YIN X T, YANG H, YU R P, LI L. Interspecific below-ground interactions driven by root exudates in agroecosystems with diverse crops[J]. Chinese Journal of Eco-Agriculture, 2022, 30(8): 1215−1227. DOI: 10.12357/cjea.20220150
Citation: YIN X T, YANG H, YU R P, LI L. Interspecific below-ground interactions driven by root exudates in agroecosystems with diverse crops[J]. Chinese Journal of Eco-Agriculture, 2022, 30(8): 1215−1227. DOI: 10.12357/cjea.20220150

Interspecific below-ground interactions driven by root exudates in agroecosystems with diverse crops

Funds: This study was supported by the National Natural Science Foundation of China (32130067, 32101297).
More Information
  • Corresponding author:

    LI Long, E-mail: lilong@cau.edu.cn

  • Received Date: March 06, 2022
  • Accepted Date: April 06, 2022
  • Available Online: May 11, 2022
  • Interspecific interactions mediated by root exudates play an important role in biodiversity-ecosystem functioning (BEF) relationships. We reviewed and explained the advances in interspecific root-root interactions mediated by root exudates in agroecosystems with crop diversification, and highlighted the following: root exudates mobilize insoluble nutrients in the soil, facilitating the uptake of nutrients by the crop and neighboring plants; the increased accumulation of heavy metals by hyperaccumulating plants can reduce the accumulation of heavy metals in associated food crops; alteration of soil microbial community mediated by root exudates from one species can reduce the pathogens in the other crop species; root exudates, as signal substances, also play important roles in mediating the root-root recognition and plasticity response between species; for example, field weeds can be suppressed by root exudates from intercropped allelopathy plants with field crops. In addition, we highlighted some perspectives on practical applications and new methods of research on root exudates in crop diversification systems. These advances provide a theoretical basis for building sustainable agricultural ecosystems by matching the root secretions and signaling substances of different crop species, improving resource utilization, reducing pests and diseases through enhanced interspecific facilitation, and reducing fertilizer and pesticide inputs owing to suppression of weeds through allelopathic effects.
  • [1]
    LOREAU M, NAEEM S, INCHAUSTI P, et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges[J]. Science, 2001, 294(5543): 804−808 doi: 10.1126/science.1064088
    [2]
    BROOKER R W, GEORGE T S, HOMULLE Z, et al. Facilitation and biodiversity−ecosystem function relationships in crop production systems and their role in sustainable farming[J]. Journal of Ecology, 2021, 109(5): 2054−2067 doi: 10.1111/1365-2745.13592
    [3]
    CARDINALE B J, DUFFY J E, GONZALEZ A, et al. Biodiversity loss and its impact on humanity[J]. Nature, 2012, 486(7401): 59−67 doi: 10.1038/nature11148
    [4]
    YANG H, ZHANG W P, LI L. Intercropping: feed more people and build more sustainable agroecosystems[J]. Frontiers of Agricultural Science and Engineering, 2021, 8(3): 373−386
    [5]
    RENARD D, TILMAN D. National food production stabilized by crop diversity[J]. Nature, 2019, 571(7764): 257−260 doi: 10.1038/s41586-019-1316-y
    [6]
    ALIGNIER A, SOLÉ SENAN X O, ROBLEÑO I, et al. Configurational crop heterogeneity increases within‐field plant diversity[J]. Journal of Applied Ecology, 2020, 57(4): 654−663 doi: 10.1111/1365-2664.13585
    [7]
    YU R P, LAMBERS H, CALLAWAY R M, et al. Belowground facilitation and trait matching: two or three to tango?[J]. Trends in Plant Science, 2021, 26(12): 1227−1235 doi: 10.1016/j.tplants.2021.07.014
    [8]
    BEGON M, HARPER J L, TOWNSEND C R. Ecology: individuals, populations and communities[J]. Bioscience, 1996, 38(6): 424
    [9]
    CALLAWAY R M, BROOKER R W, CHOLER P, et al. Positive interactions among alpine plants increase with stress[J]. Nature, 2002, 417(6891): 844−848 doi: 10.1038/nature00812
    [10]
    SERAINA L, CAPPELLI L A, DOMEIGNOZ H, et al. Plant biodiversity promotes sustainable agriculture directly and via belowground effects[J]. Trends in Plant Science, 2022. https://doi.org/10.1016/j.tplants.2022.02.003
    [11]
    MA L S, LI Y J, WU P T, et al. Effects of varied water regimes on root development and its relations with soil water under wheat/maize intercropping system[J]. Plant and Soil, 2019, 439(1/2): 113−130
    [12]
    LI L, TANG C X, RENGEL Z, et al. Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source[J]. Plant and Soil, 2003, 248(1/2): 297−303 doi: 10.1023/A:1022389707051
    [13]
    张福锁, 申建波, 冯固, 等. 根际生态学——过程与调控[M]. 北京: 中国农业大学出版社, 2008: 34–42

