MENG Y J, MA X Y, SONG C, SUN H C, LIU L T, ZHANG K, ZHANG Y J, BAI Z Y, LI C D. Effects of water and nitrogen regulation on physiological characteristics and yield of cotton[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1379−1391. DOI: 10.12357/cjea.20230002
Citation: MENG Y J, MA X Y, SONG C, SUN H C, LIU L T, ZHANG K, ZHANG Y J, BAI Z Y, LI C D. Effects of water and nitrogen regulation on physiological characteristics and yield of cotton[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1379−1391. DOI: 10.12357/cjea.20230002

Effects of water and nitrogen regulation on physiological characteristics and yield of cotton

Funds: This study was supported by the Key R&D Program of Hebei Province (20326409D), the Natural Science Foundation of Hebei Province (C2022204036), the Independent Research Project of the State Key Laboratory of North China Crop Improvement and Regulation (NCCIR2020ZZ-18), and Hebei Modern Cotton Industry Technology System (HBCT2023070207).
More Information
  • Corresponding author:

    BAI Zhiying, E-mail: zhiyingbai@126.com

    LI Cundong, E-mail: nxylcd@hebau.edu.cn

  • Received Date: January 01, 2023
  • Accepted Date: March 26, 2023
  • Available Online: March 28, 2023
  • Water and nitrogen are the main factors affecting the growth, development, and yield of cotton. In this study, “Nongda Cotton No. 36” was selected to investigate the effects of water and nitrogen on morphology, physiological characteristics, and yield of cotton. Two water conditions were set: drought stress (W1, relative water content was 45%±5%) and normal water supply (W2, relative water content was 70%±5%), and three nitrogen levels: no nitrogen (N0), low nitrogen [N1, 69 mg(N)∙kg1], and normal nitrogen fertilizers [N2, 138 mg(N)∙kg1]. Changes in aboveground and root morphology, photosynthetic characteristics, antioxidant enzyme activity, nitrogen metabolism enzyme activity, and cotton yield were analyzed under different water and nitrogen fertilizer conditions. The results showed that compared with the W2 treatments, the W1 treatments significantly inhibited cotton growth and decreased plant height, stem diameter, leaf area, total root length, total root surface area, and average root diameter (P<0.05). The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were significantly enhanced, the relative chlorophyll content (SPAD) and maximum photochemical efficiency (Fv/Fm) were decreased, and the photosynthetic capacity was weakened, resulting in a decrease in cotton yield (P<0.05). Compared with the N2 treatments, the N0 and N1 treatments significantly reduced plant height, stem diameter, leaf area, total root length, total root surface area, and average root diameter of cotton (P<0.05). The activities of SOD, POD, CAT, glutamine synthetase (GS), nitrate reductase (NR), SPAD, and Fv/Fm in cotton were significantly decreased under the N0 and N1 treatments, and the photosynthetic capacity of cotton was weakened. Thus, the cotton yield decreased (P<0.05). Under drought stress, conventional nitrogen application promoted the growth of the aboveground and underground parts of cotton; significantly increased the SPAD, net photosynthetic rate, and Fv/Fm in main-stem leaves (P<0.05); and enhanced the activities of antioxidant enzymes (SOD, POD, and CAT) and nitrogen metabolism enzymes (GS and NR) (P<0.05), which alleviated the damage caused by drought stress and increased the cotton yield. Under low-nitrogen conditions, the normal water supply treatment promoted the growth of cotton; enhanced photosynthesis, nitrogen metabolism enzyme activities, and yield (P<0.05); and alleviated the adverse effects of low-nitrogen stress on cotton. Therefore, cotton yield under drought stress can be increased by increasing nitrogen fertilizer, and cotton yield under low-nitrogen stress can be increased by appropriately increasing irrigation water. The results provide a theoretical basis for clarifying rational water and fertilizer management of cotton under nitrogen and water stresses.
  • [1]
    郭艳阳, 刘佳, 朱亚利, 等. 玉米叶片光合和抗氧化酶活性对干旱胁迫的响应[J]. 植物生理学报, 2018, 54(12): 1839−1846 doi: 10.13592/j.cnki.ppj.2018.0437

