ZHANG L, GUO A H, HE L, WU M X, ZHAO X F, TAN F Y. Evaluation of relative soil moisture from CMA Land Data Assimilation System at different spatiotemporal scales in China[J]. Chinese Journal of Eco-Agriculture, 2023, 31(10): 1635−1644. DOI: 10.12357/cjea.20230021
Citation: ZHANG L, GUO A H, HE L, WU M X, ZHAO X F, TAN F Y. Evaluation of relative soil moisture from CMA Land Data Assimilation System at different spatiotemporal scales in China[J]. Chinese Journal of Eco-Agriculture, 2023, 31(10): 1635−1644. DOI: 10.12357/cjea.20230021

Evaluation of relative soil moisture from CMA Land Data Assimilation System at different spatiotemporal scales in China

Funds: This study was supported by the National Science and Technology Innovation 2030 Project (2021ZD0113605), China Meteorological Administration Innovation Development Project (CXFZ2023J057) and China Meteorological Administration Fengyun Satellite Application Advance Plan Project (FY-APP-2021.0305).
More Information
  • Corresponding author:

    GUO Anhong, E-mail: guoah@cma.gov.cn

  • Received Date: January 18, 2023
  • Revised Date: May 08, 2023
  • Accepted Date: May 08, 2023
  • Available Online: June 11, 2023
  • Based on daily relative soil moisture from the CMA Land Data Assimilation System (CLDAS) and hourly relative soil moisture from automatic soil moisture stations during 2020−2021, CLDAS relative soil moisture was evaluated in terms of accuracy and suitability by using multiple statistic indices at temporal scales of day and month as well as spatial scales of station and region. The results showed consistent daily variation in CLDAS relative soil moisture and observed relative soil moisture. CLDAS relative soil moisture at depths of 0−10 cm and 0−20 cm was close to the observed relative soil moisture, whereas CLDAS relative soil moisture at a depth of 0−50 cm was smaller than the observed relative soil moisture. The correlation coefficients between CLDAS relative soil moisture and observed relative soil moisture at the three depths were generally greater than 0.6, between which the root mean square errors (RMSE) were smaller than 30%. At the regional scale, the correlation coefficient between CLDAS relative soil moisture and observed relative soil moisture at a depth of 0−10 cm was 0.78−0.95, with the largest value in South China. The RMSE between CLDAS relative soil moisture and observed relative soil moisture at a depth of 0−10 cm was 5.70%−17.26%, with the smallest value in East China. The bias between CLDAS relative soil moisture and observed relative soil moisture at a depth of 0−10 cm was −6.63%−15.80%, with the smallest absolute value in Central China. At a depth of 0−20 cm, the correlation coefficient between CLDAS relative soil moisture and observed relative soil moisture was 0.78−0.95, with the largest value in Northeast China and Inner Mongolia. The RMSE between CLDAS relative soil moisture and observed relative soil moisture at a depth of 0−20 cm was 4.45%−14.03%, with the smallest value in East China. The bias between CLDAS relative soil moisture and observed relative soil moisture at a depth of 0−20 cm was −5.36%−12.56%, with the smallest absolute value in East China. At a depth of 0−50 cm, the correlation coefficient between CLDAS relative soil moisture and observed relative soil moisture was 0.68−0.97, with the largest value in Northeast China. The RMSE between CLDAS relative soil moisture and observed relative soil moisture at a depth of 0−50 cm was 4.00%−15.83%, with the smallest value in East China. The bias between CLDAS relative soil moisture and observed relative soil moisture at a depth of 0−50 cm was −9.83%−9.62%, with the smallest absolute value in Northeast China. The correlation coefficients between monthly CLDAS relative soil moisture and observed relative soil moisture were generally high, with larger values between June and October. The RMSE between monthly CLDAS relative soil moisture and observed relative soil moisture was smaller than 15%, with the smallest value in East China. Overall, CLDAS relative soil moisture performed well in East China, Central China, and Northeast China at the spatial scale and during June−October at the temporal scale.
  • [1]
    刘宪锋, 朱秀芳, 潘耀忠, 等. 农业干旱监测研究进展与展望[J]. 地理学报, 2015, 70(11): 1835−1848 doi: 10.11821/dlxb201511012

    LIU X F, ZHU X F, PAN Y Z, et al. Agricultural drought monitor: progress, challenges and prospect[J]. Acta Geographica Sinica, 2015, 70(11): 1835−1848 doi: 10.11821/dlxb201511012
    [2]
    樊风, 段玮, 杨家康. 云南土壤湿度长期变化的初步研究[J]. 应用气象学报, 2015, 26(4): 409−421 doi: 10.11898/1001-7313.20150403

