Citation: | ZHANG Y J, XU S H, LI D T, CHUAN L M, ZHU Y H, WANG F, CAO L K, SHA Z M. Progress in research on preparation and application of oxygen nanobubbles in agriculture[J]. Chinese Journal of Eco-Agriculture, 2023, 31(11): 1780−1791. DOI: 10.12357/cjea.20230066 |
[1] |
PARKER J L, CLAESSON P M, ATTARD P. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces[J]. The Journal of Physical Chemistry, 1994, 98(34): 8468−8480 doi: 10.1021/j100085a029
|
[2] |
王宗旭, 李紫欣, 白璐, 等. 固/液界面纳米气泡形成及稳定性研究进展[J]. 化工学报, 2021, 72(7): 3466−3477 doi: 10.11949/0438-1157.20210062
WANG Z X, LI Z X, BAI L, et al. Formation and stability of nanobubble at solid/liquid interface[J]. CIESC Journal, 2021, 72(7): 3466−3477 doi: 10.11949/0438-1157.20210062
|
[3] |
CHEN C S, LI J, ZHANG X R. The existence and stability of bulk nanobubbles: a long-standing dispute on the experimentally observed mesoscopic inhomogeneities in aqueous solutions[J]. Communications in Theoretical Physics, 2020, 72(3): 037601 doi: 10.1088/1572-9494/ab6183
|
[4] |
XIAO W T, XU G R, LI G B. Effect of nanobubble application on performance and structural characteristics of microbial aggregates[J]. Science of the Total Environment, 2021, 765: 142725 doi: 10.1016/j.scitotenv.2020.142725
|
[5] |
USHIKUBO F Y, FURUKAWA T, NAKAGAWA R, et al. Evidence of the existence and the stability of nano-bubbles in water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361(1/2/3): 31−37
|
[6] |
ETCHEPARE R, OLIVEIRA H, NICKNIG M, et al. Nanobubbles: generation using a multiphase pump, properties and features in flotation[J]. Minerals Engineering, 2017, 112: 19−26 doi: 10.1016/j.mineng.2017.06.020
|
[7] |
TEMESGEN T, BUI T T, HAN M, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review[J]. Advances in Colloid and Interface Science, 2017, 246: 40−51 doi: 10.1016/j.cis.2017.06.011
|
[8] |
TAKAHASHI M, CHIBA K, LI P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. The Journal of Physical Chemistry B, 2007, 111(6): 1343−1347 doi: 10.1021/jp0669254
|
[9] |
PAN X Y, WANG H, OUYANG Z, et al. Scientometric analysis on rice research under drought, waterlogging or abrupt drought-flood alternation stress[J]. Agriculture, 2022, 12(9): 1509 doi: 10.3390/agriculture12091509
|
[10] |
荣英男, 郭俊超, 李建, 等. 国际转化医学研究热点与前沿文献计量分析[J]. 基础医学与临床, 2018, 38(6): 868−873 RONG Y N, GUO J C, LI J, et al. Bibliometric analysis of hotspots and frontiers in international translational medicine research[J]. Basic & Clinical Medicine, 2018, 38(6): 868−873
|
[11] |
张甫, 刘媛, 王睿, 等. 2009—2018年我国污水处理研究现状及发展趋势分析−基于环境科学领域中文核心期刊的文献计量分析[J]. 安全与环境学报, 2019, 19(4): 1329−1340 doi: 10.13637/j.issn.1009-6094.2019.04.032
ZHANG F, LIU Y, WANG R, et al. Current situation and development trend of sewage treating technology research from 2009 to 2018 — Bibliometric analysis based on the field of environmental science from Chinese core periodicals[J]. Journal of Safety and Environment, 2019, 19(4): 1329−1340 doi: 10.13637/j.issn.1009-6094.2019.04.032
|
[12] |
LIU S, OSHITA S, KAWABATA S, et al. Identification of ROS produced by nanobubbles and their positive and negative effects on vegetable seed germination[J]. Langmuir, 2016, 32(43): 11295–11302
|
[13] |
MO C R, WANG J, FANG Z, et al. Formation and stability of ultrasonic generated bulk nanobubbles[J]. Chinese Physics B, 2018, 27(11): 381–385
