周静, 汪天, 崔键, 胡锋, 李辉信, 张斌. 红壤水分条件对柑橘叶片氨基酸及多胺含量的影响[J]. 中国生态农业学报(中英文), 2009, 17(1): 85-89. DOI: 10.3724/SP.J.1011.2009.00085
引用本文: 周静, 汪天, 崔键, 胡锋, 李辉信, 张斌. 红壤水分条件对柑橘叶片氨基酸及多胺含量的影响[J]. 中国生态农业学报(中英文), 2009, 17(1): 85-89. DOI: 10.3724/SP.J.1011.2009.00085
ZHOU Jing, WANG Tian, CUI Jian, HU Feng, LI Hui-Xin, ZHANG Bin. Effect of varying red soil moisture on amino acid and polyamine content in citrus (Citrus unshiu Marc.) leaves[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 85-89. DOI: 10.3724/SP.J.1011.2009.00085
Citation: ZHOU Jing, WANG Tian, CUI Jian, HU Feng, LI Hui-Xin, ZHANG Bin. Effect of varying red soil moisture on amino acid and polyamine content in citrus (Citrus unshiu Marc.) leaves[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 85-89. DOI: 10.3724/SP.J.1011.2009.00085

红壤水分条件对柑橘叶片氨基酸及多胺含量的影响

Effect of varying red soil moisture on amino acid and polyamine content in citrus (Citrus unshiu Marc.) leaves

  • 摘要: 本文以第四纪红黏土发育的红壤、2年生宫川温州蜜柑(Citrus unshiu Marc.cv. Miyagawa Wase)盆栽幼树为材料, 采用土壤水分探头(FDR)实时监测土壤水分含量, 控制土壤含水量为SWC30、SWC45、SWC60、SWC75和SWC90 5个处理(分别代表土壤最大田间持水量的30%、45%、60%、75%和90%), 研究土壤水分对柑橘叶片氮含量、氨基酸含量和多胺(PAs)等氮代谢次生产物的影响。结果表明, 缺水和水分过多都会降低柑橘叶片对氮素的吸收。游离氨基酸总量(y)随土壤相对含水量SWC(x)的增加而下降(y =-0.028 2x+12.049; R2=0.852 4*; n=50); Pro含量(y)在SWC≤75%处理的土壤水分条件下, 与SWC(x)呈显著负相关(y =-0.015 2x+4.224; R2=0.860 5*; n=50); 腐胺(Put)含量在SWC75处理时最低; 亚精胺(Spd)含量随土壤水分增加呈抛物线变化, 在SWC45处理时含量最高; 精胺(Spm)含量在土壤水分SWC60处理时最高; Spd含量(y)与Put含量(x)之间呈显著正相关(y =0.240 4x2-51.337x +2 976.4; R2=0.858 6*; n=50); (Spd+Spm)/Put的比值(y)在SWC≤75%的土壤水分条件时, 与SWC(x)呈显著线性相关(y =0.011 2x+0.173; R2=0.851 8*;n=50)。柑橘受土壤水分胁迫时产生的PAs对生理起调节作用的主要是Spd与Spm,(SpdSpm)/Put的比值决定了柑橘受土壤水分胁迫影响的程度,初步提出该比值可能是柑橘响应土壤水分胁迫程度的一个潜在的敏感度指标。

     

    Abstract: In this study, 2-year pot seedlings of satsuma mandarin (Citrus unshiu Marc.cv. Miyagawa Wase) were selected and grown in Quaternary red clay soils to explore how varying soil water content impacts the ecophysiological factors of the citrus plant. Soil water content was monitored in real time by FDR and strictly controlled in five treatments (SWC30, SWC45, SWC60, SWC75 and SWC90) with 30%, 45%, 60%, 75% and 90% soil field capacity, respectively. The study shows that nitrogen accumulation in citrus leaves decreases with scanty or excess SWC. Total free amino acid (y) decreases with increasing SWC(x):y= -0.028 2x+ 12.049; R2= 0.852 4*; n = 50. There is a negative relation between proline(y) and SWC (x) when SWC is below 75%:y = -0.015 2x+4.224; R2 = 0.860 5*; n = 50. Putrescine (Put) reaches the minimum when SWC is 75%. The change in spermidine (Spd) content follows a parabolic curve with increasing SWC, attaining the maximum at 45% SWC. Maximum of spermine (Spm) occurs at 60% SWC. There is a significant relation between Spd(y) and Put(x): y = 0.240 4x2 - 51.337x +2 976.4; R2 = 0.858 6*; n= 50. When SWC drops below 75%, a significant linear relation develops between (Spd+Spm)/Put ratio (y) and SWC(x): y = 0.011 2x+0.173; R2 = 0.851 8*; n = 50. Spd and Spm are the main physiological adjustment factors of polyamine (PAs), which is produced under water stress condition. The degree of the effect of water stress on citrus is determined mainly by (SpdSpm)/Put ratio. This ratio is a crucial index for assessing the effects of soil water stress on citrus plants.

     

/

返回文章
返回