    GUO Y Y, LIU J, ZHU Y L, et al. Responses of photosynthetic and antioxidant enzyme activities in maize leaves to drought stress[J]. Plant Physiology Journal, 2018, 54(12): 1839−1846 doi: 10.13592/j.cnki.ppj.2018.0437
    [2]
    ŠESTÁK Z. JONES R L, BOHNERT H J, et al. Annual review of plant physiology and plant molecular, biology. vol. 50, 1999[J]. Biologia Plantarum, 2001, 44(3): 396 doi: 10.1023/A:1012473011461
    [3]
    于文颖, 纪瑞鹏, 冯锐, 等. 干旱胁迫对玉米叶片光响应及叶绿素荧光特性的影响[J]. 干旱区资源与环境, 2016, 30(10): 82−87

    YU W Y, JI R P, FENG R, et al. Effect of drought stress on light response and chlorophyll fluorescence of maize leaf[J]. Journal of Arid Land Resources and Environment, 2016, 30(10): 82−87
    [4]
    DUBEY R, PANDEY B K, SAWANT S V, et al. Drought stress inhibits stomatal development to improve water use efficiency in cotton[J]. Acta Physiologiae Plantarum, 2023, 45(2): 30 doi: 10.1007/s11738-022-03511-6
    [5]
    王允. 不同生育期水分亏缺对盆栽棉花生长发育的影响[D]. 武汉: 华中农业大学, 2016

    WANG Y. Effects of water deficit at different growing stage on growth and development characteristics of potted cotton[D]. Wuhan: Huazhong Agricultural University, 2016
    [6]
    CRALLE H, EL-HALAWANY S, COTHREN J T, et al. Drought-induced changes in shoot and root growth of young cotton plants[J]. Journal of Cotton Science, 1999, 3(4): 183−187
    [7]
    WANG H M, CHEN Y L, HU W, et al. Short-term soil-waterlogging contributes to cotton cross tolerance to chronic elevated temperature by regulating ROS metabolism in the subtending leaf[J]. Plant Physiology and Biochemistry, 2019, 139: 333−341 doi: 10.1016/j.plaphy.2019.03.038
    [8]
    ZHAO W Q, DONG H R, ZHOU Z G, et al. Potassium (K) application alleviates the negative effect of drought on cotton fiber strength by sustaining higher sucrose content and carbohydrates conversion rate[J]. Plant Physiology and Biochemistry, 2020, 157: 105−113 doi: 10.1016/j.plaphy.2020.10.014
    [9]
    ZHU L X, LIU L T, SUN H C, et al. The responses of lateral roots and root hairs to nitrogen stress in cotton based on daily root measurements[J]. Journal of Agronomy and Crop Science, 2022, 208(1): 89−105 doi: 10.1111/jac.12525
    [10]
    刘连涛, 李存东, 孙红春, 等. 氮素营养水平对棉花不同部位叶片衰老的生理效应[J]. 植物营养与肥料学报, 2007, 13(5): 910−914 doi: 10.3321/j.issn:1008-505x.2007.05.023

    LIU L T, LI C D, SUN H C, et al. Physiological effects of nitrogen nutrition on the senescence of cotton leaves at different positions[J]. Plant Nutrition and Fertilizer Science, 2007, 13(5): 910−914 doi: 10.3321/j.issn:1008-505x.2007.05.023
    [11]
    段文静, 马彤彤, 张永江, 等. 氮肥中不同硝化抑制剂DCD添加比例对棉花生长发育及产量的影响[J]. 植物营养与肥料学报, 2020, 26(11): 2095−2106 doi: 10.11674/zwyf.20092