|
[14] |
惠飞, 李宾, 何品刚, 等. 电化学控制产生纳米氧气气泡及其对电化学聚合吡咯形貌的影响[J]. 化学学报, 2009, 67(6): 488−492
HUI F, LI B, HE P G, et al. Electrochemically controlled formation and growth of oxygen nanobubbles and their effect on morphology of polypyrrole[J]. Acta Chimica Sinica, 2009, 67(6): 488−492
|
[15] |
PAN G, YANG B. Effect of surface hydrophobicity on the formation and stability of oxygen nanobubbles[J]. Chemphyschem, 2012, 13(8): 2205−2212
|
[16] |
WANG L, MIAO X J, ALI J, et al. Quantification of oxygen nanobubbles in particulate matters and potential applications in remediation of anaerobic environment[J]. ACS Omega, 2018, 3(9): 10624−10630
|
[17] |
ZHANG H G, CHEN J, HAN M L, et al. Anoxia remediation and internal loading modulation in eutrophic lakes using geoengineering method based on oxygen nanobubbles[J]. Science of the Total Environment, 2020, 714(C): 136766
|
[18] |
AGARWAL A, NG W J, LIU Y. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere, 2011, 84(9): 1175−1180 doi: 10.1016/j.chemosphere.2011.05.054
|
[19] |
NIRMALKAR N, PACEK A W, BARIGOU M. Interpreting the interfacial and colloidal stability of bulk nanobubbles[J]. Soft Matter, 2018, 14(47): 9643−9656 doi: 10.1039/C8SM01949E
|
[20] |
YASUI K, TUZIUTI T, KANEMATSU W. Mysteries of bulk nanobubbles (ultrafine bubbles); stability and radical formation[J]. Ultrasonics Sonochemistry, 2018, 48: 259−266 doi: 10.1016/j.ultsonch.2018.05.038
|
[21] |
PYRGIOTAKIS G, VEDANTAM P, CIRENZA C, et al. Optimization of a nanotechnology based antimicrobial platform for food safety applications using Engineered Water Nanostructures (EWNS)[J]. Scientific Reports, 2016, 6: 21073 doi: 10.1038/srep21073
|
[22] |
LIU S, OSHITA S, KAWABATA S, et al. Identification of ROS produced by nanobubbles and their positive and negative effects on vegetable seed germination[J]. Langmuir, 2016, 32(43): 11295−11302 doi: 10.1021/acs.langmuir.6b01621
|
[23] |
LIU S, OSHITA S, MAKINO Y, et al. Oxidative capacity of nanobubbles and its effect on seed germination[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1347−1353
|
[24] |
GARCIA-SEGURA S, CENTELLAS F, BRILLAS E. Unprecedented electrochemiluminescence of luminol on a boron-doped diamond thin-film anode. enhancement by electrogenerated superoxide radical anion[J]. The Journal of Physical Chemistry C, 2012, 116(29): 15500−15504 doi: 10.1021/jp305493g
|
[25] |
EDZWALD J K. Fundamentals of dissolved air flotation[J]. Journal of the New England Water Works Association, 2007, 121(2): 89−112
|
[26] |
BOWONDER B, KUMAR R. Studies in bubble formation - Ⅳ: bubble formation at porous discs[J]. Chemical Engineering Science, 1970, 25(1): 25−32 doi: 10.1016/0009-2509(70)85018-7
|
[27] |
KARPITSCHKA S, DIETRICH E, SEDDON J R T, et al. Nonintrusive optical visualization of surface nanobubbles[J]. Physical Review Letters, 2012, 109(6): 066102 doi: 10.1103/PhysRevLett.109.066102
|
[28] |
FERREIRA D, BOAVENTURA M, BÁRCIA P, et al. Two-stage vacuum pressure swing adsorption using AgLiLSX zeolite for producing 99.5+% oxygen from air[J]. Industrial & Engineering Chemistry Research, 2016, 55(3): 722−736
|
[29] |
DING Z Y, HAN Z Y, FU Q, et al. Optimization and analysis of the VPSA process for industrial-scale oxygen production[J]. Adsorption, 2018, 24(5): 499−516 doi: 10.1007/s10450-018-9956-z
