有机和常规管理对茶园土壤固碳的影响以林地为对照

郑玉婷, 黄鑫慧, 李浩, 王彪, 李攀锋, 崔吉晓, 隋鹏, 高旺盛, 陈源泉

郑玉婷, 黄鑫慧, 李浩, 王彪, 李攀锋, 崔吉晓, 隋鹏, 高旺盛, 陈源泉. 有机和常规管理对茶园土壤固碳的影响−以林地为对照[J]. 中国生态农业学报 (中英文), 2024, 32(1): 53−60. DOI: 10.12357/cjea.20230429
引用本文: 郑玉婷, 黄鑫慧, 李浩, 王彪, 李攀锋, 崔吉晓, 隋鹏, 高旺盛, 陈源泉. 有机和常规管理对茶园土壤固碳的影响−以林地为对照[J]. 中国生态农业学报 (中英文), 2024, 32(1): 53−60. DOI: 10.12357/cjea.20230429
ZHENG Y T, HUANG X H, LI H, WANG B, LI P F, CUI J X, SUI P, GAO W S, CHEN Y Q. Effects of organic and conventional management on soil carbon sequestration in tea gardens: comparison with forest land[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 53−60. DOI: 10.12357/cjea.20230429
Citation: ZHENG Y T, HUANG X H, LI H, WANG B, LI P F, CUI J X, SUI P, GAO W S, CHEN Y Q. Effects of organic and conventional management on soil carbon sequestration in tea gardens: comparison with forest land[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 53−60. DOI: 10.12357/cjea.20230429
郑玉婷, 黄鑫慧, 李浩, 王彪, 李攀锋, 崔吉晓, 隋鹏, 高旺盛, 陈源泉. 有机和常规管理对茶园土壤固碳的影响−以林地为对照[J]. 中国生态农业学报 (中英文), 2024, 32(1): 53−60. CSTR: 32371.14.cjea.20230429
引用本文: 郑玉婷, 黄鑫慧, 李浩, 王彪, 李攀锋, 崔吉晓, 隋鹏, 高旺盛, 陈源泉. 有机和常规管理对茶园土壤固碳的影响−以林地为对照[J]. 中国生态农业学报 (中英文), 2024, 32(1): 53−60. CSTR: 32371.14.cjea.20230429
ZHENG Y T, HUANG X H, LI H, WANG B, LI P F, CUI J X, SUI P, GAO W S, CHEN Y Q. Effects of organic and conventional management on soil carbon sequestration in tea gardens: comparison with forest land[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 53−60. CSTR: 32371.14.cjea.20230429
Citation: ZHENG Y T, HUANG X H, LI H, WANG B, LI P F, CUI J X, SUI P, GAO W S, CHEN Y Q. Effects of organic and conventional management on soil carbon sequestration in tea gardens: comparison with forest land[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 53−60. CSTR: 32371.14.cjea.20230429

有机和常规管理对茶园土壤固碳的影响以林地为对照

基金项目: 云南省重大科技专项(202202AE090029)资助
详细信息
    作者简介:

    郑玉婷, 主要研究方向为土壤有机碳和土壤质量研究。E-mail: 15236020632@163.com

    通讯作者:

    陈源泉, 主要研究方向为绿色高效低碳农作制度。E-mail: chenyq@cau.edu.cn

  • 中图分类号: S151.9

Effects of organic and conventional management on soil carbon sequestration in tea gardens: comparison with forest land

Funds: This study was supported by the Key Science and Technology Project of Yunnan Province (202202AE090029)
More Information
  • 摘要:

    为探究有机和常规管理方式对茶园土壤有机碳的影响, 选择云南省普洱市思茅区常规管理茶园、有机管理茶园和附近自然林地3种典型土地利用类型, 通过测定0~20 cm和20~40 cm土层的土壤有机碳(SOC)、易氧化有机碳(EOC)、非活性有机碳(NLOC)、颗粒态有机碳(POC)和矿物结合态有机碳(MOC)含量, 计算土壤各组分有机碳的分配比例以及土壤碳库管理指数(CPMI), 研究3种土地利用方式下土壤有机碳各组分含量和质量的变化特征。结果显示: 1)常规管理茶园的SOC含量和储量分别比自然林地低48.67%~51.94%和27.25%~35.71% (P<0.05), 而有机管理茶园的SOC含量和储量比常规管理茶园分别高52.09%~62.86%、15.54%~20.26% (P<0.05)。2)常规管理茶园的EOC、NLOC、POC和MOC含量均低于自然林地(P<0.05), 而有机管理茶园的EOC、NLOC、POC和MOC含量比常规管理茶园分别高出46.39%~57.89%、54.24%~66.15%、80.87%~121.01%和40.07%~46.28% (P<0.05)。3)与自然林地相比, 常规管理茶园的POC/SOC、NLOC/SOC较低, 有机管理茶园的POC/SOC、NLOC/SOC则高于常规管理茶园。4)常规管理茶园具有较高的CPAI和较低的CPMI, 常规管理茶园的CPMI比自然林地低24.53%~46.12%, 有机管理茶园的CPMI比常规管理茶园高67.88%~100.33%, 其差异均显著(P<0.05)。以上研究结果表明, 与自然林地相比, 常规管理的茶园土壤有机碳含量和土壤碳库质量下降, 存在一定程度的土地退化, 而有机管理是提高茶园土壤碳库质量的有效措施。

    Abstract:

