Citation: | WANG P N, DAI W C, YU M, WENG Y, HUANG J W, WU Y, CAI H M, GUO J P, GAO S, ZHENG B Q, LI J C, CHEN X. Effects of late spring coldness on fungal communities in wheat rhizosphere soil at flowering stage[J]. Chinese Journal of Eco-Agriculture, 2023, 31(10): 1565−1578. DOI: 10.12357/cjea.20230017 |
[1] |
付大容, 陈笑蝶, 刘亦婷, 等. 2001—2100年中国区域季节平均温度变化的时空格局[J]. 中国农业气象, 2022, 43(9): 681−691 doi: 10.3969/j.issn.1000-6362.2022.09.001
FU D R, CHEN X D, LIU Y T, et al. Spatiotemporal patterns of seasonal mean temperature variations in China during 2001– 2100[J]. Chinese Journal of Agrometeorology, 2022, 43(9): 681−691 doi: 10.3969/j.issn.1000-6362.2022.09.001
|
[2] |
陈翔, 林涛, 林非非, 等. 黄淮麦区小麦倒春寒危害机理及防控措施研究进展[J]. 麦类作物学报, 2020, 40(2): 243−250 doi: 10.7606/j.issn.1009-1041.2020.02.14
CHEN X, LIN T, LIN F F, et al. Research progress on damage mechanism and prevention and control measures of late spring coldness of wheat in Huanghuai region[J]. Journal of Triticeae Crops, 2020, 40(2): 243−250 doi: 10.7606/j.issn.1009-1041.2020.02.14
|
[3] |
JI H T, XIAO L J, XIA Y M, et al. Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat[J]. Agricultural and Forest Meteorology, 2017, 243: 33−42 doi: 10.1016/j.agrformet.2017.04.016
|
[4] |
张乐乐, 陈翔, 柯媛媛, 等. 冬小麦抗倒春寒性能鉴定方法和指标的比较[J]. 中国农业气象, 2021, 42(2): 146−157 doi: 10.3969/j.issn.1000-6362.2021.02.006
ZHANG L L, CHEN X, KE Y Y, et al. An inclusive comparison of identification methods and indices of winter wheat tolerance against late spring coldness[J]. Chinese Journal of Agrometeorology, 2021, 42(2): 146−157 doi: 10.3969/j.issn.1000-6362.2021.02.006
|
[5] |
李金才, 陈翔, 刘惠惠, 等. 安徽省地方标准DB34/T 3736—2020: 小麦倒春寒综合防控技术规程[S]. 合肥: 安徽省市场监督管理局, 2020
LI J C, CHEN X, LIU H H, et al. Local Standards of Anhui Province DB34/T 3736−2020: Technical Regulation for Comprehensive Prevention and Control of Late Spring Coldness in Wheat[S]. Hefei: Market Supervision and Administration Bureau of Anhui Province, 2020
|
[6] |
刘方方, 万映秀, 曹文昕, 等. 小麦倒春寒抗性鉴定研究进展[J]. 植物遗传资源学报, 2021, 22(5): 1193−1199 doi: 10.13430/j.cnki.jpgr.20210113001
LIU F F, WAN Y X, CAO W X, et al. Advances on identification of wheat cold tolerance in spring[J]. Journal of Plant Genetic Resources, 2021, 22(5): 1193−1199 doi: 10.13430/j.cnki.jpgr.20210113001
|
[7] |
史可佳. 拔节期和孕穗期双期低温对小麦籽粒品质的影响[D]. 南京: 南京农业大学, 2020
SHI K J. Effects of double low temperature at jointing and booting stage on wheat grain quality[D]. Nanjing: Nanjing Agricultural University, 2020
|
[8] |
李玮祎, 孙明馨, 曾风玲, 等. 低温胁迫下冬小麦叶片叶绿素含量的高光谱估算[J]. 中国农业气象, 2022, 43(2): 137−147 doi: 10.3969/j.issn.1000-6362.2022.02.005
LI W Y, SUN M X, ZENG F L, et al. Hyperspectral estimation of chlorophyll content in winter wheat leaves under low temperature stress[J]. Chinese Journal of Agrometeorology, 2022, 43(2): 137−147 doi: 10.3969/j.issn.1000-6362.2022.02.005
