LI Y, XIE Q Z, LIU B Q, HE S Q, WU X Z, YANG Q, LIU Z, SHI X L, ZHANG M C, YANG C Y, YAN L, ZHANG R F, TAO P J. Life cycle analysis of soybean production in typical district of the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1416−1427. DOI: 10.12357/cjea.20220841
Citation: LI Y, XIE Q Z, LIU B Q, HE S Q, WU X Z, YANG Q, LIU Z, SHI X L, ZHANG M C, YANG C Y, YAN L, ZHANG R F, TAO P J. Life cycle analysis of soybean production in typical district of the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1416−1427. DOI: 10.12357/cjea.20220841

Life cycle analysis of soybean production in typical district of the North China Plain

Funds: This study was supported by Hebei Soybean Industry System (HBCT2019190101) and China Agriculture Research System (CARS-04-PSO6).
More Information
  • In recent years, the low self-sufficiency ratio of soybeans has become an urgent issue in China. Gaocheng District of Shijiazhuang City of Hebei Province is an important county for soybean production in the Huang-Huai-Hai area. Although soybean has symbiotic nitrogen fixation efficiency, excessive inputs like fertilizers and pesticides still cause environmental pollution. Therefore, scientific evaluation of the eco-efficiency of soybean production is conducive to promoting the sustainable development of the soybean industry in the Gaocheng District. Based on a survey of 50 farmer households in the Gaocheng District, we evaluated the environmental impact and eco-efficiency of local soybean production using a life cycle assessment (LCA) and a super-efficiency slakck-based measure (SBM) model (super-SBM). The environmental impact results showed that the four indices, global warming potential (GWP), terrestrial eco-toxicity potential (TETP), acidification potential (AP), and eutrophication potential (EP), were the dominant potential environmental impact categories in soybean production. The sowing-to-seedling stage contributed to the largest part (1.45E−5) of GWP, the largest part (5.34E−6) of AP, and the largest part (3.21E−6) of EP; the largest part (5.85E−6) of TETP was attributed to the flowering-to-podding stage. Among the four indicators, GWP, TETP, and EP of large-scale farming were the highest according to the planting scale. Concerning irrigation methods, GWP and AP were highest in trickle irrigation, and TETP and EP were highest in furrow irrigation. Based on the planting areas, GWP, AP, and EP in northern Gaocheng were higher than in southern Gaocheng. The eco-efficiency analysis showed that the mean value of all farmers’ eco-efficiency was 0.84, indicating that local soybean production was inefficient and had room for improvement. Concerning the planting scales, eco-efficiency followed the order of large-scale > mid-scale > small-scale. Concerning irrigation methods, eco-efficiency decreased in the order of trickle irrigation, sprinkling irrigation, no irrigation, and furrow irrigation. Concerning the planting areas, the eco-efficiency in southern Gaocheng was higher than that in northern Gaocheng. Moreover, six redundancy indices were compared under three planting scales. The range of redundancy ratio (max−min) in pesticides was the highest (5.89%), indicating that the change in planting scale had the greatest impact on the use of insecticides. Six redundancy indices were compared under four irrigation methods, and the range of redundancy ratio in water was the highest (8.40%), indicating that irrigation methods had the greatest influence on irrigation water. Six redundancy indices were compared under two planting areas. The range of the redundancy ratio in fertilizer was the highest (2.79%), indicating that the difference in planting area had the greatest impact on fertilizer application. Overall, to ensure the yield and improve the ecological efficiency of soybean production in Gaocheng District, we suggest farming soybean at a large scale, constructing water conservancy facilities, developing trickle irrigation, and controlling the use of fertilizers and pesticides at the different stages of soybean production. These results provide a reference basis for the eco-efficiency evaluation of local soybean production that might benefit the sustainable development of the soybean industry in the Gaocheng District.
  • [1]
    中华人民共和国国家统计局. “主要农作物播种面积” “主要农作物产品产量”[DB/OL]. 中华人民共和国国家统计局国家数据库网站. (2021)[2023-01-16]. https://data.stats.gov.cn/easyquery.htm?cn=C01