    To explore the effects of organic and conventional management methods on soil organic carbon in tea gardens, we selected three typical land use types in Simao District, Pu’er City, Yunnan Province to carry out the investigation. The three land use types were a conventionally managed tea garden, an organically managed tea garden, and a nearby natural forest land. Based on the land use types, we measured the contents of soil organic carbon (SOC), easily oxidizable organic carbon (EOC), non-liable organic carbon (NLOC), particulate organic carbon (POC), and mineral-associated organic carbon (MOC) in 0−20 cm and 20−40 cm soil layers in three sample plots. We estimated the distribution ratio of the different types of organic carbon in soil and the soil carbon pool management index (CPMI), and analyzed the changes of the content of SOC component and quality of soil carbon pool from the selected land use types. The results were as follows: 1) the content and storage of SOC in the 0–40 cm soil layer of the conventionally managed tea garden were significantly lower than those in the natural forest land by 48.67%−51.94% and 27.25%−35.71% (P<0.05), respectively. The content and storage of SOC in the 0−40 cm soil layer of the organically managed tea garden were respectively 52.09%−62.86% and 15.54%−20.26% higher than those in the conventionally managed tea garden (P<0.05). 2) In the 0–20 cm and 20–40 cm soil layers, the contents of EOC, NLOC, POC, and MOC in the soils from the tea garden under conventional management were significantly lower than those from the natural forest land (P<0.05). The contents of EOC, NLOC, POC, and MOC in the soils from the organically managed tea garden were significantly higher than those from the conventionally managed tea garden (P<0.05), which were higher by 46.39%–57.89%, 54.24%–66.15%, 80.87%–121.01%, and 40.07%–46.28%, respectively. 3) The POC/SOC and NLOC/SOC of the tea garden under conventional management were lower than those of natural forest land, while the POC/SOC and NLOC/SOC of organically managed tea garden were higher than those of conventionally managed tea garden. 4) Conventionally managed tea gardens had high CPAI and low CPMI. The CPMI of conventionally managed tea garden was 24.53%−46.12% lower than that of the natural forest land (P<0.05), and the CPMI of organically managed tea garden was 67.88%−100.33% higher than that of conventionally managed tea garden (P<0.05). The aforementioned results showed that when compared with natural forest land, the reclamation of tea plantations with conventional management measures can reduce SOC content and soil carbon pool quality, resulting in a certain degree of land degradation. Given the limitations of conventional management, organic management is an effective measure for improving the quality of the soil carbon pool in tea plantations.

  • 云南省因其丰富的种质资源和独特的气候优势, 是世界公认的茶树原产地和中国重要的茶叶生产基地[1], 云南省普洱市更是被称为“世界茶源”, 该地区茶树(Camellia sinensis)的种植历史极为悠久, 种植面积、产量、产值均位居云南之首[2]。茶叶是普洱市支柱产业, 茶园是该地区主要的土地利用类型, 多由林地或荒地开垦而来。林地开垦植茶后, 植被类型和耕作管理模式的不同使土壤结构、理化性质和微生物活性发生变化[3], 进而引起土壤质量的改变。长期植茶后, 大量化肥投入和不合理的田间管理措施会导致土壤板结、肥力下降, 对土壤健康产生影响[4-6]。有机农业是可持续发展农业的典范, 它在遵循自然规律和生态学原理的基础上, 采取了一系列可持续发展的农业技术, 恢复土壤肥力, 保护自然环境, 保证了农业的可持续发展和生态系统的良性循环[7]。与常规农业相比, 有机农业强调不施用化肥及化学合成农药, 采用有机肥、生物农药和生物防治, 这必然会对土壤生态环境、土壤质量产生深刻影响[8]

    当前, 国内外在林地开垦对土壤有机碳的影响方面已有诸多研究, 其中部分研究的结果表明[9-10], 林地的开垦行为将导致土壤结构变差, 有机碳含量显著降低。但现有研究大多聚焦于林地转化为耕地后土壤有机碳的变化, 对林地转化为茶园的研究相对较少。对于有机和常规种植下土壤有机碳的差异, 国内外学者也开展了大量的比较研究: Gattinger等[11]对全球范围内典型农业生产气候区有机与常规农业生产系统的74组数据进行对比分析, 发现有机系统可以增加和固定土壤有机碳; 仝利红等[7]研究发现, 与常规种植相比, 有机种植能够显著提高土壤有机碳库容量, 使土壤有机碳含量提高105.53%, 活性有机碳组分含量提高109.30%~230.27%; Melero等[12]和Fließbach等[13]的研究同样表明与常规管理相比, 有机种植使土壤有机碳各组分含量及碳储量显著增加。但是总体来看, 以上研究多在农田、温室中开展, 对于茶园中有机管理和常规管理对土壤有机碳的影响关注较少。茶叶既是重要的经济作物, 也属于常绿木本植物, 具有较强的固碳能力和潜力[14]。Pramanik等[15]的研究表明, 印度东北部茶园可以吸收和固存大气中的CO2, 每公顷茶叶产量对应的温室效应减排潜力高达3.47 kg(CO2)·a−1; 孙小祥等[16]在我国的研究同样表明茶园生态系统是大气碳汇, 平均碳吸收量为30.40 kg(C)·hm−2·a−1; 萧自位等[17]对4种茶园组合模式及纯茶园的碳储量进行了分析, 发现茶园所有碳库中土壤碳库的碳储量占比最大(91.8%~96.0%); 在Phukan等[18]的研究中, 茶龄为7年和17年时, 土壤固碳量分别为27.54~27.97 kg(C)·hm−2·a−1和43.46~48.44 kg(C)·hm−2·a−1。因此, 探索低碳高效的茶园管理模式, 增加茶园土壤碳储量, 必将对减少温室气体排放做出重大贡献。

    因此, 本研究通过对云南省普洱市3种典型样地(自然林地、常规管理茶园、有机管理茶园)进行取样, 测定其土壤有机碳储量以及土壤有机碳各组分含量, 研究对比3种土地利用方式对土壤固碳的影响。

    研究区域位于中国云南省普洱市思茅区鱼塘段(22°71′N, 101°06′E), 海拔为1538~1542 m, 属亚热带季风气候, 2022年5月4日—2023年5月4日平均气温为19.5 ℃, 日最高气温为33 ℃, 日最低温度为6.2 ℃, 年降水量约为1499 mm, 降雨时间主要集中在5—10月。该区域常年无霜, 土壤类型为红壤, 茶树是最主要的经济作物。本研究在野外实地调查的基础上, 选择成土母质相同、地理位置集中、海拔一致、坡向坡度相似的自然林地(NF)、常规管理茶园(CM)、有机管理茶园(OM) 3个采样地点, 其基本概况见表1

