Citation: | YIN X T, YANG H, YU R P, LI L. Interspecific below-ground interactions driven by root exudates in agroecosystems with diverse crops[J]. Chinese Journal of Eco-Agriculture, 2022, 30(8): 1215−1227. DOI: 10.12357/cjea.20220150 |
[1] |
LOREAU M, NAEEM S, INCHAUSTI P, et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges[J]. Science, 2001, 294(5543): 804−808 doi: 10.1126/science.1064088
|
[2] |
BROOKER R W, GEORGE T S, HOMULLE Z, et al. Facilitation and biodiversity−ecosystem function relationships in crop production systems and their role in sustainable farming[J]. Journal of Ecology, 2021, 109(5): 2054−2067 doi: 10.1111/1365-2745.13592
|
[3] |
CARDINALE B J, DUFFY J E, GONZALEZ A, et al. Biodiversity loss and its impact on humanity[J]. Nature, 2012, 486(7401): 59−67 doi: 10.1038/nature11148
|
[4] |
YANG H, ZHANG W P, LI L. Intercropping: feed more people and build more sustainable agroecosystems[J]. Frontiers of Agricultural Science and Engineering, 2021, 8(3): 373−386
|
[5] |
RENARD D, TILMAN D. National food production stabilized by crop diversity[J]. Nature, 2019, 571(7764): 257−260 doi: 10.1038/s41586-019-1316-y
|
[6] |
ALIGNIER A, SOLÉ SENAN X O, ROBLEÑO I, et al. Configurational crop heterogeneity increases within‐field plant diversity[J]. Journal of Applied Ecology, 2020, 57(4): 654−663 doi: 10.1111/1365-2664.13585
|
[7] |
YU R P, LAMBERS H, CALLAWAY R M, et al. Belowground facilitation and trait matching: two or three to tango?[J]. Trends in Plant Science, 2021, 26(12): 1227−1235 doi: 10.1016/j.tplants.2021.07.014
|
[8] |
BEGON M, HARPER J L, TOWNSEND C R. Ecology: individuals, populations and communities[J]. Bioscience, 1996, 38(6): 424
|
[9] |
CALLAWAY R M, BROOKER R W, CHOLER P, et al. Positive interactions among alpine plants increase with stress[J]. Nature, 2002, 417(6891): 844−848 doi: 10.1038/nature00812
|
[10] |
SERAINA L, CAPPELLI L A, DOMEIGNOZ H, et al. Plant biodiversity promotes sustainable agriculture directly and via belowground effects[J]. Trends in Plant Science, 2022. https://doi.org/10.1016/j.tplants.2022.02.003
|
[11] |
MA L S, LI Y J, WU P T, et al. Effects of varied water regimes on root development and its relations with soil water under wheat/maize intercropping system[J]. Plant and Soil, 2019, 439(1/2): 113−130
|
[12] |
LI L, TANG C X, RENGEL Z, et al. Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source[J]. Plant and Soil, 2003, 248(1/2): 297−303 doi: 10.1023/A:1022389707051
|
[13] |
张福锁, 申建波, 冯固, 等. 根际生态学——过程与调控[M]. 北京: 中国农业大学出版社, 2008: 34–42
ZHANG F S, SHEN J B, FENG G et al. Rhizosphere Ecology: Processes & Management[M]. Beijing: China Agricultural University Press, 2008: 34–42
|
[14] |
李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望[J]. 中国生态农业学报, 2016, 24(4): 403−415
LI L. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403−415
|
[15] |
孔垂华. 植物种间和种内的化学作用[J]. 应用生态学报, 2020, 31(7): 2141−2150
KONG C H. Inter-specific and intra-specific chemical interactions among plants[J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2141−2150
|
[16] |
HOMULLE Z, GEORGE T S, KARLEY A J. Root traits with team benefits: understanding belowground interactions in intercropping systems[J]. Plant and Soil, 2021, 471(1/2): 1−26
|
[17] |
WALKER T S, BAIS H P, GROTEWOLD E, et al. Root exudation and rhizosphere biology[J]. Plant Physiology, 2003, 132(1): 44−51 doi: 10.1104/pp.102.019661