    National Bureau of Statistics of the People’s Republic of China. “Area sown for major crops” “Output of major crop products” [DB/OL]. National Data Database Website of the Bureau of Statistics of the People’s Republic of China. (2021)[2023-01-16]. https://data.stats.gov.cn/easyquery.htm?cn=C01
    [2]
    何素琴, 李翠霞, 武西增, 等. 石家庄市藁城富硒区夏播大豆管理技术[J]. 大豆科技, 2022(2): 47−51

    HE S Q, LI C X, WU X Z, et al. Management technology of summer sowing soybean in Gaocheng selenium-rich area of Shijiazhuang City[J]. Soybean Science & Technology, 2022(2): 47−51
    [3]
    WANG W L, MOORE J K, MARTINY A C, et al. Convergent estimates of marine nitrogen fixation[J]. Nature, 2019, 566(7743): 205−211 doi: 10.1038/s41586-019-0911-2
    [4]
    ZEHR J P, CAPONE D G. Changing perspectives in marine nitrogen fixation[J]. Science, 2020, 368(6492): eaay9514 doi: 10.1126/science.aay9514
    [5]
    YANG Q, YANG Y Q, XU R N, et al. Genetic analysis and mapping of QTLs for soybean biological nitrogen fixation traits under varied field conditions[J]. Frontiers in Plant Science, 2019, 10: 75 doi: 10.3389/fpls.2019.00075
    [6]
    李志远. 大豆多因素养分密度效应试验及优化研究[D]. 哈尔滨: 东北农业大学, 2019: 1–2

    LI Z Y. Research on multi-factor nutrient density test and optimization of soybean[D]. Harbin: Northeast Agricultural University, 2019: 1–2
    [7]
    吴小庆, 王亚平, 何丽梅, 等. 基于AHP和DEA模型的农业生态效率评价−以无锡市为例[J]. 长江流域资源与环境, 2012, 21(6): 714−719

    WU X Q, WANG Y P, HE L M, et al. Agricultural eco-efficiency evaluation based on AHP and DEA model — A case of Wuxi City[J]. Resources and Environment in the Yangtze Basin, 2012, 21(6): 714−719
    [8]
    International Organization for Standardization. ISO 14040: 2006 Environmental Management: Life Cycle Assessment; Principles and Framework[S]. Switzerland: International Organization for Standardization, 2006
    [9]
    钟方雷, 杨肖, 郭爱君. 基于LCA和DEA法相结合的干旱区绿洲农业生态经济效率研究−以张掖市制种玉米为例[J]. 生态经济, 2017, 33(11): 122−127

    ZHONG F L, YANG X, GUO A J. Study on ecological economy efficiency of oasis agriculture in arid region based on LCA and DEA method: taking seed maize production in Zhangye City as an example[J]. Ecological Economy, 2017, 33(11): 122−127
    [10]
    吴晓雨. 华北平原小麦生产的生态效率评价[D]. 杨凌: 西北农林科技大学, 2021: 17–32

    WU X Y. Ecological efficiency evaluation of wheat production in North China Plain[D]. Yangling: Northwest A & F University, 2021: 17–32
    [11]
    黄玛兰, 曾琳琳, 李晓云. LCA和DEA法相结合的农业生态效率研究−兼顾绿色认知和环境规制的影响[J]. 华中农业大学学报(社会科学版), 2022(1): 94−104

    HUANG M L, ZENG L L, LI X Y. Joint life cycle assessment and data envelopment analysis for assessing agriculture eco-efficiency — considering the impacts of green cognition and government regulations[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2022(1): 94−104
    [12]
    李云霞, 杨润江, 鞠立川. 基于SimaPro的东北大豆碳足迹核算[J]. 质量与认证, 2016(1): 58−59

    LI Y X, YANG R J, JU L C. Carbon footprint accounting of soybean in Northeast China based on SimaPro[J]. China Quality Certification, 2016(1): 58−59
    [13]
    罗燕, 乔玉辉, 吴文良. 东北有机及常规大豆对环境影响的生命周期评价[J]. 生态学报, 2011, 31(23): 185−193

    LUO Y, QIAO Y H, WU W L. Environment impact assessment of organic and conventional soybean production with LCA method in China Northeast Plain[J]. Acta Ecologica Sinica, 2011, 31(23): 185−193
    [14]
    董进宁, 马晓茜. 生物柴油项目的生命周期评价[J]. 现代化工, 2007, 27(9): 59−63 doi: 10.3321/j.issn:0253-4320.2007.09.017