|
[30] |
KOSHORIDZE S I, LEVIN Y K. The influence of line tension on the formation of surface nanobubbles[J]. Russian Physics Journal, 2020, 63(7): 1277−1281 doi: 10.1007/s11182-020-02148-7
|
[31] |
DASARY S S R, SENAPATI D, SINGH A K, et al. Highly sensitive and selective dynamic light-scattering assay for TNT detection using p-ATP attached gold nanoparticle[J]. ACS Applied Materials & Interfaces, 2010, 2(12): 3455−3460
|
[32] |
原恺薇, 王兴亚. 纳米气泡制备和检测方法研究进展[J]. 净水技术, 2021, 40(2): 53−66 doi: 10.15890/j.cnki.jsjs.2021.02.006
YUAN K W, WANG X Y. Research progress on the preparation and determination of nanobubbles[J]. Water Purification Technology, 2021, 40(2): 53−66 doi: 10.15890/j.cnki.jsjs.2021.02.006
|
[33] |
ALHESHIBRI M, CRAIG V S J. Generation of nanoparticles upon mixing ethanol and water; nanobubbles or not?[J]. Journal of Colloid and Interface Science, 2019, 542: 136−143 doi: 10.1016/j.jcis.2019.01.134
|
[34] |
刘小虹, 颜肖慈, 罗明道, 等. 原子力显微镜及其应用[J]. 自然杂志, 2002, 24(1): 36−40 doi: 10.3969/j.issn.0253-9608.2002.01.007
LIU X H, YAN X C, LUO M D, et al. Atomic force microscope and its application[J]. Chinese Journal of Nature, 2002, 24(1): 36−40 doi: 10.3969/j.issn.0253-9608.2002.01.007
|
[35] |
XU W L, KONG J S, YEH Y T E, et al. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics[J]. Nature Materials, 2008, 7(12): 992−996 doi: 10.1038/nmat2319
|
[36] |
贾志宏, 丁立鹏, 陈厚文. 高分辨扫描透射电子显微镜原理及其应用[J]. 物理, 2015, 44(7): 446−452 doi: 10.7693/wl20150704
JIA Z H, DING L P, CHEN H W. The principle and applications of high-resolution scanning electron microscopy[J]. Physics, 2015, 44(7): 446−452 doi: 10.7693/wl20150704
|
[37] |
GERMAN S R, EDWARDS M A, REN H, et al. Critical nuclei size, rate, and activation energy of H2 gas nucleation[J]. Journal of the American Chemical Society, 2018, 140(11): 4047−4053 doi: 10.1021/jacs.7b13457
|
[38] |
ZHOU L M, WANG X Y, SHIN H J, et al. Ultrahigh density of gas molecules confined in surface nanobubbles in ambient water[J]. Journal of the American Chemical Society, 2020, 142(12): 5583−5593 doi: 10.1021/jacs.9b11303
|
[39] |
KIKUCHI K, IOKA A, OKU T, et al. Concentration determination of oxygen nanobubbles in electrolyzed water[J]. Journal of Colloid and Interface Science, 2009, 329(2): 306−309 doi: 10.1016/j.jcis.2008.10.009
|
[40] |
BAILLY C, EL-MAAROUF-BOUTEAU H, CORBINEAU F. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology[J]. Comptes Rendus Biologies, 2008, 331(10): 806−814 doi: 10.1016/j.crvi.2008.07.022
|
[41] |
AHMED A K A, SHI X N, HUA L K, et al. Influences of air, oxygen, nitrogen, and carbon dioxide nanobubbles on seed germination and plant growth[J]. Journal of Agricultural and Food Chemistry, 2018, 66(20): 5117−5124 doi: 10.1021/acs.jafc.8b00333
|
[42] |
蒋程瑶, 赵淑梅, 程燕飞, 等. 微/纳米气泡水中的氧环境对叶菜种子发芽的影响[J]. 北方园艺, 2013(2): 28−30
JIANG C Y, ZHAO S M, CHENG Y F, et al. Effect of oxygen condition in micro/nano-bubble water on leafy vegetables seed germination[J]. Northern Horticulture, 2013(2): 28−30
|
[43] |
BARAM S, EVANS J F, BEREZKIN A, et al. Irrigation with treated wastewater containing nanobubbles to aerate soils and reduce nitrous oxide emissions[J]. Journal of Cleaner Production, 2021, 280: 124509 doi: 10.1016/j.jclepro.2020.124509