|
[18] |
CHOMEL M, GUITTONNY-LARCHEVÊQUE M, FERNANDEZ C, et al. Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling[J]. Journal of Ecology, 2016, 104(6): 1527−1541 doi: 10.1111/1365-2745.12644
|
[19] |
XUE Y F, XIA H Y, CHRISTIE P, et al. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review[J]. Annals of Botany, 2016, 117(3): 363−377 doi: 10.1093/aob/mcv182
|
[20] |
郭思宇, 王海娟, 王宏镔. 重金属污染土壤间作修复的研究进展[J]. 中国生态农业学报(中英文), 2021, 29(5): 890−902
GUO S Y, WANG H J, WANG H B. Advances in the intercropping remediation of heavy metal polluted soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(5): 890−902
|
[21] |
BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57: 233−266 doi: 10.1146/annurev.arplant.57.032905.105159
|
[22] |
ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3(4): 470−480 doi: 10.1038/s41564-018-0129-3
|
[23] |
LI L, LI S M, SUN J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192−11196 doi: 10.1073/pnas.0704591104
|
[24] |
EL DESSOUGI H, ZU DREELE A, CLAASSEN N. Growth and phosphorus uptake of maize cultivated alone, in mixed culture with other crops or after incorporation of their residues[J]. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 254−261 doi: 10.1002/jpln.200390037
|
[25] |
BETENCOURT E, DUPUTEL M, COLOMB B, et al. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil[J]. Soil Biology and Biochemistry, 2012, 46: 181−190
|
[26] |
LI S M, LI L, ZHANG F S, et al. Acid phosphatase role in chickpea/maize intercropping[J]. Annals of Botany, 2004, 94(2): 297−303 doi: 10.1093/aob/mch140
|
[27] |
LI B, LI Y Y, WU H M, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23): 6496−6501 doi: 10.1073/pnas.1523580113
|
[28] |
HU H Y, LI H, HAO M M, et al. Nitrogen fixation and crop productivity enhancements co-driven by intercrop root exudates and key rhizosphere bacteria[J]. Journal of Applied Ecology, 2021, 58(10): 2243−2255 doi: 10.1111/1365-2664.13964
|
[29] |
FAN F L, ZHANG F S, SONG Y N, et al. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems[J]. Plant and Soil, 2006, 283(1/2): 275−286
|
[30] |
KOBAYASHI T, NOZOYE T, NISHIZAWA N K. Iron transport and its regulation in plants[J]. Free Radical Biology and Medicine, 2019, 133: 11−20 doi: 10.1016/j.freeradbiomed.2018.10.439
|
[31] |
GUNES A, INAL A, ADAK M S, et al. Mineral nutrition of wheat, chickpea and lentil as affected by mixed cropping and soil moisture[J]. Nutrient Cycling in Agroecosystems, 2007, 78(1): 83−96 doi: 10.1007/s10705-006-9075-1
|
[32] |
ZUO Y M, ZHANG F S, LI X L, et al. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil[J]. Plant and Soil, 2000, 220(1/2): 13−25 doi: 10.1023/A:1004724219988
|
[33] |
ZUO Y M, ZHANG F S. Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review[J]. Agronomy for Sustainable Development, 2009, 29(1): 63−71 doi: 10.1051/agro:2008055
|
[34] |
KRAEMER S M, CROWLEY D E, KRETZSCHMAR R. Geochemical aspects of phytosiderophore-promoted iron acquisition by plants[J]. Advances in Agronomy, 2006, 91: 1−46
|
[35] |
MA J F. Plant root responses to three abundant soil minerals: Silicon, aluminum and iron[J]. Critical Reviews in Plant Sciences, 2005, 24(4): 267−281 doi: 10.1080/07352680500196017
|
[36] |