|
[9] |
XU H, WU Z C, XU B, et al. Optimized phosphorus application alleviated adverse effects of short-term low-temperature stress in winter wheat by enhancing photosynthesis and improved accumulation and partitioning of dry matter[J]. Agronomy, 2022, 12(7): 1700 doi: 10.3390/agronomy12071700
|
[10] |
刘绿洲, 张妍, 张林, 等. 药隔期低温胁迫对小麦功能叶超微结构及光合特性的影响[J]. 中国农业气象, 2023, 44(1): 58−70 doi: 10.3969/j.issn.1000-6362.2023.01.006
LIU L Z, ZHANG Y, ZHANG L, et al. Effects of low temperature stress during the anther differentiation period on leaf anatomical structure and photosynthetic characteristics of wheat[J]. Chinese Journal of Agrometeorology, 2023, 44(1): 58−70 doi: 10.3969/j.issn.1000-6362.2023.01.006
|
[11] |
孙东岳, 许辉, 刘倩倩, 等. 磷素后移对药隔期倒春寒小麦旗叶光合及抗氧化系统的影响[J]. 中国农业气象, 2023, 44(2): 123−132 doi: 10.3969/j.issn.1000-6362.2023.02.004
SUN D Y, XU H, LIU Q Q, et al. Effects of phosphorus fertilizer postpone on photosynthesis and antioxidant system of wheat flag leaves under late spring coldness at connectivum stage[J]. Chinese Journal of Agrometeorology, 2023, 44(2): 123−132 doi: 10.3969/j.issn.1000-6362.2023.02.004
|
[12] |
肖浏骏. 拔节孕穗期低温胁迫对冬小麦生长发育及产量形成影响的模拟研究[D]. 南京: 南京农业大学, 2019
XIAO L J. Simulation study on the effect of low temperature stress at jointing and booting stage on the growth and yield formation of winter wheat[D]. Nanjing: Nanjing Agricultural University, 2019
|
[13] |
高芸, 张玉雪, 马泉, 等. 春季低温对小麦花粉育性及粒数形成的影响[J]. 作物学报, 2021, 47(1): 104−115 doi: 10.3724/SP.J.1006.2021.01031
GAO Y, ZHANG Y X, MA Q, et al. Effects of low temperature in spring on fertility of pollen and formation of grain number in wheat[J]. Acta Agronomica Sinica, 2021, 47(1): 104−115 doi: 10.3724/SP.J.1006.2021.01031
|
[14] |
谭植, 闫素辉, 刘良柏, 等. 拔节期低温对小麦穗花发育与籽粒淀粉粒分布的影响[J]. 西北农业学报, 2021, 30(5): 637−644 doi: 10.7606/j.issn.1004-1389.2021.05.002
TAN Z, YAN S H, LIU L B, et al. Effect of low temperature at jointing stage on spikelet and floret development and starch granule size distribution of wheat[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2021, 30(5): 637−644 doi: 10.7606/j.issn.1004-1389.2021.05.002
|
[15] |
ZHANG Y, LIU L Z, CHEN X, et al. Effects of low-temperature stress during the anther differentiation period on winter wheat photosynthetic performance and spike-setting characteristics[J]. Plants (Basel, Switzerland), 2022, 11(3): 389
|
[16] |
柯媛媛, 陈翔, 张乐乐, 等. 药隔期低温胁迫对小麦干物质积累、转运和分配及产量的影响[J]. 安徽农业大学学报, 2021, 48(5): 701−706 doi: 10.13610/j.cnki.1672-352x.20211105.010
KE Y Y, CHEN X, ZHANG L L, et al. Effects of low temperature stress at anther connective stage on dry matter accumulation, translocation and distribution and grain yield of wheat[J]. Journal of Anhui Agricultural University, 2021, 48(5): 701−706 doi: 10.13610/j.cnki.1672-352x.20211105.010
|