    ZHANG F S, SHEN J B, FENG G et al. Rhizosphere Ecology: Processes & Management[M]. Beijing: China Agricultural University Press, 2008: 34–42
    [14]
    李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望[J]. 中国生态农业学报, 2016, 24(4): 403−415

    LI L. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403−415
    [15]
    孔垂华. 植物种间和种内的化学作用[J]. 应用生态学报, 2020, 31(7): 2141−2150

    KONG C H. Inter-specific and intra-specific chemical interactions among plants[J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2141−2150
    [16]
    HOMULLE Z, GEORGE T S, KARLEY A J. Root traits with team benefits: understanding belowground interactions in intercropping systems[J]. Plant and Soil, 2021, 471(1/2): 1−26
    [17]
    WALKER T S, BAIS H P, GROTEWOLD E, et al. Root exudation and rhizosphere biology[J]. Plant Physiology, 2003, 132(1): 44−51 doi: 10.1104/pp.102.019661
    [18]
    CHOMEL M, GUITTONNY-LARCHEVÊQUE M, FERNANDEZ C, et al. Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling[J]. Journal of Ecology, 2016, 104(6): 1527−1541 doi: 10.1111/1365-2745.12644
    [19]
    XUE Y F, XIA H Y, CHRISTIE P, et al. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review[J]. Annals of Botany, 2016, 117(3): 363−377 doi: 10.1093/aob/mcv182
    [20]
    郭思宇, 王海娟, 王宏镔. 重金属污染土壤间作修复的研究进展[J]. 中国生态农业学报(中英文), 2021, 29(5): 890−902

    GUO S Y, WANG H J, WANG H B. Advances in the intercropping remediation of heavy metal polluted soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(5): 890−902
    [21]
    BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57: 233−266 doi: 10.1146/annurev.arplant.57.032905.105159
    [22]
    ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3(4): 470−480 doi: 10.1038/s41564-018-0129-3
    [23]
    LI L, LI S M, SUN J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192−11196 doi: 10.1073/pnas.0704591104
    [24]
    EL DESSOUGI H, ZU DREELE A, CLAASSEN N. Growth and phosphorus uptake of maize cultivated alone, in mixed culture with other crops or after incorporation of their residues[J]. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 254−261 doi: 10.1002/jpln.200390037
    [25]
    BETENCOURT E, DUPUTEL M, COLOMB B, et al. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil[J]. Soil Biology and Biochemistry, 2012, 46: 181−190
    [26]
    LI S M, LI L, ZHANG F S, et al. Acid phosphatase role in chickpea/maize intercropping[J]. Annals of Botany, 2004, 94(2): 297−303 doi: 10.1093/aob/mch140
    [27]
    LI B, LI Y Y, WU H M, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23): 6496−6501 doi: 10.1073/pnas.1523580113
    [28]
    HU H Y, LI H, HAO M M, et al. Nitrogen fixation and crop productivity enhancements co-driven by intercrop root exudates and key rhizosphere bacteria[J]. Journal of Applied Ecology, 2021, 58(10): 2243−2255 doi: 10.1111/1365-2664.13964
    [29]
    FAN F L, ZHANG F S, SONG Y N, et al. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems[J]. Plant and Soil, 2006, 283(1/2): 275−286
    [30]
    KOBAYASHI T, NOZOYE T, NISHIZAWA N K. Iron transport and its regulation in plants[J]. Free Radical Biology and Medicine, 2019, 133: 11−20 doi: 10.1016/j.freeradbiomed.2018.10.439
    [31]
    GUNES A, INAL A, ADAK M S, et al. Mineral nutrition of wheat, chickpea and lentil as affected by mixed cropping and soil moisture[J]. Nutrient Cycling in Agroecosystems, 2007, 78(1): 83−96 doi: 10.1007/s10705-006-9075-1
    [32]
    ZUO Y M, ZHANG F S, LI X L, et al. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil[J]. Plant and Soil, 2000, 220(1/2): 13−25 doi: 10.1023/A:1004724219988
    [33]
    ZUO Y M, ZHANG F S. Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review[J]. Agronomy for Sustainable Development, 2009, 29(1): 63−71 doi: 10.1051/agro:2008055
    [34]
    KRAEMER S M, CROWLEY D E, KRETZSCHMAR R. Geochemical aspects of phytosiderophore-promoted iron acquisition by plants[J]. Advances in Agronomy, 2006, 91: 1−46
    [35]
    MA J F. Plant root responses to three abundant soil minerals: Silicon, aluminum and iron[J]. Critical Reviews in Plant Sciences, 2005, 24(4): 267−281 doi: 10.1080/07352680500196017
    [36]
    SHEN J B, LI C J, MI G H, et al. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China[J]. Journal of Experimental Botany, 2013, 64(5): 1181−1192 doi: 10.1093/jxb/ers342
    [37]
    邱巍, 王男麒, 代晶, 等. 玉米/花生间作改善花生铁营养的生理及分子机制[J]. 科学通报, 2019, 64(11): 1129−1136 doi: 10.1360/N972018-01214