    表  1  样地基本信息
    Table  1.  Basic information of the sample plots
    样地类型
    Sample plot type
    地理坐标
    Geographic coordinate
    海拔
    Altitude
    (m)
    土壤pH
    Soil pH
    土壤容重
    Soil bulk density (g·cm−3)
    基本概况
    Basic information
    自然林地
    Natural forest land
    22°71′65′′N;
    101°06′48′′E
    1538.5 4.73 0.96 思茅松(Pinus kesiyas)和西南桦(Betula alnoides)混交林, 林龄超过30年, 林下植被种类丰富, 覆盖度在80%左右
    It is a mixed forest of Pinus kesiyas and Betula alnoides with rich understory vegetation species, the forest age is older than 30 years, and the coverage rate is about 80%
    常规管理茶园
    Conventionally managed tea garden
    22°71′65′′N;
    101°06′48′′E
    1542.3 3.83 1.32 茶龄为20年, 常规管理年限为20年; 每年翻耕、打剪各一次, 施肥两次; 施用茶园常用复合肥, 用除草剂和杀虫剂治理病虫害
    The age of the tea trees is 20 years, and the conventional management period is 20 years. The ploughing and cutting are once a year, and the fertilization is twice a year. Compound fertilizer is commonly used, and herbicides and insecticides are used to control diseases and pests
    有机管理茶园
    Organically managed tea garden
    22°71′47′′N;
    101°06′49′′E
    1541.7 4.07 0.99 茶龄为20年, 常规管理年限为14年, 有机管理年限为6年, 每年翻耕、打剪各一次, 施肥两次; 施用有机肥, 用粘虫板捕虫, 定期进行人工除草, 不施用任何化学药品和激素类物质; 已获得中国、美国和欧盟有机认证
    The age of the tea trees is 20 years. The conventional management period is 14 years, and the organic management period is 6 years. The tillage and cutting are once a year, and the fertilization is twice a year. Organic fertilizer is applied, insects are caught using insect sticky, and weeding is done regularly by hand. There is no chemicals and hormone substances applied. The tea garden has obtained the organic certification from China, United States of America and the European Union
    下载: 导出CSV 
    | 显示表格

    供试土壤于2023年5月采集, 每个样地分别设置3个典型样方, 使用体积为100 cm3的环刀分别采集0~20 cm、20~40 cm两个土层的原状土壤, 以测定土壤容重; 再分别采集两个土层的土壤样品, 去除石块、动植物残体后带回实验室, 经自然风干、研磨、过筛后测定土壤有机碳(SOC)、易氧化有机碳(EOC)和颗粒态有机碳含量(POC)。

    风干土壤样品经研磨过0.25 mm筛, 经10%盐酸酸化后, 用TOC分析仪(Multi N/C 3100, Yena, Germany)测定SOC含量[19]。EOC含量采用高锰酸钾氧化法测定[20], 土壤非活性有机碳(NLOC)含量为SOC与EOC之差。POC含量采用六偏磷酸钠分散法测定[21]: 称取过2 mm筛的风干土10 g, 放入50 mL塑料瓶中, 加入30 mL六偏磷酸钠溶液(5 g∙L−1), 手摇3 min后用恒温振荡器振荡18 h (25 ℃, 90 r∙min−1), 振荡后的土壤悬液过53 μm筛, 并反复用蒸馏水冲洗至滤液无色澄清, 将筛上的土壤颗粒残留物收集到铝盒中60 ℃烘干至恒重(48 h左右), 称重并计算其占全土质量的百分比。将铝盒中烘干土壤收集研磨过0.25 mm筛, 取一定重量样品测定其有机碳含量, 乘以其占全土的百分比计算出POC含量(g·kg−1), 土壤矿物结合态有机碳(MOC)含量为SOC与POC的差值。

    土壤有机碳储量计算公式[22]如下:

    $$ \text{O}{\text{C}}_{\mathrm{s}}={\sum }_{i=1}^{k}(\text{B}{\text{D}}_{i}\times \text{O}{\text{C}}_{i}\times {D}_{i}\times 0.1) $$ (1)

    式中: OCs为土壤有机碳储量(t·hm−2), BDi为第i层土壤容重(g·cm−3), OCi为第i层土壤有机碳含量(g·kg−1), Di为第i层土壤厚度(cm)。

    土壤有机碳组分分配比例计算公式[23]如下:

    $$ {F}_{i}=\frac{\text{O}{\text{C}}_{i}}{\text{SOC}}\times 100 \text{%} $$ (2)

    式中: Fi为土壤有机碳i组分的分配比例(%), OCi为土壤有机碳i组分含量(g·kg−1), SOC为土壤有机碳含量(g·kg−1)。

    以林地土壤为参照土壤, 以EOC为活性有机碳, 根据下列公式进行土壤碳库管理指数的计算[20]:

    $$ \begin{split} &\qquad 碳库活度({\rm{CPA}})=土壤活性有机碳含量/土壤非\\ & 活性有机碳含量 \end{split} $$ (3)
    $$ \begin{split} &\qquad 碳库指数({\rm{CPI}}) = 土壤有机碳含量/参考土壤有机\\ & 碳含量 \end{split} $$ (4)
    $$ \begin{split} &\qquad 碳库活度指数({\rm{CPAI}})=样品碳库活度/参考土壤\\ & 碳库活度 \end{split} $$ (5)
    $$ \begin{split} &\qquad 碳库管理指数({\rm{CPMI}})=碳库指数\times 碳库活度指\\ & 数\times 100 \text{%} \end{split} $$ (6)

    使用SPSS 23.0 软件进行统计分析, 采用单因素方差分析(One-way ANOVA)和多重比较LSD法分析不同样地土壤有机碳储量、土壤有机碳组分含量、土壤碳库指数之间差异的显著性(P<0.05), 用Excel 2019软件作图。

    图1所示, 3个样地的SOC含量和储量在两个土层中的分布状况一致, 均表现为0~20 cm土层高于20~40 cm土层, 在3种土地利用类型中表现为自然林地>有机管理茶园>常规管理茶园。与自然林地相比, 常规管理茶园0~20 cm和20~40 cm土层的SOC含量和储量均显著下降(P<0.05), SOC含量降低48.67%~51.94%, SOC储量降低27.25%~35.71%; 而有机管理茶园两个土层的SOC含量和储量分别比常规管理茶园高出52.09%~62.86%和15.54%~20.26% (P<0.05)。