[17] |
JIANG G, HASSAN M, MUHAMMAD N, et al. Comparative physiology and transcriptome analysis of young spikes in response to late spring coldness in wheat (Triticum aestivum L.)[J]. Frontiers in Plant Science, 2022, 13: 811884 doi: 10.3389/fpls.2022.811884
|
[18] |
王香生, 连延浩, 郭辉, 等. 小麦红花间作系统根际微生物群落结构及功能分析[J]. 中国生态农业学报(中英文), 2023, 31(4): 516−529
WANG X S, LIAN Y H, GUO H, et al. Effects of wheat/safflower intercropping on rhizosphere microbial community function and structure[J]. Chinese Journal of Eco-Agriculture, 2023, 31(4): 516−529
|
[19] |
岳丹丹, 韩贝, Abid Ullah, 等. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806−1815
YUE D D, HAN B, ULLAH A, et al. Fungi diversity analysis of rhizosphere under drought conditions in cotton[J]. Acta Agronomica Sinica, 2021, 47(9): 1806−1815
|
[20] |
QI L, GE Y, XIA T, et al. Rare earth oxide nanoparticles promote soil microbial antibiotic resistance by selectively enriching antibiotic resistance genes[J]. Environmental Science: Nano, 2019, 6(2): 456−466 doi: 10.1039/C8EN01129J
|
[21] |
ZHENG J C, LIU T, ZHENG Q X, et al. Identification of cold tolerance and analysis of genetic diversity for major wheat varieties in Jianghuai region of China[J]. Pakistan Journal of Botany, 2020, 52(3): 839−849
|
[22] |
邱虎森, 甄博, 周新国. 高温对水稻根际细菌群落及功能代谢多样性的影响[J]. 灌溉排水学报, 2020, 39(11): 97−103 doi: 10.13522/j.cnki.ggps.2019160
QIU H S, ZHEN B, ZHOU X G. The effects of thermal stress on diversity of rhizobacteria and functional genes of rice rhizosphere[J]. Journal of Irrigation and Drainage, 2020, 39(11): 97−103 doi: 10.13522/j.cnki.ggps.2019160
|
[23] |
MUKHERJEE P K, CHANDRA J, RETUERTO M, et al. Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi[J]. PLoS Pathogens, 2014, 10(3): e1003996 doi: 10.1371/journal.ppat.1003996
|
[24] |
BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 2019, 37(8): 852−857 doi: 10.1038/s41587-019-0209-9
|
[25] |
CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. DADA2: high-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 2016, 13(7): 581−583 doi: 10.1038/nmeth.3869
|
[26] |
CHAO A. Non-parametric estimation of the classes in a population[J]. Scandinavian Journal of Statistics, 1984, 4(11): 265−270
|
[27] |
SIMPSON E H. Measurement of diversity[J]. Nature, 1949, 163(4148): 688 doi: 10.1038/163688a0
|
[28] |
KEYLOCK C J. Simpson diversity and the Shannon-Wiener index as special cases of a generalized entropy[J]. Oikos, 2005, 109(1): 203−207 doi: 10.1111/j.0030-1299.2005.13735.x
|
[29] |
MUHAMMAD H A. 喷施GR-24对孕穗期低温胁迫小麦缓解效应的研究[D]. 合肥: 安徽农业大学, 2022
MUHAMMAD H A. Study on the alleviation effect of exogenous strigolactone (GR24) on wheat tolerance to low temperature at booting stage[D]. Hefei: Anhui Agricultural University, 2022
|
[30] |
