SUN T M, YANG H, CAO J S. Rainfall redistribution of different vegetations in Taihang Mountain, China[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1471−1481. DOI: 10.12357/cjea.20220980
Citation: SUN T M, YANG H, CAO J S. Rainfall redistribution of different vegetations in Taihang Mountain, China[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1471−1481. DOI: 10.12357/cjea.20220980

Rainfall redistribution of different vegetations in Taihang Mountain, China

Funds: This study was supported by the Natural Science Foundation of Hebei Province (D2021503001), the Special Investigation Project for Scientific and Technological Basic Resources of China (2022FY100104), the Innovation Capability Enhancement Plan Project of Hebei Province (20536001D), and the Key Research and Development Plan Projects of Hebei Province (20324201D).
More Information
  • Corresponding author:

    CAO Jiansheng, E-mail: caojs@sjziam.ac.cn

  • Received Date: December 19, 2022
  • Accepted Date: April 20, 2023
  • Available Online: June 05, 2023
  • With the implementation of ecological restoration projects, vegetation cover in the Taihang Mountains has increased, but the current situation of water shortages has still not been effectively improved. The impact of increased vegetation on hydrological processes is unknown. As the first action layer of rainfall reaches the terrestrial ecosystem, the vegetation canopy divides rainfall into throughfall, stemflow, and canopy interception. This changes the spatial distribution of the rainfall. Therefore, studying rainfall redistribution processes is important for exploring the relationship between vegetation and water. This study selected eight typical forests, natural Vitex negundo, and artificial froests of Robinia pseudoacacia, Pinus bungeana, Pistacia chinensis, Eucommia ulmoides, Cerasus pseudocerasus, Fraxinus chinensis, and Garcinia multiflora. Field monitoring and indoor experiments were conducted to explore the rainfall redistribution characteristics of different forest stands of the Taihang Mountains. The results of the study were as follows: 1) During the study year (2022), the rainfall amount was 480.0 mm, rainfall in the rainy season was 283.25 mm, the number of rainfall events in the rainy season was 20, the average amount per rainfall was 14.16 mm, and the variation range of rainfall intensity was 0.05−0.72 mm∙h−1, mainly consisting of rainfall events less than 5 mm∙h−1. The hypo-rainfall in the rainy season of 2022 fluctuated greatly, and the uneven distribution of rainfall time was mainly concentrated in July and August. 2) The proportion of total throughfall to total rainfall was greater than 60%. The lowest threshold of rainfall amount among eight vegetations for producing throughfall was 0.77 mm; E. ulmoides forest has the largest proportion of total stemflow in total rainfall, with a value of 13.94%, followed by G. multiflora forest (6.78%), and the proportion of total stemflow in the remaining species was less than 5%. The lowest threshold of rainfall amount for eight vegetations for producing stemflow was 3.35 mm; the proportion of total canopy interception of total rainfall was the largest in F. chinensis forest, accounting for 32.97%, and the smallest in P. bungeana forest, accounting for 7.53%. The overall performance was as follows: throughfall>canopy interception>stem flow. 3) Throughfall, stemflow, and canopy interception increased significantly with rainfall. Throughfall rate, stemflow rate, and funneling ratio increased rapidly and then leveled off with increasing rainfall amount. The canopy interception rate decreased rapidly and then leveled off with increasing rainfall. Rainfall redistribution characteristics were greatly affected by rainfall amount and leaf water absorption capacity. It was found that the canopy interception rate of P. bungeana, R. pseudoacacia, E. ulmoides, and G. multiflora forests was significantly smaller than that of natural V. negundo, which was important for reducing rainfall canopy interception evaporation and increasing effective rainfall. These four forests could therefore be considered for planting in water-shortage areas. Thus, reasonable selection of stand type and adjustment of stand proportions can reduce canopy interception and improve the efficiency of precipitation utilization. The results of this study provide a theoretical basis and data support for the selection of tree species in reforestation projects in the Taihang Mountains.
  • [1]
    董玲玲, 康峰峰, 韩海荣, 等. 辽河源3种林分降雨再分配特征及其影响因素[J]. 水土保持学报, 2018, 32(4): 145−150 doi: 10.13870/j.cnki.stbcxb.2018.04.023