    FAN F, DUAN W, YANG J K. Preliminary results on long-term soil moisture variation in Yunnan[J]. Journal of Applied Meteorological Science, 2015, 26(4): 409−421 doi: 10.11898/1001-7313.20150403
    [3]
    ZHANG J H, ZHOU Z M, YAO F M, et al. Validating the modified perpendicular drought index in the North China region using in situ soil moisture measurement[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 12(3): 542−546
    [4]
    张蕾, 吕厚荃, 王良宇, 等. 中国土壤湿度的时空变化特征[J]. 地理学报, 2016, 71(9): 1494−1508

    ZHANG L, LYU H Q, WANG L Y, et al. Spatial-temporal characteristics of soil moisture in China[J]. Acta Geographica Sinica, 2016, 71(9): 1494−1508
    [5]
    梁顺林, 白瑞, 陈晓娜, 等. 2019年中国陆表定量遥感发展综述[J]. 遥感学报, 2020, 24(6): 618−671

    LIANG S L, BAI R, CHEN X N, et al. Review of China’s land surface quantitative remote sensing development in 2019[J]. Journal of Remote Sensing, 2020, 24(6): 618−671
    [6]
    BAI L L, LONG D, YAN L. Estimation of surface soil moisture with downscaled land surface temperatures using a data fusion approach for heterogeneous agricultural land[J]. Water Resources Research, 2019, 55(2): 1105−1128 doi: 10.1029/2018WR024162
    [7]
    GE X Y, WANG J Z, DING J L, et al. Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring[J]. PeerJ, 2019, 7: e6926 doi: 10.7717/peerj.6926
    [8]
    赵天杰. 被动微波反演土壤水分的L波段新发展及未来展望[J]. 地理科学进展, 2018, 37(2): 198−213 doi: 10.18306/dlkxjz.2018.02.003

    ZHAO T J. Recent advances of L-band application in the passive microwave remote sensing of soil moisture and its prospects[J]. Progress in Geography, 2018, 37(2): 198−213 doi: 10.18306/dlkxjz.2018.02.003
    [9]
    吴泽棉, 邱建秀, 刘苏峡, 等. 基于土壤水分的农业干旱监测研究进展[J]. 地理科学进展, 2020, 39(10): 1758−1769 doi: 10.18306/dlkxjz.2020.10.014

    WU Z M, QIU J X, LIU S X, et al. Advances in agricultural drought monitoring based on soil moisture[J]. Progress in Geography, 2020, 39(10): 1758−1769 doi: 10.18306/dlkxjz.2020.10.014
    [10]
    CUI Y K, LONG D, HONG Y, et al. Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau[J]. Journal of Hydrology, 2016, 543: 242−254 doi: 10.1016/j.jhydrol.2016.10.005
    [11]
    WANG L, FANG S B, PEI Z F, et al. Using FengYun-3C VSM data and multivariate models to estimate land surface soil moisture[J]. Remote Sensing, 2020, 12(6): 1038 doi: 10.3390/rs12061038
    [12]
    杨纲, 郭鹏, 李西灿, 等. 风云卫星微波遥感土壤水分产品适用性验证分析[J]. 水土保持研究, 2020, 27(1): 104−111, 118

    YANG G, GUO P, LI X C, et al. Assessment on applicability of soil moisture products of Fengyun satellite microwave remote sensing[J]. Research of Soil and Water Conservation, 2020, 27(1): 104−111, 118
    [13]
    LUO W, XU X L, LIU W, et al. UAV based soil moisture remote sensing in a Karst mountainous catchment[J]. CATENA, 2019, 174: 478−489 doi: 10.1016/j.catena.2018.11.017
    [14]
    宋海清, 朱仲元, 李云鹏. 6套格点土壤水分数据集在内蒙古自治区的适用性评价[J]. 水土保持通报, 2021, 41(6): 180−189, 200

    SONG H Q, ZHU Z Y, LI Y P. Applicability evaluation of six gridded soil moisture datasets in Inner Mongolia Autonomous Region[J]. Bulletin of Soil and Water Conservation, 2021, 41(6): 180−189, 200
    [15]
    闫伟兄, 李剑萍, 金燕, 等. 土壤湿度模拟研究进展[J]. 气象科技进展, 2021, 11(6): 14−20 doi: 10.3969/j.issn.2095-1973.2021.06.003