王永华, 王玉杰, 冯伟, 等. 两种气候年型下不同栽培模式对冬小麦根系时空分布及产量的影响[J]. 中国农业科学, 2012, 45(14): 2826−2837 doi: 10.3864/j.issn.0578-1752.2012.14.005
WANG Y H, WANG Y J, FENG W, et al. Effects of different cultivation patterns on the spatial-temporal distribution characteristics of roots and grain yield of winter wheat in two climatic years[J]. Scientia Agricultura Sinica, 2012, 45(14): 2826−2837 doi: 10.3864/j.issn.0578-1752.2012.14.005
|
[31] |
柯媛媛, 陈翔, 倪芊芊, 等. 低温逆境胁迫下小麦ROS代谢及调控机制研究进展[J]. 大麦与谷类科学, 2021, 38(1): 1−6, 21 doi: 10.14069/j.cnki.32-1769/s.2021.01.001
KE Y Y, CHEN X, NI Q Q, et al. Research progress of the metabolism of reactive oxygen species and its regulation mechanisms in wheat under low temperature stress[J]. Barley and Cereal Sciences, 2021, 38(1): 1−6, 21 doi: 10.14069/j.cnki.32-1769/s.2021.01.001
|
[32] |
冯汉青, 赵玲, 庞海龙, 等. 低温胁迫下交替呼吸途径对小麦幼根生长及氧化压力的调节作用[J]. 西北师范大学学报(自然科学版), 2020, 56(4): 78−83 doi: 10.16783/j.cnki.nwnuz.2020.04.012
FENG H Q, ZHAO L, PANG H L, et al. The regulation of the growth and oxidative stress of roots of wheat (Triticum aestivum L.) seedlings by alternative respiratory pathway under low temperature stress[J]. Journal of Northwest Normal University (Natural Science), 2020, 56(4): 78−83 doi: 10.16783/j.cnki.nwnuz.2020.04.012
|
[33] |
王宁, 冯克云, 南宏宇, 等. 不同水分条件下有机无机肥配施对棉花根系特征及产量的影响[J]. 中国农业科学, 2022, 55(11): 2187−2201
WANG N, FENG K Y, NAN H Y, et al. Effects of combined application of organic fertilizer and chemical fertilizer on root characteristics and yield of cotton under different water conditions[J]. Scientia Agricultura Sinica, 2022, 55(11): 2187−2201
|
[34] |
王艳哲, 刘秀位, 孙宏勇, 等. 水氮调控对冬小麦根冠比和水分利用效率的影响研究[J]. 中国生态农业学报, 2013, 21(3): 282−289
WANG Y Z, LIU X W, SUN H Y, et al. Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2013, 21(3): 282−289
|
[35] |
崔纪超, 武小霞, 林怡, 等. 甘薯根际土壤微生物群落结构及多样性分析[J]. 西南农业学报, 2022, 35(9): 2086−2095
CUI J C, WU X X, LIN Y, et al. Community structure and diversity in rhizosphere soil of sweet potato[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(9): 2086−2095
|
[36] |
刘京伟, 李香真, 姚敏杰. 植物根际微生物群落构建的研究进展[J]. 微生物学报, 2021, 61(2): 231−248 doi: 10.13343/j.cnki.wsxb.20200154
LIU J W, LI X Z, YAO M J. Research progress on assembly of plant rhizosphere microbial community[J]. Acta Microbiologica Sinica, 2021, 61(2): 231−248 doi: 10.13343/j.cnki.wsxb.20200154
|
[37] |
邓玲玲. 增温和互花米草入侵对湿地土壤功能微生物以及HONO和NO气体排放的影响[D]. 上海: 华东师范大学, 2022
DENG L L. Effects of warming and Spartina alterniflora invasion on functional microorganisms and HONO and NO gas emission in wetland soils[D]. Shanghai: East China Normal University, 2022
|
[38] |
张慧, 马连杰, 杭晓宁, 等. 不同轮作模式下稻田土壤细菌和真菌多样性变化[J]. 江苏农业学报, 2018, 34(4): 804−810
ZHANG H, MA L J, HANG X N, et al. Changes of soil bacterial and fungal diversity in paddy soils under different rotation patterns[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 804−810