    DUAN W J, MA T T, ZHANG Y J, et al. Effects of different nitrification inhibitor DCD addition ratios in nitrogen fertilizer on cotton growth and yield[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(11): 2095−2106 doi: 10.11674/zwyf.20092
    [12]
    张绪成, 上官周平. 施氮量对小麦叶片硝酸还原酶活性、一氧化氮含量和气体交换的影响[J]. 应用生态学报, 2007, 18(7): 1447−1452 doi: 10.3321/j.issn:1001-9332.2007.07.007

    ZHANG X C, SHANGGUAN Z P. Effects of nitrogen application rate on nitrate reductase activity, nitric oxide content and gas exchange in winter wheat leaves[J]. Chinese Journal of Applied Ecology, 2007, 18(7): 1447−1452 doi: 10.3321/j.issn:1001-9332.2007.07.007
    [13]
    王月福, 于振文, 李尚霞, 等. 氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J]. 作物学报, 2002, 28(6): 743−748 doi: 10.3321/j.issn:0496-3490.2002.06.005

    WANG Y F, YU Z W, LI S X, et al. Effect of nitrogen nutrition on the change of key enzyme activity during the nitrogen metabolism and kernel protein content in winter wheat[J]. Acta Agronomica Sinica, 2002, 28(6): 743−748 doi: 10.3321/j.issn:0496-3490.2002.06.005
    [14]
    李文娆, 李永竞, 冯士珍. 不同施氮量和分施比例对棉花幼苗生长和水分利用效率的影响及其根源ABA调控效应[J]. 生态学报, 2017, 37(20): 6712−6723

    LI W R, LI Y J, FENG S Z. Regulation of root-sourced ABA to growth and water use efficiency of cotton seedlings and their response to different nitrogen levels and distribution ratios[J]. Acta Ecologica Sinica, 2017, 37(20): 6712−6723
    [15]
    刘海光. 亏缺灌溉下施氮量对棉花GhNRT基因表达和氮素利用效率的影响[D]. 济南: 山东师范大学, 2021

    LIU H G. Effects of nitrogen rate on GhNRT genes expression and nitrogen use efficiency of cotton under deficit irrigation[D]. Jinan: Shandong Normal University, 2021
    [16]
    杜红霞, 冯浩, 吴普特, 等. 水、氮调控对夏玉米根系特性的影响[J]. 干旱地区农业研究, 2013, 31(1): 89−94, 100 doi: 10.3969/j.issn.1000-7601.2013.01.017

    DU H X, FENG H, WU P T, et al. Influence of water and N fertilizer regulation on root growth characteristics of summer maize[J]. Agricultural Research in the Arid Areas, 2013, 31(1): 89−94, 100 doi: 10.3969/j.issn.1000-7601.2013.01.017
    [17]
    何佩云, 张余, 周良, 等. 干旱胁迫及氮肥调控对苦荞植株形态、生理特性及产量的影响[J]. 应用与环境生物学报, 2022, 28(1): 128−134

    HE P Y, ZHANG Y, ZHOU L, et al. Effects of drought stress and nitrogen fertilizer regulation on morphology, physiological characteristics, and yield of Fagopyrum tataricum[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(1): 128−134
    [18]
    GAO M, SNIDER J L, BAI H, et al. Drought effects on cotton (Gossypium hirsutum L.) fibre quality and fibre sucrose metabolism during the flowering and boll-formation period[J]. Journal of Agronomy and Crop Science, 2020, 206(3): 309−321 doi: 10.1111/jac.12389
    [19]
    ZHANG N, ZHAO B, ZHANG H J, et al. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.)[J]. Journal of Pineal Research, 2013, 54(1): 15−23 doi: 10.1111/j.1600-079X.2012.01015.x
    [20]
    陈建勋, 王晓峰. 植物生理学实验指导[M]. 广州: 华南理工大学出版社, 2002