    DONG L L, KANG F F, HAN H R, et al. Traits and influencing factors of rainfall redistribution in three types of forest in Liaoheyuan[J]. Journal of Soil and Water Conservation, 2018, 32(4): 145−150 doi: 10.13870/j.cnki.stbcxb.2018.04.023
    [2]
    金伟, 郑子成, 张锡洲, 等. 川中丘陵区高粱植株对降雨再分配的影响[J]. 水土保持学报, 2013, 27(2): 57−61, 66 doi: 10.13870/j.cnki.stbcxb.2013.02.008

    JIN W, ZHENG Z C, ZHANG X Z, et al. The effect of Sorghum plants on rainfall redistribution processes in hilly area of central Sichuan[J]. Journal of Soil and Water Conservation, 2013, 27(2): 57−61, 66 doi: 10.13870/j.cnki.stbcxb.2013.02.008
    [3]
    梁文俊, 丁国栋, 臧荫桐, 等. 华北土石山区油松林对降雨再分配的影响[J]. 水土保持研究, 2012, 19(4): 77−80

    LIANG W J, DING G D, ZANG Y T, et al. Study on effect of Pinustabulaeformis plantation on rainfall redistribution processes in the mountainous area of North China[J]. Research of Soil and Water Conservation, 2012, 19(4): 77−80
    [4]
    李佳, 饶良懿, 鲁绍伟, 等. 北京密云油松与刺槐林降雨再分配过程研究[J]. 广东农业科学, 2012, 39(12): 169−174 doi: 10.3969/j.issn.1004-874X.2012.12.053

    LI J, RAO L Y, LU S W, et al. Pine and locust forest on rainfall redistribution in Miyun of Beijing[J]. Guangdong Agricultural Sciences, 2012, 39(12): 169−174 doi: 10.3969/j.issn.1004-874X.2012.12.053
    [5]
    刘兰, 刘怡, 孙佳瑞, 等. 成都市绿地常见乔木降雨再分配及其穿透雨的空间异质性[J]. 中国城市林业, 2022, 20(3): 29−35, 68 doi: 10.12169/zgcsly.2021.12.12.0001

    LIU L, LIU Y, SUN J R, et al. Rainfall redistribution of common tree species in Chengdu City and its throughfall’s spatial heterogeneity[J]. Journal of Chinese Urban Forestry, 2022, 20(3): 29−35, 68 doi: 10.12169/zgcsly.2021.12.12.0001
    [6]
    FATHIZADEH O, HOSSEINI S M, ZIMMERMANN A, et al. Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands[J]. Science of the Total Environment, 2017, 601/602: 1824−1837 doi: 10.1016/j.scitotenv.2017.05.233
    [7]
    ZHANG Y F, WANG X P, HU R, et al. Rainfall partitioning into throughfall, stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem, northwestern China[J]. Journal of Hydrology, 2015, 527: 1084−1095 doi: 10.1016/j.jhydrol.2015.05.060
    [8]
    DAVID T S, GASH J H C, VALENTE F, et al. Rainfall interception by an isolated evergreen oak tree in a Mediterranean savannah[J]. Hydrological Processes, 2006, 20(13): 2713−2726 doi: 10.1002/hyp.6062
    [9]
    LEVIA Jr D F, FROST E E. Variability of throughfall volume and solute inputs in wooded ecosystems[J]. Progress in Physical Geography: Earth and Environment, 2006, 30(5): 605−632 doi: 10.1177/0309133306071145
    [10]
    杨志鹏, 李小雁, 伊万娟. 荒漠灌木树干茎流及其生态水文效应研究进展[J]. 中国沙漠, 2010, 30(2): 303−311