|
[44] |
蔡九茂, 翟国亮, 吕谋超, 等. 微纳米气泡在农业灌溉领域的应用展望[J]. 灌溉排水学报, 2016, 35(S1): 102−107 doi: 10.13522/j.cnki.ggps.2016.z1.026
CAI J M, ZHAI G L, LYU M C, et al. Application and prospect of micro-nano bubble in agriculture irrigation areas[J]. Journal of Irrigation and Drainage, 2016, 35(S1): 102−107 doi: 10.13522/j.cnki.ggps.2016.z1.026
|
[45] |
王帘里, 翟国亮. 通气对土壤肥力质量影响的研究进展[J]. 中国农学通报, 2016, 32(5): 90−95 doi: 10.11924/j.issn.1000-6850.casb15090083
WANG L L, ZHAI G L. Research progress of aeration impact on soil fertility quality[J]. Chinese Agricultural Science Bulletin, 2016, 32(5): 90−95 doi: 10.11924/j.issn.1000-6850.casb15090083
|
[46] |
DREW M C. Soil aeration and plant root metabolism[J]. Soil Science, 1992, 154(4): 259−268 doi: 10.1097/00010694-199210000-00002
|
[47] |
DREW M C. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 223−250 doi: 10.1146/annurev.arplant.48.1.223
|
[48] |
OUYANG Z, TIAN J C, YAN X F, et al. Effects of different concentrations of dissolved oxygen on the growth, photosynthesis, yield and quality of greenhouse tomatoes and changes in soil microorganisms[J]. Agricultural Water Management, 2021, 245: 106579 doi: 10.1016/j.agwat.2020.106579
|
[49] |
CAO Y F, ZHANG C S, RONG H W, et al. The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR)[J]. Water Research, 2017, 108: 86−94 doi: 10.1016/j.watres.2016.10.063
|
[50] |
ZHOU Y P, BASTIDA F, LIU Y Z, et al. Impacts and mechanisms of nanobubbles level in drip irrigation system on soil fertility, water use efficiency and crop production: the perspective of soil microbial community[J]. Journal of Cleaner Production, 2022, 333: 130050 doi: 10.1016/j.jclepro.2021.130050
|
[51] |
吕家珑, 张一平, 王旭东, 等. 农田生态对土壤肥力的保护效应[J]. 生态学报, 2001, 21(4): 613−616 doi: 10.3321/j.issn:1000-0933.2001.04.017
LYU J L, ZHANG Y P, WANG X D, et al. Protective effect of agri-land ecosystem for soil fertility[J]. Acta Ecologica Sinica, 2001, 21(4): 613−616 doi: 10.3321/j.issn:1000-0933.2001.04.017
|
[52] |
张露, 吴龙龙, 黄晶, 等. 增氧处理对稻田土壤微生物量碳、氮和酶活性的影响[J]. 中国水稻科学, 2022, 36(4): 410−418 doi: 10.16819/j.1001-7216.2022.211107
ZHANG L, WU L L, HUANG J, et al. Effect of aeration treatment on soil microbial biomass carbon, nitrogen and enzyme activities in paddy field[J]. Chinese Journal of Rice Science, 2022, 36(4): 410−418 doi: 10.16819/j.1001-7216.2022.211107
|
[53] |
LIU G M, ZHANG X C, WANG X P, et al. Soil enzymes as indicators of saline soil fertility under various soil amendments[J]. Agriculture, Ecosystems & Environment, 2017, 237: 274−279
|
[54] |
WANG Y, WANG S, SUN J J, et al. Nanobubbles promote nutrient utilization and plant growth in rice by upregulating nutrient uptake genes and stimulating growth hormone production[J]. Science of the Total Environment, 2021, 800: 149627 doi: 10.1016/j.scitotenv.2021.149627
|
[55] |
DU Y D, ZHANG Q, CUI B J, et al. Aerated irrigation improves tomato yield and nitrogen use efficiency while reducing nitrogen application rate[J]. Agricultural Water Management, 2020, 235: 106152 doi: 10.1016/j.agwat.2020.106152
|
[56] |
杨晓东, 陈鲁海, 张立娟, 等. 微纳气泡技术及在农业种植与养殖方面的应用[J]. 净水技术, 2021, 40(2): 118−126 doi: 10.15890/j.cnki.jsjs.2021.02.014
YANG X D, CHEN L H, ZHANG L J, et al. Application of micro-nano bubbles in agricultural planting and aquaculture[J]. Water Purification Technology, 2021, 40(2): 118−126 doi: 10.15890/j.cnki.jsjs.2021.02.014