    CHEN J X, WANG X F. Experimental Instruction of Plant Physiology[M]. Guangzhou: South China University of Technology Press, 2002
    [21]
    ZHANG C F, PENG S B, PENG X X, et al. Response of glutamine synthetase isoforms to nitrogen sources in rice (Oryza sativa L.) roots[J]. Plant Science, 1997, 125(2): 163−170 doi: 10.1016/S0168-9452(97)00075-7
    [22]
    刘洁, 王省芬, 张桂寅, 等. 棉花叶片硝酸还原酶活性的测定方法[J]. 河北农业大学学报, 2010, 33(4): 1−4 doi: 10.3969/j.issn.1000-1573.2010.04.001

    LIU J, WANG X F, ZHANG G Y, et al. Determination method of nitrate reductase activity in cotton leaves[J]. Journal of Agricultural University of Hebei, 2010, 33(4): 1−4 doi: 10.3969/j.issn.1000-1573.2010.04.001
    [23]
    ZHANG S H, XU X F, SUN Y M, et al. Influence of drought hardening on the resistance physiology of potato seedlings under drought stress[J]. Journal of Integrative Agriculture, 2018, 17(2): 336−347 doi: 10.1016/S2095-3119(17)61758-1
    [24]
    刘朝霞. 土壤干旱胁迫对番茄根系生长、气孔特性及保护酶活性的影响[D]. 南京: 南京信息工程大学, 2016

    LIU Z X. Effects of soil drought stress on root growth, stomatal characteristics and antioxidant enzyme of tomato crops[D]. Nanjing: Nanjing University of Information Science & Technology, 2016
    [25]
    MI G, CHEN F, YUAN L, et al. Ideotype root system architecture for maize to achieve high yield and resource use efficiency in intensive cropping systems[J]. Advances in Agronomy, 2016, 139: 73−97
    [26]
    LI C Y, KONG X Q, LUO Z, et al. Exogenous application of acetic acid improves the survival rate of cotton by increasing abscisic acid and jasmonic acid contents under drought stress[J]. Acta Physiologiae Plantarum, 2021, 43(2): 1−10
    [27]
    李鹏程, 董合林, 刘爱忠, 等. 施氮量对棉花功能叶片生理特性、氮素利用效率及产量的影响[J]. 植物营养与肥料学报, 2015, 21(1): 81−91 doi: 10.11674/zwyf.2015.0109

    LI P C, DONG H L, LIU A Z, et al. Effects of nitrogen application rates on physiological characteristics of functional leaves, nitrogen use efficiency and yield of cotton[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 81−91 doi: 10.11674/zwyf.2015.0109
    [28]
    丁红, 成波, 张冠初, 等. 施用氮肥对干旱胁迫下花生生理特性的影响[J]. 花生学报, 2021, 50(2): 64−68, 72 doi: 10.14001/j.issn.1002-4093.2021.02.011

    DING H, CHENG B, ZHANG G C, et al. Effects of nitrogen fertilizer application on physiological characteristics of peanut leaves under drought stress[J]. Journal of Peanut Science, 2021, 50(2): 64−68, 72 doi: 10.14001/j.issn.1002-4093.2021.02.011
    [29]
    LI J P, LIU J, ZHU T T, et al. The role of melatonin in salt stress responses[J]. International Journal of Molecular Sciences, 2019, 20(7): 1735 doi: 10.3390/ijms20071735
    [30]
    ZHOU Z G, OOSTERHUIS D M. Physiological mechanism of nitrogen mediating cotton (Gossypium hirsutum L.) seedlings growth under water-stress conditions[J]. American Journal of Plant Sciences, 2012, 3(6): 721−730 doi: 10.4236/ajps.2012.36087
    [31]
    ZHANG L X, LI S X, ZHANG H, et al. Nitrogen rates and water stress effects on production, lipid peroxidation and antioxidative enzyme activities in two maize (Zea mays L.) genotypes[J]. Journal of Agronomy and Crop Science, 2007, 193(6): 387−397 doi: 10.1111/j.1439-037X.2007.00276.x
    [32]
    李鹏程. 棉花氮经济利用及其高效机理研究[D]. 北京: 中国农业科学院, 2015