    DONG J N, MA X Q. Life cycle assessment on biodiesel production[J]. Modern Chemical Industry, 2007, 27(9): 59−63 doi: 10.3321/j.issn:0253-4320.2007.09.017
    [15]
    熊正琴, 邢光熹, 鹤田治雄, 等. 种植夏季豆科作物对旱地氧化亚氮排放贡献的研究[J]. 中国农业科学, 2002, 35(9): 1104−1108 doi: 10.3321/j.issn:0578-1752.2002.09.013

    XIONG Z Q, XING G X, TSURUTA H, et al. The effects of summer legume crop cultivation on nitrous oxide emissions from upland farmland[J]. Scientia Agricultura Sinica, 2002, 35(9): 1104−1108 doi: 10.3321/j.issn:0578-1752.2002.09.013
    [16]
    叶优良, 李隆, 孙建好. 3种豆科作物与玉米间作对土壤硝态氮累积和分布的影响[J]. 中国生态农业学报, 2008, 16(4): 818−823 doi: 10.3724/SP.J.1011.2008.00818

    YE Y L, LI L, SUN J H. Effect of intercropping three legume crops with maize on soil nitrate-N accumulation and distribution in the soil profile[J]. Chinese Journal of Eco-Agriculture, 2008, 16(4): 818−823 doi: 10.3724/SP.J.1011.2008.00818
    [17]
    于佰双. 不同熟期大豆品种固氮率比较[J]. 黑龙江农业科学, 1997(3): 46−47

    YU B S. Comparison of nitrogen fixation rate of soybean varieties in different maturity periods[J]. Heilongjiang Agricultural Science, 1997(3): 46−47
    [18]
    叶优良, 孙建好, 李隆, 等. 灌水对大麦/玉米带田土壤矿质氮影响的研究[J]. 水土保持学报, 2003, 17(1): 107−111 doi: 10.3321/j.issn:1009-2242.2003.01.026

    YE Y L, SUN J H, LI L, et al. Effect of irrigation on mineral nitrogen concentration in soils of maize/barley intercropping[J]. Journal of Soil Water Conservation, 2003, 17(1): 107−111 doi: 10.3321/j.issn:1009-2242.2003.01.026
    [19]
    李鑫, 巨晓棠, 张丽娟, 等. 不同施肥方式对土壤氨挥发和氧化亚氮排放的影响[J]. 应用生态学报, 2008, 19(1): 99−104 doi: 10.13287/j.1001-9332.2008.0021

    LI X, JU X T, ZHANG L J, et al. Effects of different fertilization modes on soil ammonia volatilization and nitrous oxide emission[J]. Chinese Journal of Applied Ecology, 2008, 19(1): 99−104 doi: 10.13287/j.1001-9332.2008.0021
    [20]
    VAN CALKER K J, BERENTSEN P B M, DE BOER I M J, et al. An LP-model to analyse economic and ecological sustainability on Dutch dairy farms: model presentation and application for experimental farm “de Marke”[J]. Agricultural Systems, 2004, 82(2): 139−160 doi: 10.1016/j.agsy.2004.02.001
    [21]
    梁龙, 陈源泉, 高旺盛, 等. 华北平原冬小麦-夏玉米种植系统生命周期环境影响评价[J]. 农业环境科学学报, 2009, 28(8): 1773−1776 doi: 10.3321/j.issn:1672-2043.2009.08.038

    LIANG L, CHEN Y Q, GAO W S, et al. Life cycle environmental impact assessment in winter wheat-summer maize system in North China Plain[J]. Journal of Agro-Environment Science, 2009, 28(8): 1773−1776 doi: 10.3321/j.issn:1672-2043.2009.08.038
    [22]
    马丹. 基于SimaPro的燃料乙醇生命周期分析[D]. 青岛: 青岛科技大学, 2020: 17–18

    MA D. Life cycle assessment of fuel ethanol based on Simapro[D]. Qingdao: Qingdao University of Science & Technology, 2020: 17–18
    [23]
    杨建新, 王如松, 刘晶茹. 中国产品生命周期影响评价方法研究[J]. 环境科学学报, 2001, 21(2): 234−237 doi: 10.3321/j.issn:0253-2468.2001.02.022