    QIU W, WANG N Q, DAI J, et al. Physiological and molecular mechanisms of improved iron nutrition of peanut intercropping with maize[J]. Chinese Science Bulletin, 2019, 64(11): 1129−1136 doi: 10.1360/N972018-01214
    [38]
    刘文菊, 张西科, 张福锁. 根分泌物对根际难溶性镉的活化作用及对水稻吸收、运输镉的影响[J]. 生态学报, 2000, 20(3): 448−451 doi: 10.3321/j.issn:1000-0933.2000.03.018

    LIU W J, ZHANG X K, ZHANG F S. The mobilization of root exudates on CdS in rice rhizosphere and their effect on Cd uptake and transport[J]. Acta Ecologica Sinica, 2000, 20(3): 448−451 doi: 10.3321/j.issn:1000-0933.2000.03.018
    [39]
    QIN L, LI Z R, LI B, et al. Organic acid excretion in root exudates as a mechanism of cadmium uptake in a Sonchus asper-Zea mays intercropping system[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6): 1059−1064 doi: 10.1007/s00128-021-03361-x
    [40]
    KOCHIAN L V, PIÑEROS M A, HOEKENGA O A. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity[J]. Plant and Soil, 2005, 274(1/2): 175−195
    [41]
    YOKOSHO K, YAMAJI N, MA J F. An Al-inducible MATE gene is involved in external detoxification of Al in rice[J]. The Plant Journal: for Cell and Molecular Biology, 2011, 68(6): 1061−1069 doi: 10.1111/j.1365-313X.2011.04757.x
    [42]
    CHAI Y N, SCHACHTMAN D P. Root exudates impact plant performance under abiotic stress[J]. Trends in Plant Science, 2022, 27(1): 80−91 doi: 10.1016/j.tplants.2021.08.003
    [43]
    LI J R, XU Y M. Immobilization remediation of Cd-polluted soil with different water condition[J]. Journal of Environmental Management, 2017, 193: 607−612
    [44]
    石圣杰, 莫良玉, 韦昌东, 等. 不同间种模式对作物富集重金属的效率及风险评估[J]. 中国土壤与肥料, 2021(5): 223−231 doi: 10.11838/sfsc.1673-6257.20366

    SHI S J, MO L Y, WEI C D, et al. Efficiency and risk assessment of heavy metal uptake in crops by different intercropping patterns[J]. Soil and Fertilizer Sciences in China, 2021(5): 223−231 doi: 10.11838/sfsc.1673-6257.20366
    [45]
    熊婕, 朱奇宏, 黄道友, 等. 南方典型稻区稻米镉累积量的预测模型研究[J]. 农业环境科学学报, 2019, 38(1): 22−28 doi: 10.11654/jaes.2018-0201

    XIONG J, ZHU Q H, HUANG D Y, et al. Prediction model for the accumulation of cadmium in rice in typical paddy fields of South China[J]. Journal of Agro-Environment Science, 2019, 38(1): 22−28 doi: 10.11654/jaes.2018-0201
    [46]
    闫仁俊, 韩磊, 赵亚萍, 等. 玉米与龙葵间作模式对植物生长及Cd富集特征的影响[J]. 农业环境科学学报, 2020, 39(10): 2162−2171 doi: 10.11654/jaes.2020-0639

    YAN R J, HAN L, ZHAO Y P, et al. Effects of intercropping modes of Zea mays L. and Solanum nigrum L. on plant growth and Cd enrichment characteristics[J]. Journal of Agro-Environment Science, 2020, 39(10): 2162−2171 doi: 10.11654/jaes.2020-0639
    [47]
    秦丽, 何永美, 王吉秀, 等. 续断菊与玉米间作的铅累积及根系低分子量有机酸分泌特征研究[J]. 中国生态农业学报(中英文), 2020, 28(6): 867−875