SHEN J B, LI C J, MI G H, et al. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China[J]. Journal of Experimental Botany, 2013, 64(5): 1181−1192 doi: 10.1093/jxb/ers342
|
[37] |
邱巍, 王男麒, 代晶, 等. 玉米/花生间作改善花生铁营养的生理及分子机制[J]. 科学通报, 2019, 64(11): 1129−1136 doi: 10.1360/N972018-01214
QIU W, WANG N Q, DAI J, et al. Physiological and molecular mechanisms of improved iron nutrition of peanut intercropping with maize[J]. Chinese Science Bulletin, 2019, 64(11): 1129−1136 doi: 10.1360/N972018-01214
|
[38] |
刘文菊, 张西科, 张福锁. 根分泌物对根际难溶性镉的活化作用及对水稻吸收、运输镉的影响[J]. 生态学报, 2000, 20(3): 448−451 doi: 10.3321/j.issn:1000-0933.2000.03.018
LIU W J, ZHANG X K, ZHANG F S. The mobilization of root exudates on CdS in rice rhizosphere and their effect on Cd uptake and transport[J]. Acta Ecologica Sinica, 2000, 20(3): 448−451 doi: 10.3321/j.issn:1000-0933.2000.03.018
|
[39] |
QIN L, LI Z R, LI B, et al. Organic acid excretion in root exudates as a mechanism of cadmium uptake in a Sonchus asper-Zea mays intercropping system[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6): 1059−1064 doi: 10.1007/s00128-021-03361-x
|
[40] |
KOCHIAN L V, PIÑEROS M A, HOEKENGA O A. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity[J]. Plant and Soil, 2005, 274(1/2): 175−195
|
[41] |
YOKOSHO K, YAMAJI N, MA J F. An Al-inducible MATE gene is involved in external detoxification of Al in rice[J]. The Plant Journal: for Cell and Molecular Biology, 2011, 68(6): 1061−1069 doi: 10.1111/j.1365-313X.2011.04757.x
|
[42] |
CHAI Y N, SCHACHTMAN D P. Root exudates impact plant performance under abiotic stress[J]. Trends in Plant Science, 2022, 27(1): 80−91 doi: 10.1016/j.tplants.2021.08.003
|
[43] |
LI J R, XU Y M. Immobilization remediation of Cd-polluted soil with different water condition[J]. Journal of Environmental Management, 2017, 193: 607−612
|
[44] |
石圣杰, 莫良玉, 韦昌东, 等. 不同间种模式对作物富集重金属的效率及风险评估[J]. 中国土壤与肥料, 2021(5): 223−231 doi: 10.11838/sfsc.1673-6257.20366
SHI S J, MO L Y, WEI C D, et al. Efficiency and risk assessment of heavy metal uptake in crops by different intercropping patterns[J]. Soil and Fertilizer Sciences in China, 2021(5): 223−231 doi: 10.11838/sfsc.1673-6257.20366
|
[45] |
熊婕, 朱奇宏, 黄道友, 等. 南方典型稻区稻米镉累积量的预测模型研究[J]. 农业环境科学学报, 2019, 38(1): 22−28 doi: 10.11654/jaes.2018-0201
XIONG J, ZHU Q H, HUANG D Y, et al. Prediction model for the accumulation of cadmium in rice in typical paddy fields of South China[J]. Journal of Agro-Environment Science, 2019, 38(1): 22−28 doi: 10.11654/jaes.2018-0201
|
[46] |
闫仁俊, 韩磊, 赵亚萍, 等. 玉米与龙葵间作模式对植物生长及Cd富集特征的影响[J]. 农业环境科学学报, 2020, 39(10): 2162−2171 doi: 10.11654/jaes.2020-0639
YAN R J, HAN L, ZHAO Y P, et al. Effects of intercropping modes of Zea mays L. and Solanum nigrum L. on plant growth and Cd enrichment characteristics[J]. Journal of Agro-Environment Science, 2020, 39(10): 2162−2171 doi: 10.11654/jaes.2020-0639
|
[47] |
秦丽, 何永美, 王吉秀, 等. 续断菊与玉米间作的铅累积及根系低分子量有机酸分泌特征研究[J]. 中国生态农业学报(中英文), 2020, 28(6): 867−875
QIN L, HE Y M, WANG J X, et al. Lead accumulation and low-molecular-weight organic acids secreted by roots in Sonchus asper L.-Zea mays L. intercropping system[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 867−875
|
[48] |
HUANG A C, JIANG T, LIU Y X, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J]. Science, 2019, 364(6440): eaau6389 doi: 10.1126/science.aau6389
|
[49] |
