] |
CHEN L, LI K K, SHI W J, et al. Negative impacts of excessive nitrogen fertilization on the abundance and diversity of diazotrophs in black soil under maize monocropping[J]. Geoderma, 2021, 393: 114999 doi: 10.1016/j.geoderma.2021.114999
|
[19] |
熊艺, 郑璐, 沈仁芳, 等. 缺氮胁迫对小麦根际土壤微生物群落结构特征的影响[J]. 土壤学报, 2022, 59(1): 218−230
XIONG Y, ZHENG L, SHEN R F, et al. Effects of nitrogen deficiency on microbial community structure in rhizosphere soil of wheat[J]. Acta Pedologica Sinica, 2022, 59(1): 218−230
|
[20] |
童依平, 李继云, 李振声. 不同小麦品种吸收利用氮素效率的差异及有关机理研究 Ⅰ. 吸收和利用效率对产量的影响[J]. 西北植物学报, 1999, 19(2): 270−277
TONG Y P, LI J Y, LI Z S. Genotypic variations for nitrogen use efficiency in winter wheatⅠ. Effects of N uptake and utilization efficiency on grain yields[J]. Acta Botanica Boreali-Occidentalia Sinica, 1999, 19(2): 270−277
|
[21] |
SHI X L, CUI F, HAN X Y, et al. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204[J]. Molecular Plant, 2022, 15(9): 1440−1456 doi: 10.1016/j.molp.2022.07.008
|
[22] |
王晓婧, 代兴龙, 马鑫, 等. 不同小麦品种产量和氮素吸收利用的差异[J]. 麦类作物学报, 2017, 37(8): 1065−1071 doi: 10.7606/j.issn.1009-1041.2017.08.09
WANG X J, DAI X L, MA X, et al. Differences of grain yield, nitrogen uptake and utilization efficiency of different wheat varieties[J]. Journal of Triticeae Crops, 2017, 37(8): 1065−1071 doi: 10.7606/j.issn.1009-1041.2017.08.09
|
[23] |
LIU J J, ZHANG Q, MENG D Y, et al. QMrl-7B enhances root system, biomass, nitrogen accumulation and yield in bread wheat[J]. Plants, 2021, 10(4): 764 doi: 10.3390/plants10040764
|
[24] |
WANG Y X, WANG C N, GU Y Z, et al. The variability of bacterial communities in both the endosphere and ectosphere of different niches in Chinese chives (Allium tuberosum)[J]. PLoS One, 2020, 15(1): e0227671 doi: 10.1371/journal.pone.0227671
|
[25] |
BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 2019, 37(8): 852−857 doi: 10.1038/s41587-019-0209-9
|
[26] |
GLÖCKNER F O, YILMAZ P, QUAST C, et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools[J]. Journal of Biotechnology, 2017, 261: 169−176 doi: 10.1016/j.jbiotec.2017.06.1198
|
[27] |
GLICK B R. Plant growth-promoting bacteria: mechanisms and applications[J]. Scientifica, 2012, 2012: 963401
|
[28] |
CASTRILLO G, TEIXEIRA P J P L, PAREDES S H, et al. Root microbiota drive direct integration of phosphate stress and immunity[J]. Nature, 2017, 543(7646): 513−518 doi: 10.1038/nature21417
|
[29] |
LIU H W, LI J Y, CARVALHAIS L C, et al. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens[J]. New Phytologist, 2021, 229(5): 2873−2885 doi: 10.1111/nph.17057
|
[30] |
YIN C T, MUETH N, HULBERT S, et al. Bacterial communities on wheat grown under long-term conventional tillage and no-till in the Pacific Northwest of the United States[J]. Phytobiomes Journal, 2017, 1(2): 83−90 doi: 10.1094/PBIOMES-09-16-0008-R
|
[31] |
WOLIŃSKA A, KUŹNIAR A, GAŁĄZKA A. Biodiversity in the rhizosphere of selected winter wheat (Triticum aestivum L. ) cultivars—genetic and catabolic fingerprinting[J]. Agronomy, 2020, 10(7): 953 doi: 10.3390/agronomy10070953
|
[32] |
SIMONIN M, DASILVA C, TERZI V, et al. Influence of plant genotype and soil on the wheat rhizosphere microbiome: evidences for a core microbiome across eight African and European soils[J]. FEMS Microbiology Ecology, 2020, 96(6): fiaa067 doi: 10.1093/femsec/fiaa067
|
[33] |
ZHANG J Y, LIU Y X, ZHANG N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 2019, 37(6): 676−684 doi: 10.1038/s41587-019-0104-4
|
[34] |
SALEEM M, HU J E, JOUSSET A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health[J]. Annual Review of Ecology, Evolution, and Systematics, 2019, 50: 145−168 doi: 10.1146/annurev-ecolsys-110617-062605
|
[35] |
EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): E911–E920
|
