AHLs介导的群体感应和群体淬灭对植物-根际微生物相互作用的影响

张清旭, 李建鹃, 郭玥, 王炎炎, 彭艳晖, 王裕华, 胡明玥, 林文雄, 吴则焰

张清旭, 李建鹃, 郭玥, 王炎炎, 彭艳晖, 王裕华, 胡明玥, 林文雄, 吴则焰. AHLs介导的群体感应和群体淬灭对植物-根际微生物相互作用的影响[J]. 中国生态农业学报 (中英文), 2024, 32(1): 1−14. DOI: 10.12357/cjea.20230414
引用本文: 张清旭, 李建鹃, 郭玥, 王炎炎, 彭艳晖, 王裕华, 胡明玥, 林文雄, 吴则焰. AHLs介导的群体感应和群体淬灭对植物-根际微生物相互作用的影响[J]. 中国生态农业学报 (中英文), 2024, 32(1): 1−14. DOI: 10.12357/cjea.20230414
ZHANG Q X, LI J J, GUO Y, WANG Y Y, PENG Y H, WANG Y H, HU M Y, LIN W X, WU Z Y. Effects of quorum sensing and quorum quenching mediated by AHLs on plant-rhizosphere microbial interactions[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 1−14. DOI: 10.12357/cjea.20230414
Citation: ZHANG Q X, LI J J, GUO Y, WANG Y Y, PENG Y H, WANG Y H, HU M Y, LIN W X, WU Z Y. Effects of quorum sensing and quorum quenching mediated by AHLs on plant-rhizosphere microbial interactions[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 1−14. DOI: 10.12357/cjea.20230414
张清旭, 李建鹃, 郭玥, 王炎炎, 彭艳晖, 王裕华, 胡明玥, 林文雄, 吴则焰. AHLs介导的群体感应和群体淬灭对植物-根际微生物相互作用的影响[J]. 中国生态农业学报 (中英文), 2024, 32(1): 1−14. CSTR: 32371.14.cjea.20230414
引用本文: 张清旭, 李建鹃, 郭玥, 王炎炎, 彭艳晖, 王裕华, 胡明玥, 林文雄, 吴则焰. AHLs介导的群体感应和群体淬灭对植物-根际微生物相互作用的影响[J]. 中国生态农业学报 (中英文), 2024, 32(1): 1−14. CSTR: 32371.14.cjea.20230414
ZHANG Q X, LI J J, GUO Y, WANG Y Y, PENG Y H, WANG Y H, HU M Y, LIN W X, WU Z Y. Effects of quorum sensing and quorum quenching mediated by AHLs on plant-rhizosphere microbial interactions[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 1−14. CSTR: 32371.14.cjea.20230414
Citation: ZHANG Q X, LI J J, GUO Y, WANG Y Y, PENG Y H, WANG Y H, HU M Y, LIN W X, WU Z Y. Effects of quorum sensing and quorum quenching mediated by AHLs on plant-rhizosphere microbial interactions[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 1−14. CSTR: 32371.14.cjea.20230414

AHLs介导的群体感应和群体淬灭对植物-根际微生物相互作用的影响

基金项目: 国家自然科学基金项目(31500443)、福建省自然科学基金项目(2022J01139)、福建省财政林业科技研究项目(2023FKJ26)、福建农林大学科技创新专项(KFb22046XA, KJb22019XA)和福建农林大学生态学一流学科建设项目资助
详细信息
    作者简介:

    张清旭, 主要研究方向为森林生态学和分子生态学。E-mail: zqx19940817@163.com

    通讯作者:

    吴则焰, 主要研究方向为森林生态学和分子生态学。E-mail: wuzeyan0977@126.com

  • 中图分类号: S154.4

Effects of quorum sensing and quorum quenching mediated by AHLs on plant-rhizosphere microbial interactions

Funds: This study was supported by the National Natural Science Foundation of China (31500443), Fujian Provincial Natural Science Foundation (2022J01139), Fujian Provincial Finance and Forestry Science and Technology Research Project (2023FKJ26), Fujian Agriculture and Forestry University Science and Technology Innovation Project (KFb22046XA, KJb22019XA), and Fujian Agriculture and Forestry University First-class Ecological Discipline Construction Project.
More Information
  • 摘要:

    根际是由植物根系和土壤微生物之间相互作用形成的一种特殊环境, 根际微生物群落的宏基因组是植物微生物组的重要组成部分。植物与根际微生物之间的相互作用是一个复杂的过程。在根际环境中, 微生物群落利用复杂的种内和种间信号传导机制招募特定的微生物, 协调并控制混合群落的行为, 从而影响植物的生长发育和健康。根际微生物能够自发产生、释放特定的信号分子, 并能感知其浓度变化, 从而调节微生物的群体行为, 这一调控系统称为群体感应(quorum sensing, QS)。QS系统的特征是合成和释放特定的信号分子。根际土壤细菌中存在多种QS信号分子, 如N-酰基高丝氨酸内酯(AHLs)、二酮哌嗪、扩散信号因子、次生代谢物、植物激素类分子等。AHLs作为细菌中被广泛研究的QS信号分子, 在植物与根际微生物的相互作用中发挥重要作用。本文综述了AHLs介导的群体感应机制, 并讨论了AHLs在植物与根际微生物相互作用中的调节作用, 包括AHLs对植物的生长发育、逆境耐受性和抗病性等方面的有益影响, 以及AHLs介导的QS系统调控导致的根际致病菌对植物的有害影响, 同时还探讨了基于AHLs的群体淬灭对植物-根际微生物相互作用的影响, 以期为植物健康与农业生产提供新的思路和方法, 推动可持续农业的发展。

    Abstract:

    The rhizosphere is a unique environment that arises from the interaction between plant roots and soil microorganisms. The metagenome of the microbial community in the rhizosphere plays a crucial role in shaping the plant microbiome. The interaction between plants and rhizosphere microorganisms is a complex process. In the rhizosphere environment, the microbial community recruits specific microorganisms through intricate signaling mechanisms within and between species. This coordination and control of the mixed community ultimately impacts the growth, development and health of plants. From an academic perspective, rhizosphere signaling mechanisms can be categorized into three primary types. Firstly, plants transmit signals to microorganisms by secreting low molecular weight molecules. Secondly, there is inter- and intraspecific microbial signaling. Lastly, microorganisms transmit signals to plants through compounds they produce. Rhizosphere microbes utilize quorum sensing (QS) to autonomously generate and release distinct signaling molecules, enabling them to detect variations in their concentrations and thereby regulate microbial quorum behavior. QS is a bacterial intercellular communication mechanism that regulates the expression of numerous bacterial genes, which are involved in various plant-microbe interactions. These interactions encompass functions such as biofilm formation, nitrogen fixation, hydrolysis, enzyme and extracellular polysaccharide synthesis, toxin production, cell movement, and intercellular connectivity. QS systems are characterized by the synthesis and release of specific signaling molecules. This process is crucial in rhizosphere communication as it enables the transmission of inter- and intraspecific information through the necessary signaling molecules. Due to the high density and diversity of rhizosphere bacteria, the rhizosphere may facilitate the transmission of QS signals. Additionally, these signaling molecules aid in the colonization of plant root surfaces or other rhizosphere-related areas by rhizosphere bacteria through gene expression mediated by QS. Recent research has revealed the presence of N-acyl-homoserine lactones (AHLs), diketopiperazines, diffusible signaling factor, secondary metabolites, phytohormonelike molecules and other QS signaling molecules in rhizosphere soil bacteria. AHLs are the most extensively studied quorum sensing signaling molecules in bacteria. They not only mediate bacterial quorum sensing, but also have a significant impact on the interaction between plants and rhizosphere microorganisms. This includes the colonization of rhizosphere microorganisms, the maintenance of soil ecosystems and the effects on plant growth. An in-depth understanding of the quorum sensing mechanism mediated by AHLs holds significant importance in promoting agricultural production, enhancing plant health, and fostering sustainable development. This article presents a review of the quorum sensing mechanism mediated by AHLs and discusses the regulatory role of AHLs in the interaction between plants and rhizosphere microorganisms. It explores the beneficial effects of AHLs on plant growth and development, stress tolerance and disease resistance, as well as the harmful effects of rhizosphere pathogenic bacteria on plants due to AHLs-mediated regulation of the QS system. Additionally, the article explores the impact of AHLs-based quorum quenching on plant-rhizosphere microbial interactions, aiming to provide valuable insights for plant health and agricultural production. The article also proposes new ideas and methods to promote the development of sustainable agriculture.