    图  1  不同样地类型不同深度土壤各组分有机碳含量和储量
    NF: 自然林地; CM: 常规管理茶园; OM: 有机管理茶园。SOC: 土壤有机碳; EOC: 土壤易氧化有机碳; NLOC: 土壤非活性有机碳; POC: 土壤颗粒态有机碳; MOC: 土壤矿物结合态有机碳。不同小写字母表示同种有机碳组分在同一土层不同样地间差异显著(P<0.05)。NF: natural forest land; CM: conventionally managed tea garden; OM: organically managed tea garden. SOC: soil organic carbon; EOC: soil easily oxidizable organic carbon; NLOC: soil non-liable organic carbon; POC: soil particulate organic carbon; MOC: soil mineral-associated organic carbon. Different lowercase letters indicate significant differences of the same organic carbon component in the same soil layer among different plots (P<0.05).
    Figure  1.  Soil organic carbon contents and storages of each component in different soil layers of different sample plot types

    土壤各组分有机碳的含量和储量如图1所示, 基本呈现自然林地>有机管理茶园>常规管理茶园。在0~20 cm土层, 常规管理茶园的EOC、NLOC、POC和MOC含量分别比自然林地低41.25%、51.00%、66.59%和33.86%, NLOC和POC储量分别比自然林地低30.55%和52.64%, 且差异显著(P<0.05)。有机管理茶园的EOC、NLOC、POC、MOC含量和NLOC储量均显著高于常规管理茶园, 分别高46.39%、54.24%、80.87%、40.07%和17.17% (P<0.05)。在20~40 cm土层, 常规管理茶园的EOC、NLOC、POC、MOC含量和储量均显著低于自然林地(P<0.05), 含量降低幅度为30.52%~70.58%, 储量降低幅度为7.06%~60.65%。有机管理茶园的EOC、NLOC、POC、MOC含量和EOC、NLOC、POC储量分别比常规管理茶园高57.89%、66.15%、121.01%、46.28%和16.59%、22.69%、63.20% (P<0.05)。

    图2可知, 3个样地的EOC/SOC、MOC/SOC在两个土层中的分布状况表现为0~20 cm土层低于20~40 cm土层, NLOC/SOC和POC/SOC表现为0~20 cm土层高于20~40 cm土层。在0~20 cm土层中, 自然林地、常规管理茶园、有机管理茶园的EOC/SOC、NLOC/SOC差异不显著; 在20~40 cm土层中, 自然林地的EOC/SOC显著低于常规管理茶园(30.83%)和有机管理茶园(28.67%) (P<0.05), 自然林地的NLOC/SOC分别比常规管理茶园和有机管理茶园高20.44%和18.06%, 且达显著差异水平(P<0.05)。POC/SOC、MOC/SOC在两个土层中的分布状况一致, POC/SOC表现为自然林地>有机管理茶园>常规管理茶园, MOC/SOC表现为常规管理茶园>有机管理茶园>自然林地。

    图  2  不同样地类型不同深度土壤各组分有机碳分配比例
    NF: 自然林地; CM: 常规管理茶园; OM: 有机管理茶园。SOC: 土壤有机碳; EOC: 土壤易氧化有机碳; NLOC: 土壤非活性有机碳; POC: 土壤颗粒态有机碳; MOC: 土壤矿物结合态有机碳。不同小写字母表示同种有机碳组分分配比例在同一土层不同样地间差异显著(P<0.05)。NF: natural forest land; CM: conventionally managed tea garden; OM: organically managed tea garden. SOC: soil organic carbon; EOC: soil easily oxidizable organic carbon; NLOC: soil non-liable organic carbon; POC: soil particulate organic carbon; MOC: soil mineral-associated organic carbon. Different lowercase letters indicate significant differences of proportion of same soil carbon fraction in the same soil layer among different plots (P<0.05).
    Figure  2.  Proportion of different soil carbon fractions in different soil layers from different sample plot types

    表2所示, 3个样地的CPA和CPAI在两个土层中均表现为常规管理茶园>有机管理茶园>自然林地。在0~20 cm土层, 各样地间没有显著差异, 但在20~40 cm土层中, 自然林地的CPA、CPAI显著低于其他两个茶园, 说明自然林地的土壤碳库活度显著低于茶园。

    表  2  不同样地类型的土壤碳库管理指数
    Table  2.  Soil carbon pool management index in different sample plot types
    土层深度 Soil layer (cm)样地类型 Sample plot typeCPACPICPAICPMI
    0~20 NF 0.32±0.07a 1.00a 1.00a 100a
    CM 0.38±0.07a 0.51±0.04b 1.20±0.22a 53.88±4.41b
    OM 0.36±0.10a 0.88±0.18a 1.14±0.30a 107.94±8.93a
    20~40 NF 0.38±0.06b 1.00a 1.00b 100b
    CM 0.66±0.06a 0.47±0.04c 1.73±0.15a 75.47±9.51c
    OM 0.63±0.04a 0.77±0.09b 1.65±0.09a 126.70±13.26a
      NF: 自然林地; CM: 常规管理茶园; OM: 有机管理茶园。CPA: 碳库活度; CPI: 碳库指数; CPAI: 碳库活度指数; CPMI: 碳库管理指数。不同小写字母表示同一土层深度的同一指标在不同样地间差异显著(P<0.05)。NF: natural forest land; CM: conventionally managed tea garden; OM: organically managed tea garden. CPA: carbon pool activity; CPI: carbon pool index; CPAI: carbon pool activity index; CPMI: carbon pool management index. Different lowercase letters indicate significant differences of the same index in the same soil layer among different plots (P<0.05).
    下载: 导出CSV 
    | 显示表格

    在0~20 cm土层中, 常规管理茶园的CPI和CPMI分别比自然林地低49.00%和46.12% (P<0.05), 有机管理茶园的CPI和CPMI分别比常规管理茶园高72.55%和100.33% (P<0.05)。在20~40 cm土层, 常规管理茶园的CPI和CPMI分别比自然林地低53.00%和24.53% (P<0.05), 有机管理茶园的CPI和CPMI分别比常规管理茶园高63.83%和67.88% (P<0.05)。说明自然林地和有机管理茶园的土壤碳库质量明显高于常规管理茶园。