    YANG J X, WANG R S, LIU J R. Methodology of life cycle impact assessment for Chinese products[J]. Acta Scientiae Circumstantiae, 2001, 21(2): 234−237 doi: 10.3321/j.issn:0253-2468.2001.02.022
    [24]
    王明新, 包永红, 吴文良, 等. 华北平原冬小麦生命周期环境影响评价[J]. 农业环境科学学报, 2006, 25(5): 1127−1132 doi: 10.3321/j.issn:1672-2043.2006.05.007

    WANG M X, BAO Y H, WU W L, et al. Life cycle environmental impact assessment of winter wheat in North China Plain[J]. Journal of Agro-Environment Science, 2006, 25(5): 1127−1132 doi: 10.3321/j.issn:1672-2043.2006.05.007
    [25]
    谢小天. 生物质固体成型燃料技术路线生命周期环境影响评价[D]. 青岛: 青岛科技大学, 2016: 14–15

    XIE X T. Life cycle environmental impact assessment of biomass solid molding fuel technology route[D]. Qingdao: Qingdao University of Science & Technology, 2016: 14–15
    [26]
    常俊彦. 辽宁地区水稻生产的生态环境影响研究[D]. 沈阳: 沈阳农业大学, 2018: 22

    CHANG J Y. Study of ecological environment impact of rice production in Liaoning region[D]. Shenyang: Shenyang Agricultural University, 2018: 22
    [27]
    TONE K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130(3): 498−509 doi: 10.1016/S0377-2217(99)00407-5
    [28]
    潘丹, 应瑞瑶. 中国农业生态效率评价方法与实证−基于非期望产出的SBM模型分析[J]. 生态学报, 2013, 33(12): 3837−3845 doi: 10.5846/stxb201207080953

    PAN D, YING R Y. Agricultural eco-efficiency evaluation in China based on SBM model[J]. Acta Ecologica Sinica, 2013, 33(12): 3837−3845 doi: 10.5846/stxb201207080953
    [29]
    秦丹. 山西省小麦生命周期的资源环境影响评价[D]. 太谷: 山西农业大学, 2016: 41–45

    QIN D. Life cycle environmental influence of wheat production in Shanxi Province[D]. Taigu: Shanxi Agricultural University, 2016: 41–45
    [30]
    黄昌勇, 徐建明. 土壤学[M]. 3版. 北京: 中国农业出版社, 2010

    HUANG C Y, XU J M. Agrology[M]. 3rd ed. Beijing: China Agriculture Press, 2010
    [31]
    施恩. 石家庄市藁城区浅层地下水资源量评价[D]. 石家庄: 河北地质大学, 2019: 13

    SHI E. Evaluation of shallow groundwater resources in Gaocheng District of Shijiazhuang City[D]. Shijiazhuang: Hebei GEO University, 2019: 13
    [32]
    陈勇, 杨可攀, 段富媛, 等. 减氮对甜玉米//大豆间作系统大豆结瘤固氮特性的影响[J]. 生态科学, 2022, 41(4): 1−8

    CHEN Y, YANG K P, DUAN F Y, et al. Effect of reduced nitrogen application on nodulation characteristics of soybean in sweet maize//soybean intercropping system[J]. Ecological Science, 2022, 41(4): 1−8
    [33]
    王明新, 吴文良, 夏训峰. 华北高产粮区夏玉米生命周期环境影响评价[J]. 环境科学学报, 2010, 30(6): 1339−1344 doi: 10.13671/j.hjkxxb.2010.06.001

    WANG M X, WU W L, XIA X F. Life cycle environmental assessment of summer maize in a North China high-yield region[J]. Acta Scientiae Circumstantiae, 2010, 30(6): 1339−1344 doi: 10.13671/j.hjkxxb.2010.06.001
  • Cited by

    Periodical cited type(1)

    1. 史佳瑶,刘智,冯燕,魏玉,任洪雷,孙连军,闫龙,辛大伟. 1970—2020年间黄淮海夏大豆部分育成品种(系)结瘤能力鉴定. 大豆科学. 2023(06): 692-700 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (486) PDF downloads (91) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return