    QIN L, HE Y M, WANG J X, et al. Lead accumulation and low-molecular-weight organic acids secreted by roots in Sonchus asper L.-Zea mays L. intercropping system[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 867−875
    [48]
    HUANG A C, JIANG T, LIU Y X, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J]. Science, 2019, 364(6440): eaau6389 doi: 10.1126/science.aau6389
    [49]
    EPIHOV D Z, SALTONSTALL K, BATTERMAN S A, et al. Legume-microbiome interactions unlock mineral nutrients in regrowing tropical forests[J]. PNAS, 2021, 118(11): e2022241118 doi: 10.1073/pnas.2022241118
    [50]
    邵梅, 杜魏甫, 许永超, 等. 魔芋玉米间作魔芋根际土壤尖孢镰孢菌和芽孢杆菌种群变化研究[J]. 云南农业大学学报, 2014, 29(6): 828−833

    SHAO M, DU W F, XU Y C, et al. The population change of konjac’s rhizosphere soil Fusarium oxysporum and Bacillus spp. in intercropping of konjac and maize system[J]. Journal of Yunnan Agricultural University, 2014, 29(6): 828−833
    [51]
    宋亚娜, Marschner Petra, 张福锁, 等. 小麦/蚕豆, 玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响[J]. 生态学报, 2006, 26(7): 2268−2274 doi: 10.3321/j.issn:1000-0933.2006.07.028

    SONG Y N, PETRA M, ZHANG F S, et al. Effect of intercropping on bacterial community composition in rhizoshpere of wheat (Triticum aestivum L.), maize (Zea mays L.) and faba bean (Vicia faba L.)[J]. Acta Ecologica Sinica, 2006, 26(7): 2268−2274 doi: 10.3321/j.issn:1000-0933.2006.07.028
    [52]
    REN L X, SU S M, YANG X M, et al. Intercropping with aerobic rice suppressed Fusarium wilt in watermelon[J]. Soil Biology and Biochemistry, 2008, 40(3): 834−844 doi: 10.1016/j.soilbio.2007.11.003
    [53]
    YANG Y X, ZHANG H, FANG Y T, et al. Interference by non-host plant roots and root exudates in the infection processes of Phytophthora nicotianae[J]. Frontiers of Agricultural Science and Engineering, 2021, 8(3): 447−459
    [54]
    YANG M, ZHANG Y, QI L, et al. Plant-plant-microbe mechanisms involved in soil-borne disease suppression on a maize and pepper intercropping system[J]. PLoS One, 2014, 9(12): e115052 doi: 10.1371/journal.pone.0115052
    [55]
    MHLONGO M I, PIATER L A, MADALA N E, et al. The chemistry of plant-microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance[J]. Frontiers in Plant Science, 2018, 9: 112 doi: 10.3389/fpls.2018.00112
    [56]
    LI X G, YANG Z, ZHANG Y N, et al. Atractylodes lancea volatiles induce physiological responses in neighboring peanut plant during intercropping[J]. Plant and Soil, 2020, 453(1/2): 409−422
    [57]
    KONG C H, XUAN T D, KHANH T D, et al. Allelochemicals and signaling chemicals in plants[J]. Molecules (Basel, Switzerland), 2019, 24(15): 2737 doi: 10.3390/molecules24152737
    [58]
    TANG X M, ZHONG R C, JIANG J, et al. Cassava/peanut intercropping improves soil quality via rhizospheric microbes increased available nitrogen contents[J]. BMC Biotechnology, 2020, 20(1): 13 doi: 10.1186/s12896-020-00606-1
    [59]
    CHEN Y, BONKOWSKI M, SHEN Y, et al. Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants[J]. Microbiome, 2020, 8(1): 4 doi: 10.1186/s40168-019-0775-6
    [60]
    BALDWIN I T, HALITSCHKE R, PASCHOLD A, et al. Volatile signaling in plant-plant interactions: “talking trees” in the genomics era[J]. Science, 2006, 311(5762): 812−815 doi: 10.1126/science.1118446
    [61]
    FOMSGAARD I S, MORTENSEN A G, CARLSEN S C K. Microbial transformation products of benzoxazolinone and benzoxazinone allelochemicals — a review[J]. Chemosphere, 2004, 54(8): 1025−1038 doi: 10.1016/j.chemosphere.2003.09.044
    [62]
    MEINERS S J, KONG C H, LADWIG L M, et al. Developing an ecological context for allelopathy[J]. Plant Ecology, 2012, 213(8): 1221−1227 doi: 10.1007/s11258-012-0078-5
    [63]
    MACÍAS F A, MEJÍAS F J, MOLINILLO J M. Recent advances in allelopathy for weed control: from knowledge to applications[J]. Pest Management Science, 2019, 75(9): 2413−2436 doi: 10.1002/ps.5355
    [64]
    BERTIN C, YANG X H, WESTON L A. The role of root exudates and allelochemicals in the rhizosphere[J]. Plant and Soil, 2003, 256(1): 67−83 doi: 10.1023/A:1026290508166
    [65]
    LI L L, ZHAO H H, KONG C H. (-)-Loliolide, the most ubiquitous lactone, is involved in barnyardgrass-induced rice allelopathy[J]. Journal of Experimental Botany, 2019, 71(4): 1540−1550
    [66]
    HU L F, ROBERT C A M, CADOT S, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications, 2018, 9(1): 2738 doi: 10.1038/s41467-018-05122-7
    [67]
    KATO-NOGUCHI H. Effects of four benzoxazinoids on gibberellin-induced α-amylase activity in barley seeds[J]. Journal of Plant Physiology, 2008, 165(18): 1889−1894 doi: 10.1016/j.jplph.2008.04.006
    [68]
    HANHINEVA K, ROGACHEV I, AURA A M, et al. Qualitative characterization of benzoxazinoid derivatives in whole grain rye and wheat by LC-MS metabolite profiling[J]. Journal of Agricultural and Food Chemistry, 2011, 59(3): 921−927 doi: 10.1021/jf103612u
    [69]
    CHEN K J, ZHENG Y Q, KONG C H, et al. 2, 4-Dihydroxy-7-methoxy-1, 4-benzoxazin-3-one (DIMBOA) and 6-methoxy-benzoxazolin-2-one (MBOA) levels in the wheat rhizosphere and their effect on the soil microbial community structure[J]. Journal of Agricultural and Food Chemistry, 2010, 58(24): 12710−12716 doi: 10.1021/jf1032608
    [70]
    KONG C H, ZHANG S Z, LI Y H, et al. Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals[J]. Nature Communications, 2018, 9(1): 3867 doi: 10.1038/s41467-018-06429-1
    [71]
    孔垂华, 胡飞, 王朋. 植物化感(相生相克)作用[M]. 北京: 高等教育出版社, 2016: 5–14

