GUO L L, ZU J M, WANG J J, CHEN B X. Effects of the combination of polystyrene nanoplastics and lead on seed germination and seedling growth of spinach (Spinacia oleracea)[J]. Chinese Journal of Eco-Agriculture, 2023, 31(6): 967−975. DOI: 10.12357/cjea.20220721
Citation: GUO L L, ZU J M, WANG J J, CHEN B X. Effects of the combination of polystyrene nanoplastics and lead on seed germination and seedling growth of spinach (Spinacia oleracea)[J]. Chinese Journal of Eco-Agriculture, 2023, 31(6): 967−975. DOI: 10.12357/cjea.20220721

Effects of the combination of polystyrene nanoplastics and lead on seed germination and seedling growth of spinach (Spinacia oleracea)

Funds: The study was supported by the Key Research and Development Plan Guidance Project of Cangzhou (213109014).
More Information
  • Corresponding author:

    GUO Linlin, E-mail: glinlin11@126.com

  • Received Date: September 20, 2022
  • Accepted Date: December 26, 2022
  • Available Online: February 06, 2023
  • Microplastics (MPs) are a new environmental pollutant that has attracted widespread attention because of their negative effects on organisms and the environment. However, studies on the impact of co-contamination of MPs and heavy metals on vegetables are limited. To explore the effects of polystyrene nanoplastics (PSNPs), lead (Pb), and their co-contamination on seed germination and seedling growth of spinach, we investigated the germination rate, germination vigor and germination index of seeds; root length, shoot length, superoxide dismutase (SOD) and peroxidase (POD) activities, and soluble protein content of seedlings of spinach (Spinacia oleracea), which were exposed to the control, PSNPs (200, 400, 800, and 1600 mg·L1) and Pb (5, 25, 50, and 100 mg·L1) and their combination (Pb 5 mg·L1 + PSNPs 200 mg·L1, Pb 5 mg·L1 + PSNPs 800 mg·L1, Pb 50 mg·L1 + PSNPs 200 mg·L1, and Pb 50 mg·L1 + PSNPs 800 mg·L1). Single effects of PSNPs (≥400 mg·L1) significantly decreased the germination rate, vigor, and index; however, there was no significant difference between 200 mg·L1 PSNPs and the control for those indicators. PSNPs at low concentrations (200 mg·L1) promoted the length of roots and shoots, but other PSNPs concentrations (≥400 mg·L1) had no significant impacts on roots and shoots. SOD activity was inhibited at a high concentration (≥800 mg·L1) of PSNPs, and the POD activity was induced when PSNPs ≤800 mg·L1, whereas POD was inhibited at the high PSNPs concentration (1600 mg·L1). The soluble protein content in spinach seedlings under different concentrations of PSNPs increased, but the content was significantly higher than the control at 800 mg·L1 PSNPs. Under Pb exposure alone, germination rate, vigor, and index decreased. Further, treatments with low Pb concentration (5 mg·L1) increased root and shoot length, whereas high concentrations (≥25 mg·L1) reduced them. Moreover, SOD inhibition and POD induction were observed following Pb treatment. With increased Pb concentration, the soluble protein content of spinach seedlings decreased firstly at low concentration (5 mg·L1) and then increased. Compared with single Pb treatment, combined effects of PSNPs and Pb were generally antagonistic to seed germination. For example, PSNPs weakened the promotion effects of low Pb concentration (5 mg∙L1), inhibited the growth of root and shoot of spinach seedlings, and alleviated the inhibitory effects of high Pb concentrations (50 mg∙L1) on seedling root and shoot growth. Low concentration (200 mg·L1) of PSNPs and Pb showed synergistic effects in spinach seedlings, such as enhanced induction effects of Pb on POD activity. The co-contamination of PSNPs at high concentrations (800 mg·L1) and Pb caused greater damage to seedlings, and the activities of SOD and POD decreased significantly. These results showed that PSNPs alleviated the inhibitory effects of Pb on spinach seed germination. Low concentrations of PSNPs (200 mg∙L1) and Pb mainly showed synergistic effects, whereas high concentrations of PSNPs (800 mg∙L1) and Pb mainly showed antagonistic effects. This study demonstrates that co-contamination of PSNPs and Pb has significant toxicity on seed germination and seedling growth, affecting the antioxidant system and soluble proteins of spinach. In conclusion, coexisting PSNPs can alter the bioavailability of Pb and plant performance. Our findings can help evaluate the individual and comprehensive toxicity of microplastics and heavy metals in vegetable crops.
  • [1]
    王菡娟. 2050年全球塑料产量或达11亿吨——多方呼吁共同关注塑料污染[N]. 人民政协报, 2022-06-23(6)