    LI P C. Study on nitrogen economic use and its high-efficiency mechanism in cotton (Gossypium hirsutum L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015
    [33]
    孙永健, 孙园园, 李旭毅, 等. 水氮互作下水稻氮代谢关键酶活性与氮素利用的关系[J]. 作物学报, 2009, 35(11): 2055−2063

    SUN Y J, SUN Y Y, LI X Y, et al. Relationship of activities of key enzymes involved in nitrogen metabolism with nitrogen utilization in rice under water-nitrogen interaction[J]. Acta Agronomica Sinica, 2009, 35(11): 2055−2063
    [34]
    谈建鑫. 水氮互作对复播油葵生长发育和水氮利用效率的影响[D]. 石河子: 石河子大学, 2015

    TAN J X. Effects of water and nitrogen fertilization on growth and development, water and nitrogen use efficiency of drip no-till cropping oil sunflower[D]. Shihezi: Shihezi University, 2015
    [35]
    HU W, ZHANG J P, YAN K, et al. Beneficial effects of abscisic acid and melatonin in overcoming drought stress in cotton (Gossypium hirsutum L.)[J]. Physiologia Plantarum, 2021, 173(4): 2041−2054 doi: 10.1111/ppl.13550
    [36]
    DONG H Z, LI W J, ENEJI A E, et al. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field[J]. Field Crops Research, 2012, 126: 137−144 doi: 10.1016/j.fcr.2011.10.005
    [37]
    宋兴虎, Tufail Ahmed Wagan, Biangkham Souliyanonh, 等. 氮肥用量及其后效对棉花产量和生物质累积动态的影响[J]. 棉花学报, 2018, 30(2): 145−154 doi: 10.11963/1002-7807.sxhygz.20180315

    SONG X H, WAGAN T A, SOULIYANONH B, et al. Nitrogen fertilizer and its residual effect on cotton yield and biomass accumulation[J]. Cotton Science, 2018, 30(2): 145−154 doi: 10.11963/1002-7807.sxhygz.20180315
    [38]
    STAMATIADIS S, TSADILAS C, SAMARAS V, et al. Nitrogen uptake and N-use efficiency of mediterranean cotton under varied deficit irrigation and N fertilization[J]. European Journal of Agronomy, 2016, 73: 144−151 doi: 10.1016/j.eja.2015.11.013
    [39]
    王艳哲, 刘秀位, 孙宏勇, 等. 水氮调控对冬小麦根冠比和水分利用效率的影响研究[J]. 中国生态农业学报, 2013, 21(3): 282−289

    WANG Y Z, LIU X W, SUN H Y, et al. Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2013, 21(3): 282−289
  • Cited by

    Periodical cited type(5)

    1. 徐新龙,张巨松,代健敏,席亚雯,李雪瑞,王莲,李蔚和,孙华键. 氮肥基追比和种植模式对棉花氮素代谢和叶片衰老以及产量的影响. 中国生态农业学报(中英文). 2025(04): 709-722 . 本站查看
    2. 张紫淇,杨丽莉,何新林,李小龙. 滴灌水盐氮调控对棉田水肥盐运移及棉花产量的影响. 干旱区研究. 2024(05): 876-893 .
    3. 汪思佳,王春霞,张景瑞,杨跃发. 减氮条件下基于AquaCrop模型的北疆膜下滴灌棉花水氮制度优化. 水土保持学报. 2024(03): 314-324+334 .
    4. 孙绘健,罗静,杜珊珊,姚青青,王东力,何忠盛. 花铃期不同干旱水平对南疆棉花品种生育进程、产量及纤维品质的影响. 中国棉花. 2024(12): 20-27 .
    5. 肖键,洪明,于秋月,陆元春,张新乐. 灌水定额和周期对北疆制种棉花生长、产量及种子质量的影响. 新疆农业大学学报. 2023(06): 446-452 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (512) PDF downloads (95) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return