  • 根际是由植物根系和土壤微生物之间相互作用形成的一种特殊环境。根际土壤对植物体来说是一个重要的生境, 根际微生物群落的宏基因组是植物微生物组的重要组成部分[1-3]。不同的植物-微生物相互作用会导致根际微生物种群的组成发生变化[4-5]。根际微生物群落非常丰富和复杂, 存在种内和种间的信号传导。这些复杂的信号机制在根际微生物群落的形成中起着关键作用, 通过种间或种内通信招募特定的微生物, 以调控微生物群落的行为。一般来说, 根际信号机制可分为3种主要类型: 1)植物通过分泌低分子量分子向微生物传递信号; 2)微生物信号在种间和种内的传递; 3)微生物通过其产生的化合物向植物传递信号[6-7]。根际微生物群落通过产生调节其基因表达的信号分子来相互作用。微生物的种间或种内交流是在群体感应(quorum sensing, QS)机制的调节下发生的, 而这种机制取决于细胞密度[7]。群体感应是根际微生物交流的重要方式, 它通过提供必要的信号分子来传递种间和种内的信息, 从而协调和控制混合群落的行为[8]

    QS是指细菌通过自发产生并释放特定信号分子, 并感知其浓度变化, 从而调节微生物的群体行为[9]。这是一种依赖于细菌种群密度的细胞间通信机制。Fuqua等[9]提出了QS的概念, 并认为大多数微生物都具有这种现象。在正常情况下, 每个细菌会分泌低水平的QS信号分子, 随着细菌密度的增加, QS信号分子的积累达到一定浓度, 可以激活相关基因表达。QS激活了数百种细菌基因的表达, 其中的许多基因在植物与微生物的相互作用中发挥着重要作用, 这些功能包括生物膜形成、固氮、水解酶、胞外多糖和毒素合成、细胞运动和细胞间相互连接等[10]。QS最早在费氏弧菌(Vibrio fischeri)中被发现, 这是一种定殖在夏威夷短尾鱿鱼(Euprymna scolopes)上的革兰氏阴性菌[11]。QS系统的特征是合成和释放特定的信号分子。根际具有高密度且多样的细菌, 因此有利于QS信号分子的传递。同时, QS信号分子可以促进根际细菌在植物根系表面或根际定殖[12]。目前已经在土壤细菌中发现了多种QS网络, 这些网络包括许多信号分子, 如N-酰基高丝氨酸内酯(AHLs)、二酮哌嗪、扩散信号因子、次生代谢物、植物激素类分子和其他小型有机化合物[13]。在根际环境中, 微生物之间通过QS系统进行信号传递和交流非常普遍[14-15]。细菌中受QS调控的细胞过程多种多样, 细菌-宿主之间的相互作用无论是共生关系还是致病关系, QS调控的过程对细菌-宿主相互作用通常都非常重要。QS能够促进生物适应环境的能力, 成为全球基因调控网络的重要组成部分[16]

    AHLs作为被广泛研究的QS信号分子, 不仅介导细菌QS, 而且还在植物与根际微生物的相互作用中扮演重要角色[17-18]。深入了解AHLs介导的QS机制对于推动农业生产、促进植物健康和实现可持续发展具有重要意义。本文综述了AHLs介导的QS机制, 并讨论其在植物与根际微生物相互作用中的调节作用, 包括AHLs对植物的生长发育、逆境耐受性和抗病性等方面的有益影响, AHLs介导的QS系统调控所导致的根际致病菌对植物的有害影响, 以及基于AHLs介导的群体淬灭(QQ)对植物和根际微生物的影响。本研究旨在深入了解这一领域的机制和应用前景, 以期为植物健康与农业生产提供新的思路与方法, 推动可持续农业的发展。