|
[57] |
ZHOU Y P, ZHOU B, XU F P, et al. Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation[J]. Agricultural Water Management, 2019, 223: 105713 doi: 10.1016/j.agwat.2019.105713
|
[58] |
朱艳, 蔡焕杰, 宋利兵, 等. 加气灌溉下气候因子和土壤参数对土壤呼吸的影响[J]. 农业机械学报, 2016, 47(12): 223−232 doi: 10.6041/j.issn.1000-1298.2016.12.027
ZHU Y, CAI H J, SONG L B, et al. Effects of climatic factors and soil parameters on soil respiration under oxygation conditions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 223−232 doi: 10.6041/j.issn.1000-1298.2016.12.027
|
[59] |
HAQUE S K M, EBERBACH P L, WESTON L A, et al. Variable impact of rice (Oryza sativa) on soil metal reduction and availability of pore water Fe2+ and Mn2+ throughout the growth period[J]. Chemistry and Ecology, 2016, 32(2): 182−200 doi: 10.1080/02757540.2015.1122000
|
[60] |
BOURAZANIS G, ROUSSOS P A, ARGYROKASTRITIS I, et al. Evaluation of the use of treated municipal waste water on the yield, oil quality, free fatty acids’ profile and nutrient levels in olive trees cv Koroneiki, in Greece[J]. Agricultural Water Management, 2016, 163: 1−8 doi: 10.1016/j.agwat.2015.08.023
|
[61] |
LI H Z, HU L M, XIA Z R. Impact of groundwater salinity on bioremediation enhanced by micro-nano bubbles[J]. Materials, 2013, 6(9): 3676−3687 doi: 10.3390/ma6093676
|
[62] |
王逍遥, 王天泽, 周云鹏, 等. 微纳米气泡水滴灌对设施甜瓜产量、品质及灌溉水利用效率的影响[J]. 灌溉排水学报, 2021, 40(1): 38−46 doi: 10.13522/j.cnki.ggps.2020073
WANG X Y, WANG T Z, ZHOU Y P, et al. Effects of oxygation with micro-nano air bubbles on yield, fruit quality and irrigation-water use efficiency of muskmelon[J]. Journal of Irrigation and Drainage, 2021, 40(1): 38−46 doi: 10.13522/j.cnki.ggps.2020073
|
[63] |
李波, 张吉旺, 靳立斌, 等. 施钾量对高产夏玉米产量和钾素利用的影响[J]. 植物营养与肥料学报, 2012, 18(4): 832−838 doi: 10.11674/zwyf.2012.12032
LI B, ZHANG J W, JIN L B, et al. Effects of K fertilization on yield, K use efficiency of summer maize under high yield conditions[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(4): 832−838 doi: 10.11674/zwyf.2012.12032
|
[64] |
KINRAIDE T B. Interactions among Ca2+, Na+ and K+ in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects[J]. Journal of Experimental Botany, 1999, 50(338): 1495−1505 doi: 10.1093/jxb/50.338.1495
|
[65] |
LIU Y X, ZHOU Y P, WANG T Z, et al. Micro-nano bubble water oxygation: Synergistically improving irrigation water use efficiency, crop yield and quality[J]. Journal of Cleaner Production, 2019, 222: 835−843 doi: 10.1016/j.jclepro.2019.02.208
|
[66] |
张慧娟, 薛晓莉, 林少航, 等. 微纳米气泡发生技术及其在水培增氧上的应用[J]. 蔬菜, 2019(1): 59−65 doi: 10.3969/j.issn.1001-8336.2019.01.014
ZHANG H J, XUE X L, LIN S H, et al. Micro-nano bubble generating technology and its application in hydroponics with aeration[J]. Vegetables, 2019(1): 59−65 doi: 10.3969/j.issn.1001-8336.2019.01.014
|
[67] |
薛晓莉, 杨文华, 张天柱. 营养液微纳米气泡增氧消毒技术[J]. 农业工程技术, 2017, 37(1): 46−50
XUE X L, YANG W H, ZHANG T Z. Oxygen-increasing and disinfection technology of micro-nano bubbles in nutrient solution[J]. Applied Engineering Technology, 2017, 37(1): 46−50
|
[68] |
RICHARD M H. ADM Capital leads $5m round for Moleaer expecting boom in nanobubble tech for indoor ag. AFN, [2019−06−06]. https://agfundernews.com/adm-capital-invests-5m-in-moleaer.