|
[39] |
车钊, 姜方莹, 张军, 等. 低氮胁迫下有机无机肥配施对小麦根际土壤氮矿化和微生物群落结构的影响[J]. 生态学杂志, 2023, 42(2): 305−312 doi: 10.13292/j.1000-4890.202301.022
CHE Z, JIANG F Y, ZHANG J, et al. Effects of combined application of organic and inorganic fertilizers on soil nitrogen mineralization and microbial community structure in rhizosphere of wheat under low nitrogen stress[J]. Chinese Journal of Ecology, 2023, 42(2): 305−312 doi: 10.13292/j.1000-4890.202301.022
|
[40] |
李思, 徐诗涛, 王德立, 等. 不同种植区白木香结香前后根际土壤真菌群落结构与理化因子相关性分析[J/OL]. 热带作物学报: 1–14 [2023-05-05]. http://kns.cnki.net/kcms/detail/46.1019.S.20230421.1821.006.html
LI S, XU S T, WANG D L, et al. Correlation analysis of rhizosphere soil fungal community structure and physicochemical in Aquilaria sinensis (Lour.) spreng. before and after Agarwood induction in different planting areas[J]. Chinese Journal of Tropical Crops: 1–14 [2023-05-05]. http://kns.cnki.net/kcms/detail/46.1019.S.20230421.1821.006.html
|
[41] |
张江伟, 薛佳欣, 李慧, 等. 小麦根际微生物群落结构和多样性对水分胁迫的响应[J]. 灌溉排水学报, 2022, 41(10): 41−50 doi: 10.13522/j.cnki.ggps.2022116
ZHANG J W, XUE J X, LI H, et al. Effect of water stress on microbial community and diversity in the rhizosphere of winter wheat[J]. Journal of Irrigation and Drainage, 2022, 41(10): 41−50 doi: 10.13522/j.cnki.ggps.2022116
|
[42] |
刘会会, 喻庆国, 王行, 等. 碧塔海湿地不同水分梯度下土壤真菌群落结构及功能类群研究[J]. 微生物学报, 2022, 62(8): 3007−3023 doi: 10.13343/j.cnki.wsxb.20210723
LIU H H, YU Q G, WANG H, et al. Soil fungal community structure and functional groups under different moisture gradients in Bitahai Wetland, Southwest China[J]. Acta Microbiologica Sinica, 2022, 62(8): 3007−3023 doi: 10.13343/j.cnki.wsxb.20210723
|
[43] |
郭璞, 邢鹏杰, 宋佳, 等. 蒙古栎根系与根区土壤真菌群落组成及与环境因子的关系[J]. 菌物研究, 2022, 20(3): 173−182
GUO P, XING P J, SONG J, et al. Fungal community in roots and the root zone of Quercus mongolica and the correlations with the environmental factors[J]. Journal of Fungal Research, 2022, 20(3): 173−182
|
[44] |
刘泽. 中国被孢霉属及近缘属的分类与分子系统发育研究[D]. 北京: 北京林业大学, 2020
LIU Z. Studies on the taxonomy and molecular phylogeny of Mortierella and allied genera in China[D]. Beijing: Beijing Forestry University, 2020
|
[45] |
ZHANG K L, BONITO G, HSU C M, et al. Mortierella elongata increases plant biomass among non-leguminous crop species[J]. Agronomy, 2020, 10(5): 754 doi: 10.3390/agronomy10050754
|
[46] |
夏体泽, 李露双, 杨汉奇. 屏边空竹分布区海拔上下边界的土壤真菌群落特征[J]. 植物生态学报, 2022, 46(7): 823−833
XIA T Z, LI L S, YANG H Q. Soil fungal community characteristics at the upper and lower altitudinal range limits of Cephalostachyum pingbianense[J]. Chinese Journal of Plant Ecology, 2022, 46(7): 823−833
|
[47] |
吴宇, 蔡洪梅, 许波, 等. 不同季秸秆全量还田对小麦根系分泌物的影响[J]. 中国生态农业学报(中英文), 2022, 30(12): 1938−1948
WU Y, CAI H M, XU B, et al. Effects of all straw return on root secretions of wheat in different seasons[J]. Chinese Journal of Eco-Agriculture, 2022, 30(12): 1938−1948