    YANG Z P, LI X Y, YI W J. Review on stemflow of desert shrubs-research methods and eco-hydrological effects[J]. Journal of Desert Research, 2010, 30(2): 303−311
    [11]
    YAN T, WANG Z H, LIAO C G, et al. Effects of the morphological characteristics of plants on rainfall interception and kinetic energy[J]. Journal of Hydrology, 2021, 592: 125807 doi: 10.1016/j.jhydrol.2020.125807
    [12]
    王伟杰, 王秋月, 易军, 等. 三峡山地不同林型冠层截留特征及再分配过程研究[J]. 华中师范大学学报(自然科学版), 2022, 56(3): 541−550 doi: 10.19603/j.cnki.1000-1190.2022.03.022

    WANG W J, WANG Q Y, YI J, et al. Canopy interception and redistribution process of different types of forest in the hillslope of the Three Gorges Area[J]. Journal of Central China Normal University (Natural Sciences), 2022, 56(3): 541−550 doi: 10.19603/j.cnki.1000-1190.2022.03.022
    [13]
    赵宏亮. 贺兰山蒙古扁桃灌丛降雨再分配及人工集雨效果研究[D]. 银川: 宁夏大学, 2022

    ZHAO H L. Study on rainfall redistribution and artificial rainfall collection of Prunus mongolica shrub in Helan Mountain[D]. Yinchuan: Ningxia University, 2022
    [14]
    汪水前. 南方水土流失区马尾松对降雨再分配的影响[J]. 中国水土保持科学(中英文), 2022, 20(2): 99−105

    WANG S Q. Effects of Pinus massoniana in soil erosion area in South China on rainfall redistribution[J]. Science of Soil and Water Conservation, 2022, 20(2): 99−105
    [15]
    刘洪升. 明清滥伐森林对海河流域生态环境的影响[J]. 河北学刊, 2005, 25(5): 134−138 doi: 10.3969/j.issn.1003-7071.2005.05.024

    LIU H S. Influence of denudation forest to the ecological environment of the Haihe River valley in the Ming & Qing[J]. Hebei Academic Journal, 2005, 25(5): 134−138 doi: 10.3969/j.issn.1003-7071.2005.05.024
    [16]
    赵景波, 李瑜琴. 陕西黄土高原土壤干层对植树造林的影响[J]. 中国沙漠, 2005, 25(3): 370−373 doi: 10.3321/j.issn:1000-694X.2005.03.011

    ZHAO J B, LI Y Q. Effects of soil-drying layer on afforestation in the loess plateau of Shaanxi[J]. Journal of Desert Research, 2005, 25(3): 370−373 doi: 10.3321/j.issn:1000-694X.2005.03.011
    [17]
    邱治军, 周光益, 吴仲民, 等. 粤北杨东山常绿阔叶次生林林冠截留特征[J]. 林业科学, 2011, 47(6): 157−161 doi: 10.11707/j.1001-7488.20110623

    QIU Z J, ZHOU G Y, WU Z M, et al. Characteristics of the canopy interception in an evergreen broad-leaved secondary forest in Yangdongshan, North Guangdong[J]. Scientia Silvae Sinicae, 2011, 47(6): 157−161 doi: 10.11707/j.1001-7488.20110623
    [18]
    李鹏飞, 刘文军, 赵昕奕. 京津冀地区近50年气温、降水与潜在蒸散量变化分析[J]. 干旱区资源与环境, 2015, 29(3): 137−143 doi: 10.13448/j.cnki.jalre.2015.094

    LI P F, LIU W J, ZHAO X Y. The changes of atmospheric temperature, precipitation and potential evapotranspiration in Beijing-Tianjin-Hebei region in recent 50 years[J]. Journal of Arid Land Resources and Environment, 2015, 29(3): 137−143 doi: 10.13448/j.cnki.jalre.2015.094
    [19]
    刘希庆, 邢晓光, 刘凤婵, 等. 河北省太行山4种经济林林冠层的水文效应[J]. 水土保持通报, 2019, 39(2): 83−87