    WANG H J. Global plastic production may reach 1.1 billion tons by 2050, raising concerns about plastic pollution[N]. CPPCC Daily, 2022-06-23(6)
    [2]
    RAZA U, TSZKI T M, HUAN C, et al. Microplastics interaction with terrestrial plants and its impacts on agriculture[J]. Journal of Environmental Quality, 2021, 50(5): 1024−1041 doi: 10.1002/jeq2.20264
    [3]
    杨杰, 李连祯, 周倩, 等. 土壤环境中微塑料污染: 来源、过程及风险[J]. 土壤学报, 2021, 58(2): 281−298

    YANG J, LI L Z, ZHOU Q, et al. Microplastics contamination of soil environment: sources, processes and risks[J]. Acta Pedologica Sinica, 2021, 58(2): 281−298
    [4]
    ABEL D S M A, WERNER K, CHRISTIANE Z, et al. Microplastics as an emerging threat to terrestrial ecosystems[J]. Global Change Biology, 2018, 24(4): 1405−1416 doi: 10.1111/gcb.14020
    [5]
    汤庆峰, 高峡, 李琴梅, 等. 农田土壤微塑料污染研究现状与问题思考[J]. 安徽农业科学, 2021, 49(15): 72−78, 84 doi: 10.3969/j.issn.0517-6611.2021.15.020

    TANG Q F, GAO X, LI Q M, et al. Research status and existing problems of microplastic pollution in farmland soil[J]. Journal of Anhui Agricultural Sciences, 2021, 49(15): 72−78, 84 doi: 10.3969/j.issn.0517-6611.2021.15.020
    [6]
    KELLIE B, BANU Ö. Microplastics and nanoplastics in the freshwater and terrestrial environment: a review[J]. Water, 2020, 12(9): 2633 doi: 10.3390/w12092633
    [7]
    PIGNATTELLI S, BROCCOLI A, RENZI M. Physiological responses of garden cress (L. sativum) to different types of microplastics[J]. Science of the Total Environment, 2020, 727: 138609
    [8]
    ZHOU C, LU C, MAI L, et al. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage[J]. Journal of Hazardous Materials, 2021, 401: 123412 doi: 10.1016/j.jhazmat.2020.123412
    [9]
    VAN WEERT S, REDONDO-HASSELERHARM P E, DIEPENS N J, et al. Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes[J]. The Science of the Total Environment, 2019, 654: 1040−1047 doi: 10.1016/j.scitotenv.2018.11.183
    [10]
    JIANG X, CHEN H, LIAO Y, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution, 2019, 250: 831−838
    [11]
    YU H, ZHANG X, HU J, et al. Ecotoxicity of polystyrene microplastics to submerged carnivorous Utricularia vulgaris plants in freshwater ecosystems[J]. Environmental Pollution, 2020, 265: 114830 doi: 10.1016/j.envpol.2020.114830
    [12]
    赵宽, 万昕, 邢德科, 等. 低分子量有机酸对土壤有效磷及重金属释放影响的研究进展[J]. 土壤通报, 2022, 53(5): 1228−1236 doi: 10.19336/j.cnki.trtb.2021113002