[36] |
WILLIAMS A, DE VRIES F T. Plant root exudation under drought: implications for ecosystem functioning[J]. New Phytologist, 2020, 225(5): 1899−1905 doi: 10.1111/nph.16223
|
[37] |
XIE H T, CHEN Z M, FENG X X, et al. L-theanine exuded from Camellia sinensis roots regulates element cycling in soil by shaping the rhizosphere microbiome assembly[J]. Science of the Total Environment, 2022, 837: 155801 doi: 10.1016/j.scitotenv.2022.155801
|
[38] |
付博阳, 张钧浩, 杨明晓, 等. 追氮时期对强筋小麦根际土壤微生物群落结构的影响[J]. 河北农业大学学报, 2022, 45(3): 1−8
FU B Y, ZHANG J H, YANG M X, et al. Effects of nitrogen topdressing timing on microbial community structure in strong gluten wheat rhizosphere soil[J]. Journal of Agricultural University of Hebei, 2022, 45(3): 1−8
|
[39] |
WARD L M, HEMP J, SHIH P M, et al. Evolution of phototrophy in the Chloroflexi phylum driven by horizontal gene transfer[J]. Frontiers in Microbiology, 2018, 9: 260 doi: 10.3389/fmicb.2018.00260
|
[40] |
鲜文东, 张潇橦, 李文均. 绿弯菌的研究现状及展望[J]. 微生物学报, 2020, 60(9): 1801−1820 doi: 10.13343/j.cnki.wsxb.20200463
XIAN W D, ZHANG X T, LI W J. Research status and prospect on bacterial phylum Chloroflexi[J]. Acta Microbiologica Sinica, 2020, 60(9): 1801−1820 doi: 10.13343/j.cnki.wsxb.20200463
|
[41] |
SPIECK E, SPOHN M, WENDT K, et al. Extremophilic nitrite-oxidizing Chloroflexi from Yellowstone hot springs[J]. The ISME Journal, 2020, 14(2): 364−379 doi: 10.1038/s41396-019-0530-9
|
[42] |
ANDREOTE F D, CARNEIRO R T, SALLES J F, et al. Culture-independent assessment of rhizobiales-related alphaproteobacteria and the diversity of Methylobacterium in the rhizosphere and rhizoplane of transgenic Eucalyptus[J]. Microbial Ecology, 2009, 57(1): 82−93 doi: 10.1007/s00248-008-9405-8
|
[43] |
NGOM M, OSHONE R, DIAGNE N, et al. Tolerance to environmental stress by the nitrogen-fixing actinobacterium Frankia and its role in actinorhizal plants adaptation[J]. Symbiosis, 2016, 70(1): 17−29
|
[44] |
宁楚涵, 李文彬, 刘润进. 植物共生放线菌研究进展[J]. 生态学杂志, 2019, 38(1): 256−266 doi: 10.13292/j.1000-4890.201901.001
NING C H, LI W B, LIU R J. Research advances in plant symbiotic actinomyces[J]. Chinese Journal of Ecology, 2019, 38(1): 256−266 doi: 10.13292/j.1000-4890.201901.001
|
[45] |
XUN W B, LIU Y P, LI W, et al. Specialized metabolic functions of keystone taxa sustain soil microbiome stability[J]. Microbiome, 2021, 9(1): 35 doi: 10.1186/s40168-020-00985-9
|
[46] |
WILLIAMS K P, SOBRAL B W, DICKERMAN A W. A robust species tree for the Alphaproteobacteria[J]. Journal of Bacteriology, 2007, 189(13): 4578−4586 doi: 10.1128/JB.00269-07
|
[47] |
MENDES R, GARBEVA P, RAAIJMAKERS J M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. FEMS Microbiology Reviews, 2013, 37(5): 634−663 doi: 10.1111/1574-6976.12028
|
[48] |
UPADHYAY S K, SINGH J S, SAXENA A K, et al. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions[J]. Plant Biology, 2012, 14(4): 605−611 doi: 10.1111/j.1438-8677.2011.00533.x
|
[49] |
高金会, 张国良, 付卫东, 等. 基于宏基因组测序解析长刺蒺藜草入侵对根际土壤氮循环的影响[J]. 植物保护学报, 2022, 49(5): 1349−1357 doi: 10.13802/j.cnki.zwbhxb.2022.2022843
GAO J H, ZHANG G L, FU W D, et al. Effects of spiny burr grass Cenchrus longispinus invasion on rhizosphere nitrogen cycle based on metagenome sequencing[J]. Journal of Plant Protection, 2022, 49(5): 1349−1357 doi: 10.13802/j.cnki.zwbhxb.2022.2022843
|
1. |
周佳新,刘悦,徐伟慧,王志刚,陈文晶,胡云龙. 合成菌群对大豆根际和根内微生物群落的影响. 中国生态农业学报(中英文). 2024(04): 571-581 .
![]() | |
2. |
陈翔,王捧娜,柳彬彬,代雯慈,蔡洪梅,郑宝强,李金才. 药隔期倒春寒对小麦根际细菌群落结构的影响. 中国农业气象. 2024(07): 756-765 .
![]() | |
3. |
郭辉,连延浩,赵志博,任永哲,王志强,林同保. 大豆和玉米茬口对冬小麦根际土壤细菌群落结构和功能的影响. 河南农业科学. 2024(07): 79-89 .
![]() | |
4. |
何梦园,沈聪,张俊华,王苑多. 连作对枸杞根区土壤理化性质、农药残留和微生物群落的影响. 环境科学. 2024(09): 5578-5590 .
![]() | |
5. |
李喆思,廖佳源,刘婵娟,黄路宽,冯英. 东南景天内生菌对小麦锌吸收转运的影响. 农业环境科学学报. 2024(10): 2229-2239 .
![]() |