    LIU X Q, XING X G, LIU F C, et al. Canopy hydrological effects of four economic forests in Taihang Mountain, Hebei Province[J]. Bulletin of Soil and Water Conservation, 2019, 39(2): 83−87
    [20]
    司梦可, 曹建生, 阳辉, 等. 太行山区不同植被条件下土壤水分动态变化特征研究[J]. 中国生态农业学报(中英文), 2020, 28(11): 1766−1777

    SI M K, CAO J S, YANG H, et al. Soil water variation of different vegetation community in Taihang Mountain Area[J]. Chinese Journal of Eco-Agriculture, 2020, 28(11): 1766−1777
    [21]
    郑文波, 王仕琴, 刘丙霞, 等. 基于RZWQM模型模拟太行山低山丘陵区农田土壤硝态氮迁移及淋溶规律[J]. 环境科学, 2019, 40(4): 1770−1778

    ZHENG W B, WANG S Q, LIU B X, et al. Simulation of the migration and leaching of nitrate nitrogen in the farmland soil profile in a hilly area of Taihang Mountain with the RZWQM model[J]. Environmental Science, 2019, 40(4): 1770−1778
    [22]
    孙甲霞, 张万军, 曹建生. 太行山低山区主要植被下土壤贮水量和土壤水分利用效率研究[J]. 华北农学报, 2008, 23(S1): 173−177 doi: 10.7668/hbnxb.2008.S1.042

    SUN J X, ZHANG W J, CAO J S. Study on soil moisture characteristics and water use efficiency of three different vegetations in the low Taihang montains areas[J]. Acta Agriculturae Boreali-Sinica, 2008, 23(S1): 173−177 doi: 10.7668/hbnxb.2008.S1.042
    [23]
    张雪, 赵锦梅, 雷隆举, 等. 祁连山东段六种灌丛降雨再分配特征[J]. 中国草地学报, 2021, 43(1): 83−89 doi: 10.16742/j.zgcdxb.20190327

    ZHANG X, ZHAO J M, LEI L J, et al. Characteristics of rainfall redistribution of six shrubs in eastern Qilian Mountain[J]. Chinese Journal of Grassland, 2021, 43(1): 83−89 doi: 10.16742/j.zgcdxb.20190327
    [24]
    李连强, 杨会侠, 丁国泉, 等. 辽东半岛赤松和蒙古栎林降雨再分配特征及其相关性分析[J]. 北京林业大学学报, 2020, 42(11): 47−55

    LI L Q, YANG H X, DING G Q, et al. Precipitation redistribution characteristics and its correlation analysis of Pinus densiflora and Quercus mongolica forests in the Liaodong Peninsula of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(11): 47−55
    [25]
    孙姗姗, 刘新平, 王翠萍, 等. 半干旱沙地樟子松林降雨再分配特征[J]. 干旱区地理, 2021, 44(1): 109−117 doi: 10.12118/j.issn.10006060.2021.01.12

    SUN S S, LIU X P, WANG C P, et al. Precipitation redistribution characteristics of Pinus sylvestris var. mongolica in semiarid sandy land[J]. Arid Land Geography, 2021, 44(1): 109−117 doi: 10.12118/j.issn.10006060.2021.01.12
    [26]
    何常清, 薛建辉, 吴永波, 等. 岷江上游亚高山川滇高山栎林的降雨再分配[J]. 应用生态学报, 2008, 19(9): 1871−1876

    HE C Q, XUE J H, WU Y B, et al. Rainfall redistribution in subalpine Quercus aquifolioides forest in upper reaches of Minjiang River[J]. Chinese Journal of Applied Ecology, 2008, 19(9): 1871−1876
    [27]
    李晶晶, 白岗栓, 张蕊. 陕北丘陵沟壑区常见树种叶片的吸水性能[J]. 中国水土保持科学, 2013, 11(1): 99−102