    ZHAO K, WAN X, XING D K, et al. Research progress on effects of low molecular weight organic acids on release of available phosphorus and heavy metals in soil[J]. Chinese Journal of Soil Science, 2022, 53(5): 1228−1236 doi: 10.19336/j.cnki.trtb.2021113002
    [13]
    PAULA M, INMACULADA S, ANTONIO B, et al. Can microplastics influence the accumulation of Pb in tissues of blue crab?[J]. International Journal of Environmental Research and Public Health, 2021, 18(7): 3599 doi: 10.3390/ijerph18073599
    [14]
    YANG Z, ZHU L, LIU J, et al. Polystyrene microplastics increase Pb bioaccumulation and health damage in the Chinese mitten crab Eriocheir sinensis[J]. Science of Total Environment, 2022, 10(829): 154586
    [15]
    刘玲, 洪婷婷, 胡倩男, 等. 微塑料与铅复合污染对水稻幼苗根系生长和氧化应激的影响[J]. 农业环境科学学报, 2021, 40(12): 2623−2633 doi: 10.11654/jaes.2021-0523

    LIU L, HONG T T, HU Q N, et al. Effects of the combination of microplastics and lead pollution on growth and oxidative responses of rice seedlings’ roots[J]. Journal of Agro-Environment Science, 2021, 40(12): 2623−2633 doi: 10.11654/jaes.2021-0523
    [16]
    WANG F, ZHANG X, ZHANG S, et al. Effects of co-contamination of microplastics and Cd on plant growth and Cd accumulation[J]. Toxics, 2020, 8: 36 doi: 10.3390/toxics8020036
    [17]
    FARRAJI H, AZIZ H A, TAJUDDIN R M, et al. Optimization of phytoremediation of lead-contaminated soil by spinach (Spinacia oleracea L.)[J]. International Journal of Scientific Research in Knowledge, 2014, 2(10): 480−486 doi: 10.12983/ijsrk-2014-p0480-0486
    [18]
    GUNDUZ S, UYGUR F N, KAHRAMANOGLU I. Heavy metal Phytoremediation potentials of Lepidum sativum L., Lactuca sativa L., Spinacia oleracea L. and Raphanus sativus L.[J]. Herald Journal of Agriculture and Food Science Research, 2012, 1(1): 001−005
    [19]
    王伟华, 姜黎. 四种钠盐胁迫对野榆钱菠菜种子萌发特性和幼苗生长的影响[J]. 中国草地学报, 2020, 42(6): 23−29 doi: 10.16742/j.zgcdxb.20190220

    WANG W H, JIANG L. Effects of sodium stress on seed germination and seedling growth of Atriplex aucheri[J]. Chinese Journal of Grassland, 2020, 42(6): 23−29 doi: 10.16742/j.zgcdxb.20190220
    [20]
    王泽正, 杨亮, 李婕, 等. 微塑料和镉及其复合对水稻种子萌发的影响[J]. 农业环境科学学报, 2021, 40(1): 44−53 doi: 10.11654/jaes.2020-0560

    WANG Z Z, YANG L, LI J, et al. Single and combined effects of microplastics and cadmium on the germination characteristics of rice seeds[J]. Journal of Agro-Environment Science, 2021, 40(1): 44−53 doi: 10.11654/jaes.2020-0560
    [21]
    宗海英, 刘君, 郭晓红, 等. 聚乙烯微塑料对花生幼苗镉吸收及生理特征的影响[J]. 农业环境科学学报, 2022, 41(7): 1400−1407 doi: 10.11654/jaes.2021-1446

    ZONG H Y, LIU J, GUO X H, et al. Effects of polyethylene microplastics on cadmium absorption and physiological characteristics of peanut seedling[J]. Journal of Agro-Environment Science, 2022, 41(7): 1400−1407 doi: 10.11654/jaes.2021-1446
    [22]
    BOSKER T, BOUWMAN L J, BRUN N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226: 774−781 doi: 10.1016/j.chemosphere.2019.03.163
    [23]
    STEPHAN P, SAILA T, JUN K Y, et al. Ageing affects microplastic toxicity over time: effects of aged polycarbonate on germination, growth, and oxidative stress of Lepidium sativum[J]. Science of the Total Environment, 2021, 790: 148166 doi: 10.1016/j.scitotenv.2021.148166
    [24]
    连加攀, 沈玫玫, 刘维涛. 微塑料对小麦种子发芽及幼苗生长的影响[J]. 农业环境科学学报, 2019, 38(4): 737−745