    YAN W X, LI J P, JIN Y, et al. Recent advances in soil wetness simulation[J]. Advances in Meteorological Science and Technology, 2021, 11(6): 14−20 doi: 10.3969/j.issn.2095-1973.2021.06.003
    [16]
    BAO H Y, YANG K, WANG C H. Characteristics of GLDAS soil-moisture data on the Tibet Plateau[J]. Sciences in Cold and Arid Regions, 2017, 9(2): 127−141
    [17]
    XIA Y L, SHEFFIELD J, EK M B, et al. Evaluation of multi-model simulated soil moisture in NLDAS-2[J]. Journal of Hydrology, 2014, 512: 107−125 doi: 10.1016/j.jhydrol.2014.02.027
    [18]
    崔园园, 覃军, 敬文琪, 等. GLDAS和CLDAS融合土壤水分产品在青藏高原地区的适用性评估[J]. 高原气象, 2018, 37(1): 123−136

    CUI Y Y, QIN J, JING W Q, et al. Applicability evaluation of merged soil moisture in GLDAS and CLDAS products over Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(1): 123−136
    [19]
    刘维成, 徐丽丽, 朱姜韬, 等. 再分析资料和陆面数据同化资料土壤湿度产品在中国北方地区的适用性评估[J]. 大气科学学报, 2022, 45(4): 616−629

    LIU W C, XU L L, ZHU J T, et al. Evaluation of reanalysis and LDAS soil moisture products over North China[J]. Transactions of Atmospheric Sciences, 2022, 45(4): 616−629
    [20]
    韩帅, 师春香, 姜立鹏, 等. CLDAS土壤湿度模拟结果及评估[J]. 应用气象学报, 2017, 28(3): 369−378

    HAN S, SHI C X, JIANG L P, et al. The simulation and evaluation of soil moisture based on CLDAS[J]. Journal of Applied Meteorological Science, 2017, 28(3): 369−378
    [21]
    崔园园, 张强, 覃军, 等. CLDAS融合土壤湿度产品在东北地区的适用性评估及订正[J]. 中国农业气象, 2019, 40(10): 660−668

    CUI Y Y, ZHANG Q, QIN J, et al. Applicability evaluation of CLDAS merged soil relative moisture in northeast of China and its correction research[J]. Chinese Journal of Agrometeorology, 2019, 40(10): 660−668
    [22]
    秦道清, 赵岩, 王红瑞, 等. 基于站点观测和模式模拟的北京市土壤湿度[J]. 自然资源学报, 2019, 34(1): 191−204 doi: 10.31497/zrzyxb20190116

    QIN D Q, ZHAO Y, WANG H R, et al. Soil moisture in Beijing based on site observation and model simulation[J]. Journal of Natural Resources, 2019, 34(1): 191−204 doi: 10.31497/zrzyxb20190116
    [23]
    孙小龙, 宋海清, 李平, 等. 基于CLDAS资料的内蒙古干旱监测分析[J]. 气象, 2015, 41(10): 1245−1252

    SUN X L, SONG H Q, LI P, et al. Analysis of drought monitoring in Inner Mongolia based on CLDAS data[J]. Meteorological Monthly, 2015, 41(10): 1245−1252
    [24]
    刘东明, 吴门新, 侯英雨, 等. 辽宁省生长季CLDAS土壤相对湿度产品的评估检验[J]. 中国农业气象, 2022, 43(1): 17−27

    LIU D M, WU M X, HOU Y Y, et al. Evaluation and verification of CLDAS relative soil moisture products during growing season in Liaoning Province[J]. Chinese Journal of Agrometeorology, 2022, 43(1): 17−27
    [25]
    张蕾, 吕厚荃, 王良宇. 土壤水分观测历史数据集奇异值分析与校正[J]. 气象, 2017, 43(2): 189−196 doi: 10.7519/j.issn.1000-0526.2017.02.006

    ZHANG L, LYU H Q, WANG L Y. Analysis and calibration of singular historical observed data of manual soil water[J]. Meteorological Monthly, 2017, 43(2): 189−196 doi: 10.7519/j.issn.1000-0526.2017.02.006
  • Cited by

    Periodical cited type(1)

    1. 张蕾,郭安红,宋迎波,何亮,赵晓凤,赵运成. 土壤水分数据融合及其在旱涝灾害多维度评估中的应用. 农业工程学报. 2024(13): 68-76 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (408) PDF downloads (64) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return