    土壤有机碳库是陆地表面最大的有机碳库, 土壤有机碳的固定及其人为管理对调节全球气候变化和农田生产力具有极为重要的意义[24]。土壤有机碳固持与自身化学性质、土壤微生物代谢、土壤团聚体的保护作用有关。张帅[25]研究表明, 天然乔木林转变为农田导致浅层土壤有机碳储量减少2%~48%, 深层土壤有机碳储量减少12%~22%, 与本研究结果相似。常规管理茶园0~40 cm土层土壤有机碳储量比自然林地低27.25%~35.71%, 一方面, 与自然林地相比, 茶园土壤中源于植物凋落物的有机物质输入量较低; 另一方面, 茶园长期的耕作和人为扰动破坏了土壤结构, 使水稳性团聚体尤其是大团聚体含量急剧减少, 有机碳保护层消失, 加速了土壤有机质的矿化作用[3]

    有机管理茶园的土壤总有机碳储量显著高于常规管理茶园, 0~20 cm土层有机碳储量较常规管理茶园显著提高7.28 t·hm−2 , 20~40 cm土层的有机碳储量显著提高5.18 t·hm−2。一方面, 有机管理茶园利用有机肥代替化肥, 增加了土壤有机物料输入。同时, 有机茶园不使用化学农药和除草剂, 从而提高了土壤酶活性[7]和微生物活性[26], 使其较快地将土壤中输入的有机物料转化为土壤有机质。另一方面, 有机管理模式还能增加土壤微团聚体占比[27], 有效减少土壤中有机碳的分解途径[28], 使土壤储存的有机碳更多且更稳定。

    SOC是土壤系统的基础物质, 参与了土壤的多种物理化学和生物过程, 是控制土壤养分供应能力的重要因子, 其含量及组分的变化是土壤质量演变的重要标志[29-30]。常规管理茶园的SOC总含量和各组分含量均显著低于自然林地, 其中POC含量的变化幅度最大, MOC含量的变化幅度最小。章明奎等[31]的研究也发现, POC对土地利用变化极为敏感, 在林地开垦为桔园和蔬菜地后, POC的下降幅度明显高于非颗粒态有机碳。这是因为POC主要来源于植物生物量和根系分泌物[20], 与自然林地相比, 常规管理茶园减少了新鲜植物残体的输入, 此外POC属于土壤有机碳库中相对易降解、生物活性较高的组分, 在耕作过程中易被分解[32], 而MOC是由小分子有机碳与土壤矿物质结合而形成的, 因受到与矿物相关的化学键的保护较难分解[33], 周转时间较长, 对土地利用方式的变化不如POC敏感。有机管理茶园的SOC、EOC、NLOC、POC和MOC含量显著高于常规管理茶园, POC/SOC的值也高于常规管理茶园, 说明有机管理可以显著提高土壤有机碳含量, 并且能够加快活性有机碳组分的转化[34], 这与梁尧[35]的研究结果一致。

    土壤碳库管理指数(CPMI)综合了人为影响下的土壤碳库和碳库活度两方面的指标, 可有效反映外界条件对土壤中总有机碳和活性有机碳的影响, 进而反映土壤质量的更新或下降程度[36], 其值越大表示土壤碳库质量越高。已有学者以封育林为对照, 计算种植玉米、种植牧草、火烧等处理方式的CPMI, 发现受人为干扰越大则CPMI越低[37], 本研究也得到了相似结果, 即与几乎没有人为干扰的自然林地相比, 常规管理茶园的CPMI显著降低。吴崇书等[38]研究结果同样表明, 林地开垦改为旱作会引起CPMI的明显下降。同时, 有机管理茶园的CPMI显著高于常规管理茶园, 说明有机管理有助于提高土壤碳库管理指数, 改善土壤碳库质量, 这与仝利红等[7]、黄鸿翔等[34]的研究结果一致。本研究还发现, 在20~40 cm土层, 自然林地的CPAI显著低于两个茶园, 说明自然林地的碳库较为稳定, 具有较高的碳固存能力, 有机管理茶园的CPAI略低于常规管理茶园, 说明有机管理模式可以在一定程度上提高土壤碳库的稳定性。

    与自然林地相比, 常规方式管理的茶园土壤固碳能力显著降低, 土壤总有机碳和各组分有机碳含量显著减少, 土壤碳库质量和稳定性显著下降。实行有机管理方式可以弥补常规土地利用方式的不足, 在一定程度上增加茶园土壤的有机碳含量, 提高土壤碳库的稳定性, 改善土壤碳库质量, 促进茶园生态系统可持续发展。

  • 图  1   不同样地类型不同深度土壤各组分有机碳含量和储量

    NF: 自然林地; CM: 常规管理茶园; OM: 有机管理茶园。SOC: 土壤有机碳; EOC: 土壤易氧化有机碳; NLOC: 土壤非活性有机碳; POC: 土壤颗粒态有机碳; MOC: 土壤矿物结合态有机碳。不同小写字母表示同种有机碳组分在同一土层不同样地间差异显著(P<0.05)。NF: natural forest land; CM: conventionally managed tea garden; OM: organically managed tea garden. SOC: soil organic carbon; EOC: soil easily oxidizable organic carbon; NLOC: soil non-liable organic carbon; POC: soil particulate organic carbon; MOC: soil mineral-associated organic carbon. Different lowercase letters indicate significant differences of the same organic carbon component in the same soil layer among different plots (P<0.05).

    Figure  1.   Soil organic carbon contents and storages of each component in different soil layers of different sample plot types

    图  2   不同样地类型不同深度土壤各组分有机碳分配比例

    NF: 自然林地; CM: 常规管理茶园; OM: 有机管理茶园。SOC: 土壤有机碳; EOC: 土壤易氧化有机碳; NLOC: 土壤非活性有机碳; POC: 土壤颗粒态有机碳; MOC: 土壤矿物结合态有机碳。不同小写字母表示同种有机碳组分分配比例在同一土层不同样地间差异显著(P<0.05)。NF: natural forest land; CM: conventionally managed tea garden; OM: organically managed tea garden. SOC: soil organic carbon; EOC: soil easily oxidizable organic carbon; NLOC: soil non-liable organic carbon; POC: soil particulate organic carbon; MOC: soil mineral-associated organic carbon. Different lowercase letters indicate significant differences of proportion of same soil carbon fraction in the same soil layer among different plots (P<0.05).