    LIAN J P, SHEN M M, LIU W T. Effects of microplastics on wheat seed germination and seedling growth[J]. Journal of Agro-Environment Science, 2019, 38(4): 737−745
    [25]
    张彦, 窦明, 邹磊, 等. 不同微塑料赋存环境对小麦萌发与幼苗生长影响研究[J]. 中国环境科学, 2021, 41(8): 3867−3877 doi: 10.3969/j.issn.1000-6923.2021.08.044

    ZHANG Y, DOU M, ZOU L, et al. Effects of different microplastics occurrence environment on seed germination and seedling growth of wheat (Triticum aestivum L.)[J]. China Environmental Science, 2021, 41(8): 3867−3877 doi: 10.3969/j.issn.1000-6923.2021.08.044
    [26]
    吴佳妮, 杨天志, 连加攀, 等. 聚苯乙烯纳米塑料(PSNPs)对大豆(Glycine max)种子发芽和幼苗生长的影响[J]. 环境科学学报, 2020, 40(12): 4581−4589

    WU J N, YANG T Z, LIAN J P, et al. Effects of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of soybean (Glycine max)[J]. Acta Scientiae Circumstantiae, 2020, 40(12): 4581−4589
    [27]
    LIAN J P, WU J N, XIONG H X, et al. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.)[J]. Journal of Hazardous Materials, 2020, 385: 121620 doi: 10.1016/j.jhazmat.2019.121620
    [28]
    GIORGETTI L, SPANÒ C, MUCCIFORA S, et al. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress[J]. Plant Physiology and Biochemistry, 2020, 149(C): 170−177
    [29]
    刘晓红, 刘柳青青, 栗敏, 等. 不同粒径的聚乙烯微塑料对玉米和黄瓜种子发芽和幼苗生长的影响[J]. 生态环境学报, 2022, 31(6): 1263−1271 doi: 10.16258/j.cnki.1674-5906.2022.06.023

    LIU X H, LIU L Q Q, LI M, et al. Effects of polyethylene microplastics with different particle sizes on seed germination and seedling growth of maize and cucumber[J]. Ecology and Environment Sciences, 2022, 31(6): 1263−1271 doi: 10.16258/j.cnki.1674-5906.2022.06.023
    [30]
    GUO M, ZHAO F, TIAN L, et al. Effects of polystyrene microplastics on the seed germination of herbaceous ornamental plants[J]. Science of The Total Environment, 2022, 809: 151100 doi: 10.1016/j.scitotenv.2021.151100
    [31]
    BELLINGERI A, CASABIANCA S, CAPELLACCI S, et al. Impact of polystyrene nanoparticles on marine diatom Skeletonema marinoi chain assemblages and consequences on their ecological role in marine ecosystems[J]. Environmental Pollution, 2020, 262: 114268 doi: 10.1016/j.envpol.2020.114268
    [32]
    YIN L S, WEN X F, HUANG D L, et al. Interactions between microplastics/nanoplastics and vascular plants[J]. Environmental Pollution, 2021, 290: 117999 doi: 10.1016/j.envpol.2021.117999
    [33]
    NI’AM M I, YUNIATI R. Effect of lead (Pb) on seed germination of water spinach (Ipomoea aquatica Forsk)[J]. Journal of Physics Conference Series, 2021, 1725: 1−5
    [34]
    AHMED K B S, AOUES A, KHAROUBI O, et al. Lead-induced changes in germination behavior, growth and inhibition of-aminolevulinic acid dehydratase activity in Raphanus sativus L.[J]. African Journal of Plant Science, 2020, 14(7): 254−261 doi: 10.5897/AJPS2019.1899
    [35]
    杨文玲, 岳丹丹, 李冠杰, 等. 铅铬胁迫对小麦种子萌发及幼苗脯氨酸含量的影响[J]. 生物技术通报, 2015(12): 110−114 doi: 10.13560/j.cnki.biotech.bull.1985.2015.12.016