EPIHOV D Z, SALTONSTALL K, BATTERMAN S A, et al. Legume-microbiome interactions unlock mineral nutrients in regrowing tropical forests[J]. PNAS, 2021, 118(11): e2022241118 doi: 10.1073/pnas.2022241118
|
[50] |
邵梅, 杜魏甫, 许永超, 等. 魔芋玉米间作魔芋根际土壤尖孢镰孢菌和芽孢杆菌种群变化研究[J]. 云南农业大学学报, 2014, 29(6): 828−833
SHAO M, DU W F, XU Y C, et al. The population change of konjac’s rhizosphere soil Fusarium oxysporum and Bacillus spp. in intercropping of konjac and maize system[J]. Journal of Yunnan Agricultural University, 2014, 29(6): 828−833
|
[51] |
宋亚娜, Marschner Petra, 张福锁, 等. 小麦/蚕豆, 玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响[J]. 生态学报, 2006, 26(7): 2268−2274 doi: 10.3321/j.issn:1000-0933.2006.07.028
SONG Y N, PETRA M, ZHANG F S, et al. Effect of intercropping on bacterial community composition in rhizoshpere of wheat (Triticum aestivum L.), maize (Zea mays L.) and faba bean (Vicia faba L.)[J]. Acta Ecologica Sinica, 2006, 26(7): 2268−2274 doi: 10.3321/j.issn:1000-0933.2006.07.028
|
[52] |
REN L X, SU S M, YANG X M, et al. Intercropping with aerobic rice suppressed Fusarium wilt in watermelon[J]. Soil Biology and Biochemistry, 2008, 40(3): 834−844 doi: 10.1016/j.soilbio.2007.11.003
|
[53] |
YANG Y X, ZHANG H, FANG Y T, et al. Interference by non-host plant roots and root exudates in the infection processes of Phytophthora nicotianae[J]. Frontiers of Agricultural Science and Engineering, 2021, 8(3): 447−459
|
[54] |
YANG M, ZHANG Y, QI L, et al. Plant-plant-microbe mechanisms involved in soil-borne disease suppression on a maize and pepper intercropping system[J]. PLoS One, 2014, 9(12): e115052 doi: 10.1371/journal.pone.0115052
|
[55] |
MHLONGO M I, PIATER L A, MADALA N E, et al. The chemistry of plant-microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance[J]. Frontiers in Plant Science, 2018, 9: 112 doi: 10.3389/fpls.2018.00112
|
[56] |
LI X G, YANG Z, ZHANG Y N, et al. Atractylodes lancea volatiles induce physiological responses in neighboring peanut plant during intercropping[J]. Plant and Soil, 2020, 453(1/2): 409−422
|
[57] |
KONG C H, XUAN T D, KHANH T D, et al. Allelochemicals and signaling chemicals in plants[J]. Molecules (Basel, Switzerland), 2019, 24(15): 2737 doi: 10.3390/molecules24152737
|
[58] |
TANG X M, ZHONG R C, JIANG J, et al. Cassava/peanut intercropping improves soil quality via rhizospheric microbes increased available nitrogen contents[J]. BMC Biotechnology, 2020, 20(1): 13 doi: 10.1186/s12896-020-00606-1
|
[59] |
CHEN Y, BONKOWSKI M, SHEN Y, et al. Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants[J]. Microbiome, 2020, 8(1): 4 doi: 10.1186/s40168-019-0775-6
|
[60] |
BALDWIN I T, HALITSCHKE R, PASCHOLD A, et al. Volatile signaling in plant-plant interactions: “talking trees” in the genomics era[J]. Science, 2006, 311(5762): 812−815 doi: 10.1126/science.1118446
|
[61] |
FOMSGAARD I S, MORTENSEN A G, CARLSEN S C K. Microbial transformation products of benzoxazolinone and benzoxazinone allelochemicals — a review[J]. Chemosphere, 2004, 54(8): 1025−1038 doi: 10.1016/j.chemosphere.2003.09.044
|
[62] |
MEINERS S J, KONG C H, LADWIG L M, et al. Developing an ecological context for allelopathy[J]. Plant Ecology, 2012, 213(8): 1221−1227 doi: 10.1007/s11258-012-0078-5
|
[63] |
MACÍAS F A, MEJÍAS F J, MOLINILLO J M. Recent advances in allelopathy for weed control: from knowledge to applications[J]. Pest Management Science, 2019, 75(9): 2413−2436 doi: 10.1002/ps.5355