    Figure  2.   Proportion of different soil carbon fractions in different soil layers from different sample plot types

    表  1   样地基本信息

    Table  1   Basic information of the sample plots

    样地类型
    Sample plot type
    地理坐标
    Geographic coordinate
    海拔
    Altitude
    (m)
    土壤pH
    Soil pH
    土壤容重
    Soil bulk density (g·cm−3)
    基本概况
    Basic information
    自然林地
    Natural forest land
    22°71′65′′N;
    101°06′48′′E
    1538.5 4.73 0.96 思茅松(Pinus kesiyas)和西南桦(Betula alnoides)混交林, 林龄超过30年, 林下植被种类丰富, 覆盖度在80%左右
    It is a mixed forest of Pinus kesiyas and Betula alnoides with rich understory vegetation species, the forest age is older than 30 years, and the coverage rate is about 80%
    常规管理茶园
    Conventionally managed tea garden
    22°71′65′′N;
    101°06′48′′E
    1542.3 3.83 1.32 茶龄为20年, 常规管理年限为20年; 每年翻耕、打剪各一次, 施肥两次; 施用茶园常用复合肥, 用除草剂和杀虫剂治理病虫害
    The age of the tea trees is 20 years, and the conventional management period is 20 years. The ploughing and cutting are once a year, and the fertilization is twice a year. Compound fertilizer is commonly used, and herbicides and insecticides are used to control diseases and pests
    有机管理茶园
    Organically managed tea garden
    22°71′47′′N;
    101°06′49′′E
    1541.7 4.07 0.99 茶龄为20年, 常规管理年限为14年, 有机管理年限为6年, 每年翻耕、打剪各一次, 施肥两次; 施用有机肥, 用粘虫板捕虫, 定期进行人工除草, 不施用任何化学药品和激素类物质; 已获得中国、美国和欧盟有机认证
    The age of the tea trees is 20 years. The conventional management period is 14 years, and the organic management period is 6 years. The tillage and cutting are once a year, and the fertilization is twice a year. Organic fertilizer is applied, insects are caught using insect sticky, and weeding is done regularly by hand. There is no chemicals and hormone substances applied. The tea garden has obtained the organic certification from China, United States of America and the European Union
    下载: 导出CSV

    表  2   不同样地类型的土壤碳库管理指数

    Table  2   Soil carbon pool management index in different sample plot types

    土层深度 Soil layer (cm)样地类型 Sample plot typeCPACPICPAICPMI
    0~20 NF 0.32±0.07a 1.00a 1.00a 100a
    CM 0.38±0.07a 0.51±0.04b 1.20±0.22a 53.88±4.41b
    OM 0.36±0.10a 0.88±0.18a 1.14±0.30a 107.94±8.93a
    20~40 NF 0.38±0.06b 1.00a 1.00b 100b
    CM 0.66±0.06a 0.47±0.04c 1.73±0.15a 75.47±9.51c
    OM 0.63±0.04a 0.77±0.09b 1.65±0.09a 126.70±13.26a
      NF: 自然林地; CM: 常规管理茶园; OM: 有机管理茶园。CPA: 碳库活度; CPI: 碳库指数; CPAI: 碳库活度指数; CPMI: 碳库管理指数。不同小写字母表示同一土层深度的同一指标在不同样地间差异显著(P<0.05)。NF: natural forest land; CM: conventionally managed tea garden; OM: organically managed tea garden. CPA: carbon pool activity; CPI: carbon pool index; CPAI: carbon pool activity index; CPMI: carbon pool management index. Different lowercase letters indicate significant differences of the same index in the same soil layer among different plots (P<0.05).
    下载: 导出CSV
  • [1] 何雨芩, 张茂松, 黄成兵, 等. 基于GIS的云南省茶树种植气候适宜性区划[J]. 安徽农业科学, 2015, 43(25): 218−221 doi: 10.3969/j.issn.0517-6611.2015.25.080

    HE Y Q, ZHANG M S, HUANG C B, et al. Study on the climatic suitability division of planting tea in Yunnan Province based on GIS[J]. Journal of Anhui Agricultural Sciences, 2015, 43(25): 218−221 doi: 10.3969/j.issn.0517-6611.2015.25.080

    [2] 曾小力. 普洱市茶产业发展问题研究[J]. 新丝路(下旬), 2016(3): 31−32

    ZENG X L. Study on the development of Pu’er tea industry[J]. New Silk Road, 2016(3): 31−32

    [3] 陈玉真, 王峰, 吴志丹, 等. 林地转变为茶园对土壤团聚体及渗透性能的影响[J]. 水土保持学报, 2018, 32(5): 134−139

    CHEN Y Z, WANG F, WU Z D, et al. Effects of conversion from forestland into tea garden on soil aggregate and infiltration capability[J]. Journal of Soil and Water Conservation, 2018, 32(5): 134−139

    [4] 付丽军, 张爱敏, 王向东, 等. 生物有机肥改良设施蔬菜土壤的研究进展[J]. 中国土壤与肥料, 2017(3): 1−5 doi: 10.11838/sfsc.20170301

    FU L J, ZHANG A M, WANG X D, et al. Advances on application of bio organic fertilizer for restoring facility vegetable soil[J]. Soil and Fertilizer Sciences in China, 2017(3): 1−5 doi: 10.11838/sfsc.20170301

    [5]

    LI J, WEN Y C, LI X H, et al. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain[J]. Soil and Tillage Research, 2018, 175: 281−290 doi: 10.1016/j.still.2017.08.008

    [6]

    JÓZEFOWSKA A, LOAIZA-USUGA J C, SCHMIDT O. Consequences of land-use changes for soil quality and function, with a focus on the EU and Latin America[M]//Climate Change and Soil Interactions. Amsterdam: Elsevier, 2020: 207–228

    [7] 仝利红, 蒋珊, 祝凌, 等. 有机种植对温室土壤有机碳库和酶活性的影响[J]. 中国土壤与肥料, 2020(6): 75−82 doi: 10.11838/sfsc.1673-6257.19519

    TONG L H, JIANG S, ZHU L, et al. Effects of organic planting on soil carbon pool and enzyme activity in greenhouse[J]. Soil and Fertilizer Sciences in China, 2020(6): 75−82 doi: 10.11838/sfsc.1673-6257.19519