    YANG W L, YUE D D, LI G J, et al. The effects of lead and chromium stresses on seed germination and proline content in wheat seedlings[J]. Biotechnology Bulletin, 2015(12): 110−114 doi: 10.13560/j.cnki.biotech.bull.1985.2015.12.016
    [36]
    高鸿鹏, 郑直, 刘超, 等. 镉铅胁迫对桑树种子萌发和幼苗生长以及重金属累积的影响[J]. 安徽农业科学, 2020, 48(11): 131−136 doi: 10.3969/j.issn.0517-6611.2020.11.039

    GAO H P, ZHENG Z, LIU C, et al. Effects of cadmium and lead stress on seed germination, seedling growth and heavy metal accumulation of mulberry[J]. Journal of Anhui Agricultural Sciences, 2020, 48(11): 131−136 doi: 10.3969/j.issn.0517-6611.2020.11.039
    [37]
    张雅莉, 王林生. 铅胁迫对硬粒小麦种子萌发及幼苗生长的影响[J]. 山东农业科学, 2015, 47(3): 68−71 doi: 10.14083/j.issn.1001-4942.2015.03.019

    ZHANG Y L, WANG L S. Effects of Pb stress on seed germination and seedling growth of durum wheat[J]. Shandong Agricultural Sciences, 2015, 47(3): 68−71 doi: 10.14083/j.issn.1001-4942.2015.03.019
    [38]
    ZANGANEH R, JAMEI R, RAHMANI F. Pre- sowing seed treatment with salicylic acid and sodium hydrosulfide confers Pb toxicity tolerance in maize (Zea mays L.)[J]. Ecotoxicology and Environmental Safety, 2020, 206: 111392 doi: 10.1016/j.ecoenv.2020.111392
    [39]
    林梅, 王湘平. 铅和镉胁迫对黄瓜种子萌发期间的毒害效应[J]. 湖南农业大学学报(自然科学版), 2012, 38(1): 41−45

    LIN M, WANG X P. Poison effect of Pb and Cd stress on cucumber seeds during the course of germination[J]. Journal of Hunan Agricultural University (Natural Sciences), 2012, 38(1): 41−45
    [40]
    BHARDWAJ P, CHATURVEDI A, PRASAD P. Effect of enhanced lead and cadmium in soil on physiological and biochemical attributes of Phaseolus vulgaris L.[J]. Nature and Science, 2009, 7(8): 63−75
    [41]
    廖苑辰, 娜孜依古丽·加合甫别克, 李梅, 等. 微塑料对小麦生长及生理生化特性的影响[J]. 环境科学, 2019, 40(10): 4661−4667 doi: 10.13227/j.hjkx.201903113

    LIAO Y C, NAZYGUL JAHITBEK, LI M, et al. Effects of microplastics on the growth, physiology, and biochemical characteristics of wheat (Triticum aestivum)[J]. Environmental Science, 2019, 40(10): 4661−4667 doi: 10.13227/j.hjkx.201903113
    [42]
    黄献培, 向垒, 郭静婕, 等. 聚苯乙烯微球对菜心种子及幼苗的毒性效应[J]. 农业环境科学学报, 2021, 40(5): 926−933 doi: 10.11654/jaes.2020-1473

    HUANG X P, XIANG L, GUO J J, et al. Toxicity of polystyrene microplastics on seeds and seedlings of Brassica campestris L.[J]. Journal of Agro-Environment Science, 2021, 40(5): 926−933 doi: 10.11654/jaes.2020-1473
    [43]
    叶子琪, 蒋小峰, 汤其阳, 等. 聚乙烯微塑料对蚕豆幼苗的毒性效应[J]. 南京大学学报(自然科学), 2021, 57(3): 385−392