|
[64] |
BERTIN C, YANG X H, WESTON L A. The role of root exudates and allelochemicals in the rhizosphere[J]. Plant and Soil, 2003, 256(1): 67−83 doi: 10.1023/A:1026290508166
|
[65] |
LI L L, ZHAO H H, KONG C H. (-)-Loliolide, the most ubiquitous lactone, is involved in barnyardgrass-induced rice allelopathy[J]. Journal of Experimental Botany, 2019, 71(4): 1540−1550
|
[66] |
HU L F, ROBERT C A M, CADOT S, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications, 2018, 9(1): 2738 doi: 10.1038/s41467-018-05122-7
|
[67] |
KATO-NOGUCHI H. Effects of four benzoxazinoids on gibberellin-induced α-amylase activity in barley seeds[J]. Journal of Plant Physiology, 2008, 165(18): 1889−1894 doi: 10.1016/j.jplph.2008.04.006
|
[68] |
HANHINEVA K, ROGACHEV I, AURA A M, et al. Qualitative characterization of benzoxazinoid derivatives in whole grain rye and wheat by LC-MS metabolite profiling[J]. Journal of Agricultural and Food Chemistry, 2011, 59(3): 921−927 doi: 10.1021/jf103612u
|
[69] |
CHEN K J, ZHENG Y Q, KONG C H, et al. 2, 4-Dihydroxy-7-methoxy-1, 4-benzoxazin-3-one (DIMBOA) and 6-methoxy-benzoxazolin-2-one (MBOA) levels in the wheat rhizosphere and their effect on the soil microbial community structure[J]. Journal of Agricultural and Food Chemistry, 2010, 58(24): 12710−12716 doi: 10.1021/jf1032608
|
[70] |
KONG C H, ZHANG S Z, LI Y H, et al. Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals[J]. Nature Communications, 2018, 9(1): 3867 doi: 10.1038/s41467-018-06429-1
|
[71] |
孔垂华, 胡飞, 王朋. 植物化感(相生相克)作用[M]. 北京: 高等教育出版社, 2016: 5–14
KONG C H, HU F, WANG P. Allelopathy[M]. Beijing: Higher Education Press, 2016: 5–14
|
[72] |
WANG N Q, KONG C H, WANG P, et al. Root exudate signals in plant-plant interactions[J]. Plant, Cell & Environment, 2021, 44(4): 1044−1058
|
[73] |
MURATA M, NAKAI Y, KAWAZU K, et al. Loliolide, a carotenoid metabolite, is a potential endogenous inducer of herbivore resistance[J]. Plant Physiology, 2019, 179(4): 1822−1833 doi: 10.1104/pp.18.00837
|
[74] |
WANG P, KONG C H, SUN B, et al. Distribution and function of allantoin (5-ureidohydantoin) in rice grains[J]. Journal of Agricultural and Food Chemistry, 2012, 60(11): 2793−2798 doi: 10.1021/jf2051043
|
[75] |
XU Y, CHENG H F, KONG C H, et al. Intra-specific kin recognition contributes to inter-specific allelopathy: A case study of allelopathic rice interference with paddy weeds[J]. Plant, Cell & Environment, 2021, 44(12): 3479−3491
|
[76] |
XIA Z C, KONG C H, CHEN L C, et al. Allelochemical-mediated soil microbial community in long-term monospecific Chinese fir forest plantations[J]. Applied Soil Ecology, 2015, 96: 52−59 doi: 10.1016/j.apsoil.2015.07.012
|
[77] |
董晓民, 高晓兰, 刘伟, 等. 桃连作障碍中自毒作用的研究进展[J]. 黑龙江农业科学, 2021(2): 123−127
DONG X M, GAO X L, LIU W, et al. Research progress of autotoxicity in continuous cropping obstacle of peach[J]. Heilongjiang Agricultural Sciences, 2021(2): 123−127
|
[78] |
张立恒, 杨凤英, 马海峰, 等. 果树连作障碍研究进展[J]. 落叶果树, 2019, 51(3): 28−31
ZHANG L H, YANG F Y, MA H F, et al. Research progress of fruit tree continuous cropping obstacles[J]. Deciduous Fruits, 2019, 51(3): 28−31
|
[79] |
WESTON L A, ALSAADAWI I S, BAERSON S R. Sorghum allelopathy-from ecosystem to molecule[J]. Journal of Chemical Ecology, 2013, 39(2): 142−153 doi: 10.1007/s10886-013-0245-8
|