    AHLs作为革兰氏阴性菌中常见的QS信号分子, 由内酯环和酰基侧链组成, 它们的合成和传导由特定的酶和受体完成, 并且很容易从细胞释放到环境中, 当其浓度达到一定水平时, 细菌群体内的细菌能感知到信号分子的存在并做出相应反应, 从而调控群体行为[19-26]。不同的细菌合成不同类型的AHLs, 其作用特异性由N-酰基的碳链长度或3-碳位置的取代基的差异决定[27]。LuxI是一类可催化合成自诱导物质的胞内蛋白酶, 其通过催化载体蛋白的酰基侧链与S-腺苷甲硫氨酸上的高丝氨酸结合, 生成AHLs。AHLs中, 短CH链具有亲水性, 而长CH链具有疏水性[28-29]。AHLs能够自由进出细胞, 随着细菌密度的增加, 当细菌在细胞外环境中分泌的AHLs积累到一定浓度时, 可与同源的LuxR型受体蛋白结合, 形成调控基因表达的复合物, 从而激活QS调控的靶基因, 进而促进转录[30-33]。每个LuxR蛋白只与其特定的AHLs自诱导分子结合, 因为它们具有特异选择性。AHLs介导的QS调节了许多基因的表达, 这些基因负责生物膜的形成、生物发光、色素的产生、致病性、铁载体的产生、质粒结合转移、抗生素和抗真菌化合物的产生和聚集[34]。AHLs介导的QS很可能发生在数千种不同的细菌种类中[35]

    AHLs对植物的生长发育、逆境耐受性和抗病性等具有重要影响。AHLs由根际微生物合成, 能够进一步诱导植物根系中的特定反应, 进而影响植物与根际微生物的相互作用。前人研究表明, 根际土壤的可培养细菌中, 能够产生AHLs的细菌占比达10%~20%, 这表明产生AHLs的细菌在植物生长过程中占据重要地位[36-39]。AHLs介导的QS在植物-微生物相互作用和根际细菌的运动和定殖中起着重要作用[40-41]。植物相关细菌利用QS系统感知生态位, 适应环境压力并分布种群, 从而影响宿主植物的生长和健康[42-43]。研究表明, AHLs可以促进植物的生长和根系发育, 提高植物的适应能力和耐受性, 通过调节植物的免疫反应和信号传导通路, 增强植物对病原菌的抵抗能力[7]

    AHLs不仅可以调节细菌种群中各种细胞过程, 还能够提高植物的生长和光合活性, 调节营养物质的同化, 诱导植物内源激素平衡发生改变, 并增强宿主植物的防御能力[44-47]。研究表明, 短链AHLs通常影响植物生长, 长链AHLs可以增强植物抗性[48-50]。当前研究表明, 多种AHLs和分泌AHLs的根际细菌对植物的生长发育和抗性存在影响(表1)。Mathesius等[52]首次开展了关于细菌AHLs对植物生长影响的研究, 并发现用两种AHLs [N-(3-氧代十二烷酰基)-L-高丝氨酸内酯(3-oxo-C12-HSL)和N-(3-氧代十六烷酰基)-L-高丝氨酸内酯(3-oxo-C16-HSL)]处理模式豆科植物蒺藜苜蓿(Medicago truncatula)根系后, 参与氧化应激、类黄酮和植物激素代谢等过程的150多个蛋白表达水平发生了显著改变。随后, 在拟南芥(Arabidopsis thaliana)中也发现了类似的效应。使用N-(3-氧代辛酰基)-L-高丝氨酸内酯(3-oxo-C8-HSL)处理拟南芥幼苗会改变植物参与各种生理活动的蛋白质积累水平, 包括碳代谢、蛋白质生物合成、保护反应和对不利环境因素的抗性[46,79]。有研究表明, N-丁酰基-L-高丝氨酸内酯(C4-HSL)作为QS信号分子, 可以诱导拟南芥根细胞内钙离子浓度升高[51]。据报道, C4-HSL和N-己酰基-L-高丝氨酸内酯(C6-HSL)能够促进拟南芥根系的生长[50]N-(3-氧代己酰基)-L-高丝氨酸内酯(3-oxo-C6-HSL)和3-oxo-C8-HSL通过G蛋白偶联受体间接诱导了拟南芥根系的显著伸长[48]。前人研究发现, 短链(如C6-HSL)和中链[如N-(3-氧代癸酰基)-L-高丝氨酸内酯(3-oxo-C10-HSL)] AHLs可以分别促进黄瓜(Cucumis sativus)初生根的伸长和根结构的修饰, 进而促进了植物的生长[63]。对大麦(Hordeum vulgare)进行N-癸酰基-L-高丝氨酸内酯(C10-HSL)处理后, 植株体内抗氧化酶和解毒酶的活性增强[80]。Rankl等[81]研究了C6-HSL、N-辛酰-L-高丝氨酸内酯(C8-HSL)和N-十二烷酰-L-高丝氨酸内酯(C12-HSL)对大麦生长和根系发育的影响, 结果显示仅在特定浓度下, C6-HSL和C8-HSL处理可以刺激根细胞对K+的吸收, 但是C12-HSL在所有测试浓度下均能够诱导根细胞对K+的吸收, 这表明AHLs能够促进植物生长和侧根形成。C6-HSL处理冬小麦(Triticum aestivum)种子可以促进植株生长和产量增加, 该结果在田间具有潜在的应用价值。此外, C6-HSL作为一种新的诱导剂, 能够提高谷物对非生物胁迫的抵抗能力[82]。通过苜蓿中华根瘤菌(Sinorhizobium meliloti)合成的N-(3-氧代十四烷酰基)-L-高丝氨酸内酯(3-oxo-C14-HSL)能够刺激蒺藜苜蓿形成根瘤, 但未发现其他AHLs (如C4-HSL、C10-HSL和3-oxo-C12-HSL)存在该效应[53]。He等[76]发现能够产生AHLs信号分子的QS细菌广泛分布于沿海湿地植物碱蓬(Suaeda glauca)和芦苇(Phragmites australis)的根际土壤和根组织中, 且部分QS菌可以促进生物膜的形成、降解二甲基巯基丙酸内盐(DMSP)和油, 进而促进碱蓬和芦苇的生长, 以上可以为保护沿海湿地生态系统提供重要的参考。