    LI J J, BAI G S, ZHANG R. Water absorption of common trees leaves in loess hilly and gully region of Northern Shaanxi[J]. Science of Soil and Water Conservation, 2013, 11(1): 99−102
    [28]
    田娜, 古君龙, 杨新国, 等. 中间锦鸡儿冠层降雨再分配特征[J]. 干旱区研究, 2019, 36(4): 854−862

    TIAN N, GU J L, YANG X G, et al. Redistribution of rainfall in canopy of Caragana intermedia[J]. Arid Zone Research, 2019, 36(4): 854−862
    [29]
    凡国华, 韩城, 孙永涛, 等. 长三角地区马尾松林降雨再分配特征[J]. 西南农业学报, 2019, 32(2): 422−428 doi: 10.16213/j.cnki.scjas.2019.2.032

    FAN G H, HAN C, SUN Y T, et al. Rainfall redistribution in Pinus massoniana forest of Yangtze River Delta[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(2): 422−428 doi: 10.16213/j.cnki.scjas.2019.2.032
    [30]
    李联地, 左万星, 忻富宁, 等. 山涧口流域2种林分降雨及再分配特征[J]. 福建林业科技, 2018, 45(4): 5−10 doi: 10.13428/j.cnki.fjlk.2018.04.002

    LI L D, ZUO W X, XIN F N, et al. Rainfall and redistribution characteristics of two kinds of stands in Shanjiankou Basin[J]. Journal of Fujian Forestry Science and Technology, 2018, 45(4): 5−10 doi: 10.13428/j.cnki.fjlk.2018.04.002
    [31]
    高会, 付同刚, 梁红柱, 等. 太行山区生态系统服务冷热点区域识别及其权衡/协同关系分析[J]. 中国生态农业学报(中英文), 2022, 30(7): 1045−1053 doi: 10.12357/cjea.20220041

    GAO H, FU T G, LIANG H Z, et al. Cold/hot spots identification and tradeoff/synergy analysis of ecosystem services in Taihang Mountain area[J]. Chinese Journal of Eco-Agriculture, 2022, 30(7): 1045−1053 doi: 10.12357/cjea.20220041
    [32]
    庞维华, 孙雅婕, 刘建军. 不同类型园林植物群落冠层的截留能力研究[J]. 水土保持通报, 2022, 42(4): 49−55

    PANG W H, SUN Y J, LIU J J. Canopy interception ability of different types of garden plant communities[J]. Bulletin of Soil and Water Conservation, 2022, 42(4): 49−55
    [33]
    李登武, 李淑静, 耿义良. 黄龙山白皮松林林隙特征[J]. 东北林业大学学报, 2011, 39(7): 12−14 doi: 10.13759/j.cnki.dlxb.2011.07.032

    LI D W, LI S J, GENG Y L. Gap characteristics in Pinus bungeana forest in Huanglong Mountain, Shaanxi Province[J]. Journal of Northeast Forestry University, 2011, 39(7): 12−14 doi: 10.13759/j.cnki.dlxb.2011.07.032
    [34]
    LEVIA D F, HERWITZ S R. Interspecific variation of bark water storage capacity of three deciduous tree species in relation to stemflow yield and solute flux to forest soils[J]. CATENA, 2005, 64(1): 117−137 doi: 10.1016/j.catena.2005.08.001
    [35]
    雷丽群, 郑路, 农友, 等. 降雨特征对红锥人工林降水分配格局的影响[J]. 生态学杂志, 2020, 39(2): 460−468 doi: 10.13292/j.1000-4890.202002.023