    YE Z Q, JIANG X F, TANG Q Y, et al. Toxic effects of polyethylene microplastics on higher plant Vicia faba[J]. Journal of Nanjing University (Natural Sciences), 2021, 57(3): 385−392
    [44]
    LIU S, WANG J, ZHU J, et al. The joint toxicity of polyethylene microplastic and phenanthrene to wheat seedlings[J]. Chemosphere, 2021, 282: 130967
    [45]
    林琳, 旦增卓嘎, 吴玲玲. 铅、镉单一及复合胁迫对生菜幼苗抗氧化酶及亚细胞结构的毒性效应[J]. 生态毒理学报, 2022, 17(2): 337−348

    LIN L, DANZENGZHUOGA, WU L L. Toxicity of single and combined Pb and Cd stress on antioxidant enzymes and subcellular structure of lettuce[J]. Asian Journal of Ecotoxicology, 2022, 17(2): 337−348
    [46]
    李玉婷, 李莎, 曹杰, 等. 微塑料对外生菌根真菌生长和抗氧化系统的影响[J]. 浙江农业学报, 2022, 34(5): 1049−1060 doi: 10.3969/j.issn.1004-1524.2022.05.20

    LI Y T, LI S, CAO J, et al. Effects of microplastics on growth and antioxidant system of ectomycorrhizal fungi[J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1049−1060 doi: 10.3969/j.issn.1004-1524.2022.05.20
    [47]
    王成伟, 刘禹, 宋正国, 等. 微塑料对DBP胁迫下生菜光合作用及品质的影响[J]. 农业环境科学学报, 2021, 40(3): 508−516 doi: 10.11654/jaes.2020-1134

    WANG C W, LIU Y, SONG Z G, et al. Effects of microplastics and DBP on photosynthesis and nutritional quality of lettuce[J]. Journal of Agro-Environment Science, 2021, 40(3): 508−516 doi: 10.11654/jaes.2020-1134
    [48]
    王芳洲, 王友绍. Cu2+、Pb2+胁迫对秋茄幼苗可溶性蛋白和抗氧化酶活性的影响[J]. 生态科学, 2020, 39(4): 10−18

    WANG F Z, WANG Y S. Effects of Cu2+ and Pb2+ stresses on soluble protein content and activities of antioxidant enzymes in Kandelia obovata seedlings[J]. Ecological Science, 2020, 39(4): 10−18
    [49]
    韩航, 陈顺钰, 薛凌云, 等. 铅胁迫对金丝草生长及生理生化的影响[J]. 草业学报, 2018, 27(4): 131−138 doi: 10.11686/cyxb2017357

    HAN H, CHEN S Y, XUE L Y, et al. Effects of lead stress on growth and physiology of Pogonatherum crinitum[J]. Acta Prataculturae Sinica, 2018, 27(4): 131−138 doi: 10.11686/cyxb2017357
    [50]
    WANG S, LI Q, HUANG S Z, et al. Single and combined effects of microplastics and lead on the freshwater algae Microcystis aeruginosa[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111664 doi: 10.1016/j.ecoenv.2020.111664
  • Cited by

    Periodical cited type(2)

    1. 楚天舒,陆远,杨宇辰,贺雪妮,赵智强,任杰,蒲胜海,吴湘琳,马兴旺. 基于微塑料生态风险值的畜禽粪便农田承载力估算. 中国农业大学学报. 2025(04): 179-191 .
    2. 穆晓国,王翰霖,李海俊,徐垒,王继涛,张达林,毕雪婷,徐佳鑫,高富成,叶林. 连作对土壤质量及硝态氮含量、菜心产量和品质的级联影响. 中国生态农业学报(中英文). 2024(11): 1869-1881 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (542) PDF downloads (83) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return