    KONG C H, HU F, WANG P. Allelopathy[M]. Beijing: Higher Education Press, 2016: 5–14
    [72]
    WANG N Q, KONG C H, WANG P, et al. Root exudate signals in plant-plant interactions[J]. Plant, Cell & Environment, 2021, 44(4): 1044−1058
    [73]
    MURATA M, NAKAI Y, KAWAZU K, et al. Loliolide, a carotenoid metabolite, is a potential endogenous inducer of herbivore resistance[J]. Plant Physiology, 2019, 179(4): 1822−1833 doi: 10.1104/pp.18.00837
    [74]
    WANG P, KONG C H, SUN B, et al. Distribution and function of allantoin (5-ureidohydantoin) in rice grains[J]. Journal of Agricultural and Food Chemistry, 2012, 60(11): 2793−2798 doi: 10.1021/jf2051043
    [75]
    XU Y, CHENG H F, KONG C H, et al. Intra-specific kin recognition contributes to inter-specific allelopathy: A case study of allelopathic rice interference with paddy weeds[J]. Plant, Cell & Environment, 2021, 44(12): 3479−3491
    [76]
    XIA Z C, KONG C H, CHEN L C, et al. Allelochemical-mediated soil microbial community in long-term monospecific Chinese fir forest plantations[J]. Applied Soil Ecology, 2015, 96: 52−59 doi: 10.1016/j.apsoil.2015.07.012
    [77]
    董晓民, 高晓兰, 刘伟, 等. 桃连作障碍中自毒作用的研究进展[J]. 黑龙江农业科学, 2021(2): 123−127

    DONG X M, GAO X L, LIU W, et al. Research progress of autotoxicity in continuous cropping obstacle of peach[J]. Heilongjiang Agricultural Sciences, 2021(2): 123−127
    [78]
    张立恒, 杨凤英, 马海峰, 等. 果树连作障碍研究进展[J]. 落叶果树, 2019, 51(3): 28−31

    ZHANG L H, YANG F Y, MA H F, et al. Research progress of fruit tree continuous cropping obstacles[J]. Deciduous Fruits, 2019, 51(3): 28−31
    [79]
    WESTON L A, ALSAADAWI I S, BAERSON S R. Sorghum allelopathy-from ecosystem to molecule[J]. Journal of Chemical Ecology, 2013, 39(2): 142−153 doi: 10.1007/s10886-013-0245-8

Catalog

    Article Metrics

    Article views (5215) PDF downloads (516) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return