    [8] 王磊, 杨静, 席运官, 等. 有机耕作方式对我国南方典型土壤质量影响的评价[J]. 生态与农村环境学报, 2017, 33(6): 564−570 doi: 10.11934/j.issn.1673-4831.2017.06.011

    WANG L, YANG J, XI Y G, et al. Assessment of quality of soils under organic farming in South China[J]. Journal of Ecology and Rural Environment, 2017, 33(6): 564−570 doi: 10.11934/j.issn.1673-4831.2017.06.011

    [9] 连玉珍, 刘合满, 曹丽花, 等. 西藏林芝不同土地利用方式的土壤团聚体及其有机碳分布[J]. 浙江农业学报, 2019, 31(8): 1353−1360 doi: 10.3969/j.issn.1004-1524.2019.08.17

    LIAN Y Z, LIU H M, CAO L H, et al. Distribution of soil aggregate and organic carbon under different land use types in Linzhi, Tibet[J]. Acta Agriculturae Zhejiangensis, 2019, 31(8): 1353−1360 doi: 10.3969/j.issn.1004-1524.2019.08.17

    [10]

    BERIHU T, GIRMAY G, SEBHATLEAB M, et al. Soil carbon and nitrogen losses following deforestation in Ethiopia[J]. Agronomy for Sustainable Development, 2017, 37(1): 1−12 doi: 10.1007/s13593-016-0408-4

    [11]

    GATTINGER A, MULLER A, HAENI M, et al. Enhanced top soil carbon stocks under organic farming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(44): 18226−18231

    [12]

    MELERO S, PORRAS J C R, HERENCIA J F, et al. Chemical and biochemical properties in a silty loam soil under conventional and organic management[J]. Soil and Tillage Research, 2006, 90(1/2): 162−170

    [13]

    FLIEßBACH A, OBERHOLZER H R, GUNST L, et al. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming[J]. Agriculture, Ecosystems & Environment, 2007, 118(1/2/3/4): 273−284

    [14] 阮建云. 茶园生态系统固碳潜力及低碳茶叶生产技术[J]. 中国茶叶, 2010, 32(7): 6−9 doi: 10.3969/j.issn.1000-3150.2010.07.001

    RUAN J Y. Carbon sequestration potential of tea garden ecosystem and low-carbon tea production technology[J]. China Tea, 2010, 32(7): 6−9 doi: 10.3969/j.issn.1000-3150.2010.07.001

    [15]

    PRAMANIK P, MANABJYOTI P. Assimilating atmospheric carbon dioxide in tea gardens of northeast India[J]. Journal of Environmental Management, 2020, 256: 109912 doi: 10.1016/j.jenvman.2019.109912

    [16] 孙小祥, 杨桂山, 徐昔保. 太湖流域西部丘陵区茶园生态系统碳通量特征[J]. 生态学杂志, 2014, 33(8): 2072−2077

    SUN X X, YANG G S, XU X B. Characteristics of carbon fluxes for tea garden ecosystems in the hills of western Lake Taihu Basin, China[J]. Chinese Journal of Ecology, 2014, 33(8): 2072−2077

    [17] 萧自位, 王丽娟, 毛加梅, 等. 西双版纳不同林茶复合生态系统碳储量[J]. 生态学杂志, 2012, 31(7): 1617−1625 doi: 10.13292/j.1000-4890.2012.0277

    XIAO Z W, WANG L J, MAO J M, et al. Carbon storage of different tree-tea agroforestry systems in Xishuangbanna, Yunnan Province of Southwest China[J]. Chinese Journal of Ecology, 2012, 31(7): 1617−1625 doi: 10.13292/j.1000-4890.2012.0277

    [18]

    PHUKAN M, SAVAPONDIT D, HAZRA A, et al. Algorithmic derivation of CO2 assimilation based on some physiological parameters of tea bushes in North-East India[J]. Ecological Indicators, 2018, 91: 77−83 doi: 10.1016/j.ecolind.2018.03.091

    [19] 兰景权. 基于总有机碳分析仪的土壤有机质测定研究[J]. 海峡科学, 2021(10): 40−42 doi: 10.3969/j.issn.1673-8683.2021.10.009

    LAN J Q. Determination of soil organic matter based on total organic carbon analyzer[J]. Straits Science, 2021(10): 40−42 doi: 10.3969/j.issn.1673-8683.2021.10.009

    [20]

    BLAIR G J, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459 doi: 10.1071/AR9951459

    [21]

    CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777−783 doi: 10.2136/sssaj1992.03615995005600030017x

    [22] 姜勇, 张玉革, 梁文举, 等. 潮棕壤不同利用方式有机碳剖面分布及碳储量[J]. 中国农业科学, 2005, 38(3): 544−550 doi: 10.3321/j.issn:0578-1752.2005.03.018

    JIANG Y, ZHANG Y G, LIANG W J, et al. Profile distribution and storage of soil organic carbon in an aquic brown soil as affected by land use[J]. Scientia Agricultura Sinica, 2005, 38(3): 544−550 doi: 10.3321/j.issn:0578-1752.2005.03.018

    [23] 唐国勇, 李昆, 孙永玉, 等. 干热河谷不同利用方式下土壤活性有机碳含量及其分配特征[J]. 环境科学, 2010, 31(5): 1365−1371 doi: 10.13227/j.hjkx.2010.05.041

    TANG G Y, LI K, SUN Y Y, et al. Soil labile organic carbon contents and their allocation characteristics under different land uses at dry-hot valley[J]. Environmental Science, 2010, 31(5): 1365−1371 doi: 10.13227/j.hjkx.2010.05.041

    [24] 徐英德. 基于保护性农业的土壤固碳过程研究进展[J]. 中国生态农业学报(中英文), 2022, 30(4): 658−670 doi: 10.12357/cjea.20210889

    XU Y D. Conservation agriculture-mediated soil carbon sequestration: a review[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 658−670 doi: 10.12357/cjea.20210889

    [25] 张帅. 黄土丘陵区深层土壤有机碳对土地利用变化的响应[D]. 北京: 中国科学院大学, 2015

    ZHANG S. Response of soil organic carbon in deep layer to land use changes on the hilly Loess Plateau[D]. Beijing: University of Chinese Academy of Sciences, 2015