    表  1  不同类型N-酰基高丝氨酸内酯(AHLs)和分泌AHLs的根际细菌对植物的影响
    Table  1.  The effects of different types of N-acyl-homoserine lactones (AHLs) and AHLs-producing rhizosphere bacteria on plants
    相关植物
    Associated plant
    AHLs/分泌AHLs的细菌
    AHLs/AHLs-secreting bacteria
    主要影响
    Major effect
    参考文献
    Reference
    拟南芥
    Arabidopsis thaliana
    3-oxo-C6-HSL增强拟南芥的耐盐性
    Enhance salt tolerance in A. thaliana
    [47]
    3-oxo-C6-HSL, 3-oxo-C8-HSL激发GCR1/GPA1基因, 促进根系生长
    Stimulate the GCR1/GPA1 genes, promote root growth
    [48]
    C6-HSL改变植物激素平衡
    Change the balance of phytohormone
    [50]
    C4-HSL诱导根细胞细胞内钙离子升高
    Induce intracellular calcium elevation in root cells
    [51]
    蒺藜苜蓿
    Medicago truncatula
    3-oxo-C12-HSL, 3-oxo-C16:1-HSL诱导生长素反应蛋白和类黄酮合成蛋白, 分泌群体感应拟态物质
    Induce auxin-responsive and flavonoid synthesis proteins, secrete mimetics of quorum sensing
    [52]
    3-oxo-C14-HSL增加根系结瘤数量
    Increase the number of nodules formed on root systems
    [53]
    番茄
    Solanum lycopersicum
    AHL/液化沙雷氏菌 MG1和
    恶臭假单胞菌 IsoF
    AHL/Serratia liquefaciens MG1 and
    Pseudomonas putida IsoF
    增加植物系统抗性, 增加水杨酸含量, 诱导防御基因的表达发生变化
    Increase systemic resistance of plants, increase salicylic acid content, induce changes in the expression of defense genes
    [54]
    AHL/恶臭假单胞菌
    AHL/P. putida
    促进细胞间的有效交流
    Promote efficient communication between the cells
    [55]
    3-oxo-C12-HSL, 3-oxo-C14-HSL/
    禾谷伯克霍尔德菌 M12和M14
    3-oxo-C12-HSL, 3-oxo-C14-HSL/
    Burkholderia graminis M12 and M14
    促进植物生长, 诱导抗盐胁迫
    Promote plant growth, induce protection against salt stress
    [56]
    3-oxo-C14-HSL保护番茄免受晚疫病
    Protect S. lycopersicum from late blight disease
    [57]
    3-oxo-C6-HSL, 3-oxo-C8-HSL,
    3-oxo-C12-HSL, 3-oxo-C14-HSL
    促进植物生长, 诱导对植物病原体的抗性
    Promote plant growth, induce resistance to plant pathogens
    [58]
    小麦
    Triticum aestivum
    3-oxo-C6-HSL增强小麦的耐盐性
    Enhance salt tolerance in T. aestivum
    [47]
    AHL/恶臭假单胞菌
    AHL/P. putida
    促进细胞间的有效交流
    Promote efficient communication between the cells
    [55]
    AHL/致黄假单胞菌
    AHL/Pseudomonas aureofaciens
    AHL介导的交流
    AHL-mediated communication
    [59]
    C4-HSL提高植物对真菌病原体的防御能力
    Improve plant defense against the fungal pathogens
    [60]
    油菜
    Brassica napus
    C4-HSL, C6-HSL, 3-oxo-C6-HSL/
    普城沙雷氏菌 HRO-C48