    LEI L Q, ZHENG L, NONG Y, et al. Effects of rainfall characteristics on rainfall partitioning in Castanopsis hystrix plantation[J]. Chinese Journal of Ecology, 2020, 39(2): 460−468 doi: 10.13292/j.1000-4890.202002.023
    [36]
    王昱程. 冀北山地阔叶林对降雨再分配的影响[J]. 水土保持通报, 2018, 38(1): 107−110, 115

    WANG Y C. Effects of broad-leaved forest on rainfall redistribution in mountain land in northern Hebei Province[J]. Bulletin of Soil and Water Conservation, 2018, 38(1): 107−110, 115
    [37]
    李成, 高鹏, 董学德, 等. 泰山麻栎人工林降雨截留特征及修正的Gash模型模拟[J]. 中国水土保持科学, 2020, 18(3): 31−38 doi: 10.16843/j.sswc.2020.03.004

    LI C, GAO P, DONG X D, et al. Canopy interception characteristics of Quercus acutissima plantation forest in Mountain Tai, China and its estimation by the revised Gash model[J]. Science of Soil and Water Conservation, 2020, 18(3): 31−38 doi: 10.16843/j.sswc.2020.03.004
    [38]
    杜妍, 庄家尧, 周勇. 苏南丘陵区毛竹林林冠水文特征[J]. 水土保持研究, 2020, 27(3): 308−314 doi: 10.13869/j.cnki.rswc.2020.03.044

    DU Y, ZHUANG J Y, ZHOU Y. Hydrological characteristics of the canopy of phyllostachy edulis forest in hilly areas of southern Jiangsu Province[J]. Research of Soil and Water Conservation, 2020, 27(3): 308−314 doi: 10.13869/j.cnki.rswc.2020.03.044
    [39]
    袁秀锦, 肖文发, 雷静品, 等. 马尾松林分结构对冠层水文效应的影响[J]. 生态学杂志, 2020, 39(2): 451−459 doi: 10.13292/j.1000-4890.202002.015

    YUAN X J, XIAO W F, LEI J P, et al. Influence of stand structure of Pinus massoniana on canopy hydrological effect[J]. Chinese Journal of Ecology, 2020, 39(2): 451−459 doi: 10.13292/j.1000-4890.202002.015
    [40]
    刘泽彬, 王彦辉, 邓秀秀, 等. 六盘山华北落叶松林下穿透雨空间变异特征[J]. 生态学报, 2017, 37(10): 3471−3481

    LIU Z B, WANG Y H, DENG X X, et al. Spatial variations of throughfall in a Larix principis-ruprechtii plantation of Liupan Mountains, Ningxia, China[J]. Acta Ecologica Sinica, 2017, 37(10): 3471−3481
    [41]
    黄承标, 梁宏温. 广西亚热带主要林型的树干茎流[J]. 植物资源与环境, 1994, 3(4): 10−17

    HUANG C B, LIANG H W. Stemflow of main forest types in Guangxi subtropics[J]. Journal of Plant Resources and Environment, 1994, 3(4): 10−17
    [42]
    艾长江, 高光耀, 袁川, 等. 陕北黄土高原柠条灌丛穿透雨特征与影响因素[J]. 生态学报, 2018, 38(17): 6063−6073

    AI C J, GAO G Y, YUAN C, et al. Throughfall and its influential factors of a typical xerophytic shrub (Caragana korshinskii) in northern Shaanxi in the Loess Plateau of China[J]. Acta Ecologica Sinica, 2018, 38(17): 6063−6073
    [43]
    陈倩, 周志立, 史琛媛, 等. 河北太行山丘陵区不同林分类型枯落物与土壤持水效益[J]. 水土保持学报, 2015, 29(5): 206−211

    CHEN Q, ZHOU Z L, SHI C Y, et al. Litter and soil water-holding capacity of different typical forests in hilly region of Taihang Mountains in Hebei Province[J]. Journal of Soil and Water Conservation, 2015, 29(5): 206−211

Catalog

    Article Metrics

    Article views (498) PDF downloads (96) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return