    [26] 汪润池, 宗良纲, 邱晓蕾, 等. 有机与常规种植蔬菜地土壤微生物群落特征的比较[J]. 南京农业大学学报, 2012, 35(2): 99−104 doi: 10.7685/j.issn.1000-2030.2012.02.017

    WANG R C, ZONG L G, QIU X L, et al. Comparison of soil microbial community characteristics of organic and conventional vegetable fields[J]. Journal of Nanjing Agricultural University, 2012, 35(2): 99−104 doi: 10.7685/j.issn.1000-2030.2012.02.017

    [27] 邱晓蕾, 宗良纲, 刘一凡, 等. 不同种植模式对土壤团聚体及有机碳组分的影响[J]. 环境科学, 2015(3): 1045−1052 doi: 10.13227/j.hjkx.2015.03.038

    QIU X L, ZONG L G, LIU Y F, et al. Effects of different planting patterns on soil aggregates and organic carbon components[J]. Environmental Science, 2015(3): 1045−1052 doi: 10.13227/j.hjkx.2015.03.038

    [28]

    FOEREID B, HØGH-JENSEN H. Carbon sequestration potential of organic agriculture in northern Europe—A modelling approach[J]. Nutrient Cycling in Agroecosystems, 2004, 68(1): 13−24 doi: 10.1023/B:FRES.0000012231.89516.80

    [29] 孔樟良. 浙西北茶园土壤固碳能力及其不同形态有机碳的积累特点[J]. 浙江大学学报(农业与生命科学版), 2016, 42(2): 209−219

    KONG Z L. Carbon sequestration potential of tea garden soil in northwest Zhejiang and its accumulation characteristic on different fractions of organic carbon[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 209−219

    [30]

    LIU M Y, LI P, LIU M M, et al. The trend of soil organic carbon fractions related to the successions of different vegetation types on the tableland of the Loess Plateau of China[J]. Journal of Soils and Sediments, 2021, 21(1): 203−214 doi: 10.1007/s11368-020-02710-3

    [31] 章明奎, 郑顺安, 王丽平. 利用方式对砂质土壤有机碳、氮和磷的形态及其在不同大小团聚体中分布的影响[J]. 中国农业科学, 2007, 40(8): 1703−1711 doi: 10.3321/j.issn:0578-1752.2007.08.016

    ZHANG M K, ZHENG S A, WANG L P. Chemical forms and distributions of organic carbon, nitrogen and phosphorus in sandy soil aggregate fractions as affected by land uses[J]. Scientia Agricultura Sinica, 2007, 40(8): 1703−1711 doi: 10.3321/j.issn:0578-1752.2007.08.016

    [32] 王阳, 章明奎. 不同类型林地土壤颗粒态有机碳和黑碳的分布特征[J]. 浙江大学学报(农业与生命科学版), 2011, 37(2): 193−202

    WANG Y, ZHANG M K. Distribution characters of particulate organic carbon and black carbon in soils under different forestry vegetations[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(2): 193−202

    [33]

    LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology, 2020, 26(1): 261−273 doi: 10.1111/gcb.14859

    [34] 黄鸿翔, 李书田, 李向林, 等. 我国有机肥的现状与发展前景分析[J]. 土壤肥料, 2006(1): 3−8

    HUANG H X, LI S T, LI X L, et al. Analysis on the status of organic fertilizer and its development strategies in China[J]. Soil and Fertilizer Sciences in China, 2006(1): 3−8

    [35] 梁尧. 有机培肥对黑土有机质消长及其组分与结构的影响[D]. 北京: 中国科学院大学, 2012

    LIANG Y. Effects of organic fertilization on the growth and decline of organic matter and its composition and structure in black soil[D]. Beijing: University of Chinese Academy of Sciences, 2012

    [36] 宋小艳, 张丹桔, 张健, 等. 马尾松(Pinus massoniana)人工林林窗对土壤不同形态活性有机碳的影响[J]. 生态学报, 2015, 35(16): 5393−5402

    SONG X Y, ZHANG D J, ZHANG J, et al. Effects of gap size in Pinus massoniana plantations on different soil labile organic carbon fractions[J]. Acta Ecologica Sinica, 2015, 35(16): 5393−5402

    [37] 张亚杰, 钱慧慧, 李伏生, 等. 不同土地管理和利用方式喀斯特坡地养分和碳库管理指数的差异[J]. 中国岩溶, 2016, 35(1): 27−35 doi: 10.11932/karst20160105

    ZHANG Y J, QIAN H H, LI F S, et al. Differences in soil nutrient and carbon pool management index under different land management and utilization modes in karst slope region[J]. Carsologica Sinica, 2016, 35(1): 27−35 doi: 10.11932/karst20160105

    [38] 吴崇书, 谢国雄, 章明奎. 农艺措施与土地利用方式转变对土壤碳库管理指数的影响[J]. 浙江农业学报, 2015, 27(4): 611−617 doi: 10.3969/j.issn.1004-1524.2015.04.17

    WU C S, XIE G X, ZHANG M K. Effects of agricultural practices and land use transformation on soil carbon management index[J]. Acta Agriculturae Zhejiangensis, 2015, 27(4): 611−617 doi: 10.3969/j.issn.1004-1524.2015.04.17

  • 期刊类型引用(2)

    1. 苟宁倢,李冰,王昌全,钟文挺,王科,孙娟. 成都平原稻蒜轮作年限对土壤养分及有机碳库稳定性的影响. 土壤通报. 2024(06): 1657-1665 . 百度学术
    2. 代依涵,黄兴成,刘彦伶,陈卓,陈兴良,张雅蓉,杨叶华,朱华清,熊涵,李渝,蒋太明. 有机肥氮替代化肥氮对茶叶产量和品质及土壤肥力的影响. 中国土壤与肥料. 2024(11): 130-135 . 百度学术

    其他类型引用(4)

图(2)  /  表(2)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  136
  • PDF下载量:  91
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-08-03
  • 修回日期:  2023-09-05
  • 录用日期:  2023-09-12
  • 网络出版日期:  2023-09-10
  • 刊出日期:  2024-01-15

目录

/

返回文章
返回