|
[48] |
李春喜, 姜丽娜, 林琳, 等. 低温对小麦幼苗根际土壤酶活性的影响[J]. 华北农学报, 2012, 27(6): 92−96 doi: 10.3969/j.issn.1000-7091.2012.06.019
LI C X, JIANG L N, LIN L, et al. Effect of low temperature on enzyme activities in rhizosphere soil of wheat seedlings[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(6): 92−96 doi: 10.3969/j.issn.1000-7091.2012.06.019
|
[49] |
SUN L, GAO J S, HUANG T, et al. Parental material and cultivation determine soil bacterial community structure and fertility[J]. FEMS Microbiology Ecology, 2014, 91(1): 1−10
|
[50] |
LENNON J T, JONES S E. Microbial seed banks: the ecological and evolutionary implications of dormancy[J]. Nature Reviews Microbiology, 2011, 9(2): 119−130 doi: 10.1038/nrmicro2504
|
[51] |
伍文宪, 黄小琴, 张蕾, 等. 十字花科作物根肿病对根际土壤微生物群落的影响[J]. 生态学报, 2020, 40(5): 1532−1541
WU W X, HUANG X Q, ZHANG L, et al. Crucifer clubroot disease changes the microbial community structure of rhizosphere soil[J]. Acta Ecologica Sinica, 2020, 40(5): 1532−1541
|
[52] |
BAIS H P, PARK S W, WEIR T L, et al. How plants communicate using the underground information superhighway[J]. Trends in Plant Science, 2004, 9(1): 26−32 doi: 10.1016/j.tplants.2003.11.008
|
[53] |
WANG G B, ZHANG Q Q, DU W C, et al. Microbial communities in the rhizosphere of different willow genotypes affect phytoremediation potential in Cd contaminated soil[J]. Science of the Total Environment, 2021, 769: 145224 doi: 10.1016/j.scitotenv.2021.145224
|
[54] |
毛梦雪, 朱峰. 根系分泌物介导植物抗逆性研究进展与展望[J]. 中国生态农业学报(中英文), 2021, 29(10): 1649−1657
MAO M X, ZHU F. Progress and perspective in research on plant resistance mediated by root exudates[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1649−1657
|
[55] |
姜丽娜, 张黛静, 林琳, 等. 低温对小麦幼苗干物质积累及根系分泌物的影响[J]. 麦类作物学报, 2012, 32(6): 1171−1176 doi: 10.7606/j.issn.1009-1041.2012.06.029
JIANG L N, ZHANG D J, LIN L, et al. Effects of low temperature on dry matter accumulation and root exudates contents of wheat seedling[J]. Journal of Triticeae Crops, 2012, 32(6): 1171−1176 doi: 10.7606/j.issn.1009-1041.2012.06.029
|
[56] |
李杨, 仲波, 陈冬明, 等. 不同浓度和多样性的根系分泌物对土壤团聚体稳定性的影响[J]. 应用与环境生物学报, 2019, 25(5): 1061−1067
LI Y, ZHONG B, CHEN D M, et al. Effects of root exudates of different carbon concentrations and sources on soil aggregate stability[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(5): 1061−1067
|
[57] |
李勇, 黄小芳, 丁万隆. 根系分泌物及其对植物根际土壤微生态环境的影响[J]. 华北农学报, 2008, 23(S1): 182−186 doi: 10.7668/hbnxb.2008.S1.044
LI Y, HUANG X F, DING W L. Root exudates and their effects on plant rhizosphere soil micro-ecology environment[J]. Acta Agriculturae Boreali-Sinica, 2008, 23(S1): 182−186 doi: 10.7668/hbnxb.2008.S1.044
|