|
[69] |
MAHASRI G, SASKIA A, APANDI P S, et al. Development of an aquaculture system using nanobubble technology for the optimation of dissolved oxygen in culture media for Nile tilapia (Oreochromis niloticus)
|
[70] |
杨文华, 薛晓莉, 刘永好, 等. 浅析微纳米气泡曝气技术在水产养殖方面的应用[J]. 中国水产, 2020(3): 63−67
YANG W H, XUE X L, LIU Y H, et al. Application of micro-nano bubble aeration technology in aquaculture[J]. Aquarium, 2020(3): 63−67
|
[71] |
鲍旭腾, 陈庆余, 徐志强, 等. 微纳米气泡技术在渔业水产行业的研究进展及应用综述[J]. 净水技术, 2016(4): 16−22, 51 doi: 10.3969/j.issn.1009-0177.2016.04.003
BAO X T, CHEN Q Y, XU Z Q, et al. Overview of research advances and application of micro-nano bubbles technology in fishery and aquaculture sector[J]. Water Purification Technology, 2016(4): 16−22, 51 doi: 10.3969/j.issn.1009-0177.2016.04.003
|
[72] |
EBINA K, SHI K, HIRAO M, et al. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice[J]. PLoS One, 2013, 8(6): e65339 doi: 10.1371/journal.pone.0065339
|
[73] |
高莲花. 纳米气泡对疏水颗粒分散性影响的研究[D]. 上海: 上海师范大学, 2012
GAO L H. Study on the influence of nanobubbles on the dispersion of hydrophobic particles[D]. Shanghai: Shanghai Normal University, 2012
|
[74] |
WANG L, MIAO X J, ALI J, et al. Quantification of oxygen nanobubbles in particulate matters and potential applications in remediation of anaerobic environment[J]. ACS Omega, 2018, 3(9): 10624−10630 doi: 10.1021/acsomega.8b00784
|
[75] |
薛晓莉, 张慧娟, 杨文华, 等. 微纳米气泡技术及其在农业领域的应用[J]. 农村科技, 2017(8): 65−68 doi: 10.3969/j.issn.1002-6193.2017.08.033
XUE X L, ZHANG H J, YANG W H, et al. Micro-nano bubble technology and its application in agriculture[J]. Rural Science & Technology, 2017(8): 65−68 doi: 10.3969/j.issn.1002-6193.2017.08.033
|
[76] |
FAO. FAOSTAT Emission Shares[DB/OL]. FAO. 2019. https://www.fao.org/faostat/zh/#data/EM
|
[77] |
张露, 陈书融, 吴龙龙, 等. 减施氮肥和增氧灌溉对水稻氮代谢关键酶活性及氮素利用的影响[J]. 农业工程学报, 2022, 38(9): 81−90 doi: 10.11975/j.issn.1002-6819.2022.09.009
ZHANG L, CHEN S R, WU L L, et al. Effects of nitrogen fertilizer reduction and oxygen-enhancing irrigation on the key enzyme activities of nitrogen metabolism and nitrogen utilization in rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 81−90 doi: 10.11975/j.issn.1002-6819.2022.09.009
|
[78] |
IQBAL M F, LIU S H, ZHU J W, et al. Limited aerenchyma reduces oxygen diffusion and methane emission in paddy[J]. Journal of Environmental Management, 2021, 279: 111583 doi: 10.1016/j.jenvman.2020.111583
|
[79] |
MINAMIKAWA K, TAKAHASHI M, MAKINO T, et al. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy[J]. Environmental Research Letters, 2015, 10(8): 084012 doi: 10.1088/1748-9326/10/8/084012
|
[80] |
葛会敏, 陈璐, 于一帆, 等. 稻田甲烷排放与减排的研究进展[J]. 中国农学通报, 2015, 31(3): 160−166 doi: 10.11924/j.issn.1000-6850.2014-1822
GE H M, CHEN L, YU Y F, et al. Advances in methane emission and emission reduction in rice field[J]. Chinese Agricultural Science Bulletin, 2015, 31(3): 160−166 doi: 10.11924/j.issn.1000-6850.2014-1822
|
[81] |
YANG S H, XIAO Y N, SUN X, et al. Biochar improved rice yield and mitigated CH4 and N2O emissions from paddy field under controlled irrigation in the Taihu Lake Region of China[J]. Atmospheric Environment, 2019, 200: 69−77 doi: 10.1016/j.atmosenv.2018.12.003
|
[82] |
雷宏军, 王维一, 刘欢, 等. 增氧灌溉培养条件下土壤N2O及CO2排放规律研究[J]. 华北水利水电大学学报(自然科学版), 2020, 41(3): 84−90
LEI H J, WANG W Y, LIU H, et al. Research on the emission characteristics of N2O and CO2 from incubated soil under the condition of aerated irrigation[J]. Journal of North China University of Water Resources and Electric Power, 2020, 41(3): 84−90
|
[83] |
刘欢. 曝气滴灌条件下设施菜地土壤N2O排放及影响因子研究[D]. 郑州: 华北水利水电大学, 2019
LIU H. Study on N2O emission and its influencing factors in greenhouse vegetable soil under the condition of aeration and drip irrigation[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019
|
[84] |
SATPUTE P A, EARTHMAN J C. Hydroxyl ion stabilization of bulk nanobubbles resulting from microbubble shrinkage[J]. Journal of Colloid and Interface Science, 2021, 584: 449−455 doi: 10.1016/j.jcis.2020.09.100
|
[85] |
KYZAS G Z, BOMIS G, KOSHELEVA R I, et al. Nanobubbles effect on heavy metal ions adsorption by activated carbon[J]. Chemical Engineering Journal, 2019, 356: 91−97 doi: 10.1016/j.cej.2018.09.019
|
[86] |
TANG Y, ZHANG M Y, ZHANG J, et al. Reducing arsenic toxicity using the interfacial oxygen nanobubble technology for sediment remediation[J]. Water Research, 2021, 205: 117657 doi: 10.1016/j.watres.2021.117657
|
[87] |
李莹, 张洲, 杨高明, 等. 湿地植物根系泌氧能力和根表铁膜与根系吸收重金属的关系[J]. 生态环境学报, 2022, 31(8): 1657−1666
LI Y, ZHANG Z, YANG G M, et al. The relationship between the radial oxygen loss and the iron plaque on root surfaces to wetland plants absorb heavy metals[J]. Ecology and Environment Sciences, 2022, 31(8): 1657−1666
|
[88] |
ZHANG H G, LYU T, BI L, et al. Combating hypoxia/anoxia at sediment-water interfaces: a preliminary study of oxygen nanobubble modified clay materials[J]. Science of the Total Environment, 2018, 637/638: 550−560 doi: 10.1016/j.scitotenv.2018.04.284
|
[89] |
JI X N, LIU C B, PAN G. Interfacial oxygen nanobubbles reduce methylmercury production ability of sediments in eutrophic waters[J]. Ecotoxicology and Environmental Safety, 2020, 188: 109888 doi: 10.1016/j.ecoenv.2019.109888
|
[90] |
JI X N, LIU C B, ZHANG M Y, et al. Mitigation of methylmercury production in eutrophic waters by interfacial oxygen nanobubbles[J]. Water Research, 2020, 173: 115563 doi: 10.1016/j.watres.2020.115563
|
[91] |
林建伟, 朱志良, 赵建夫. 曝气复氧对富营养化水体底泥氮磷释放的影响[J]. 生态环境, 2005, 14(6): 812−815
LIN J W, ZHU Z L, ZHAO J F. Effect of aeration on release of nitrogen and phosphorus from sediments in eutrophic waterbody[J]. Ecology and Environment, 2005, 14(6): 812−815
|
[92] |
JENKINS K B, MICHELSEN D L, NOVAK J T. Application of oxygen microbubbles for in situ biodegradation of p-xylene-contaminated groundwater in a soil column[J]. Biotechnology Progress, 1993, 9(4): 394−400 doi: 10.1021/bp00022a006
|