[1] | LIU Hao, MA Zhonghua, LIU Weifan, WAN Menghu, MA Fenglan, WU Na, LIU Jili. Effects of different tillage practices with organic fertilizers on rhizosphere soil microbial communities of maize in saline-alkali soils[J]. Chinese Journal of Eco-Agriculture, 2025, 33(1): 25-39. DOI: 10.12357/cjea.20240308 |
[2] | SONG Yana, CHEN Zaijie, LIN Yan, HU Taijiao, WU Mingji, WANG Feng. Effect of insect-resistant transgenic rice and its hybrid combination rice on diversity and composition of soil microbial community[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 15-29. DOI: 10.12357/cjea.20230267 |
[3] | ZHANG Yuming, XING Li, LI Xiaoxin, QIN Shuping, LI Yannan, HAN Jian, HU Chunsheng. Research progress on the regulatory mechanisms of crop roots on N2O production and emissions in rhizosphere soil[J]. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1322-1329. DOI: 10.12357/cjea.20230367 |
[4] | WANG Genquan, HAO Xiaofen, GUO Erhu, YANG Huiqing, ZHANG Aiying, CHENG Qiaolin, QIN Yuzhong, WANG Jun. Distribution characteristics of the soil fungi community in the rhizosphere of foxtail millet under different planting patterns[J]. Chinese Journal of Eco-Agriculture, 2023, 31(5): 677-689. DOI: 10.12357/cjea.20220577 |
[5] | WANG Xiangsheng, LIAN Yanhao, GUO Hui, REN Yongzhe, XIN Zeyu, LIN Tongbao, WANG Zhiqiang. Effects of wheat/safflower intercropping on rhizosphere microbial community function and structure[J]. Chinese Journal of Eco-Agriculture, 2023, 31(4): 516-529. DOI: 10.12357/cjea.20220354 |
[6] | CHEN Xingqiong, LI Jinna, GUO Yifan, CHEN Lin, XU Jie, SUI Peng, LIU Jin, GAO Wangsheng, CHEN Yuanquan. Effects of multiple cropping systems based on spring maize on soil fungal communities in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(10): 1588-1600. DOI: 10.12357/cjea.20220030 |
[7] | QIN Lijin, YU Tiantian, WANG Jiaming, GAO Yinbiao, WANG Shouzheng, LI Zheng, YUN Xingfu. Soil fungal ITS diversity in cucumber-celery intercropping[J]. Chinese Journal of Eco-Agriculture, 2019, 27(4): 529-536. DOI: 10.13930/j.cnki.cjea.180484 |
[8] | CHEN Yifeng, GAO Yanan, ZHU Jie, ZHANG Wei. Analysis of the fungal community in continuous cropping cotton field of Xinjiang using 18S rDNA-PCR-DGGE[J]. Chinese Journal of Eco-Agriculture, 2015, 23(1): 80-86. DOI: 10.13930/j.cnki.cjea.141099 |
[9] | LV Xin, CHEN Li-Hua, LIU Lan-Ying, LI Wei, LI Yue-Ren. Dynamic changes in fungal community structure in rhizosphere soils of transgenic rice with antifungal genes[J]. Chinese Journal of Eco-Agriculture, 2012, 20(10): 1340-1346. DOI: 10.3724/SP.J.1011.2012.01340 |
[10] | XU Hua, RUAN Wei-Bin, GAO Yu-Bao, SONG Xiao-Yan, WEI Yu-Kun. Effect of root-knot nematode inoculation on rhizospheric soil pH and microbial community of cucumber (Cucumis sativus L. ) plant[J]. Chinese Journal of Eco-Agriculture, 2010, 18(5): 1041-1045. DOI: 10.3724/SP.J.1011.2010.01041 |