    C4-HSL, C6-HSL, 3-oxo-C6-HSL/
    Serratia plymuthica HRO-C48
    降低大丽轮枝菌对作物的致病性, 保护作物免受黄萎病的危害,
    诱导产生抗真菌挥发物和水解酶
    Reduce the pathogenicity of Verticillium dahliae to crops, protect crops against Verticillium wilt, and induce the production of antifungal volatiles and hydrolytic enzymes
    [61-62]
    黄瓜
    Cucumis sativus
    C6-HSL, 3-oxo-C10-HSL促进主根伸长, 促进植物生长
    Promote primary root elongation, enhance plant growth
    [63]
    3-oxo-C14-HSL增强植株对病原体的防御能力
    Enhance the plant’s defense against pathogens
    [63]
    鹰嘴豆
    Cicer arietinum
    C4-HSL提高植物的生长能力和植物对真菌病原体的防御能力
    Improve the plant growth and plant defense against the fungal pathogens
    [60]
    大麦
    Hordeum vulgare
    3-OH-C10-HSL/食酸菌 N35
    3-OH-C10-HSL/Acidovorax radicis N35
    诱导有益菌根际定植, 提高幼苗防御能力
    Induce beneficial mycorrhizal colonization, improve seedling defense
    [64]
    燕麦
    Avena sativa
    AHL/变形菌门
    AHL/Proteobacteria
    控制细胞外酶活性
    Control extracellular enzyme activity
    [65]
    玉米
    Zea mays
    C4-HSL, C6-HSL, 3-oxo-C6-HSL/
    绿针假单胞菌 449
    C4-HSL, C6-HSL, 3-oxo-C6-HSL/
    Pseudomonas chlororaphis 449
    对植物病原真菌具有拮抗活性
    Antagonistic activity against phytopathogenic fungi
    [66]
    芝麻
    Sesamum indicum
    C6-HSL, C8-HSL/沙雷氏菌属 GS2
    C6-HSL, C8-HSL/Serratia glossinae GS2
    形成生物膜, 促进植物生长
    Form biofilms, promote plant growth
    [67]
    水稻
    Oryza sativa
    C4-HSL/气单胞菌属, 肠杆菌属, 肺炎克雷伯菌, 考氏科萨克氏菌, 水性鞘氨醇单胞菌, 斯惠假单胞菌和Providentia rettigeri
    C4-HSL/Aeromonas sp., Enterobacter sp., Klebsiella pneumoniae, Kosakonia cowanii, Sphingomonas aquatilis, Pseudomonas sihuiensis and Providentia rettigeri
    形成生物膜
    Form biofilms
    [68]
    千年芋
    Xanthosoma sagittifolium
    AHL/假单胞菌 CMR12a
    AHL/Pseudomonas CMR12a
    对群结腐霉(Pythium myriotylum)具有拮抗活性
    Antagonistic activity against P. myriotylum
    [69]
    绿豆
    Vigna radiata
    3-oxo-C10-HSL促进根系分枝, 改变根系结构
    Promote root formation, change the root architecture
    [70]
    菜豆
    Phaseolus vulgaris
    3O-C7-HSL, 3OH-C7-HSL/
    苍白杆菌属 Pv2Z2
    3O-C7-HSL, 3OH-C7-HSL/
    Ochrobactrum sp. Pv2Z2
    促进植物生长和生物降解潜力
    Promote plant growth and biodegradation potential
    [71]
    马铃薯
    Solanum tuberosum
    3-oxo-C6-HSL, 3-oxo-C8-HSL/
    欧文氏菌
    3-oxo-C6-HSL, 3-oxo-C8-HSL/
    Erwinia carotovora
    抑制毒力因子
    Inhibit virulence factor
    [72]
    烟草
    Nicotiana tabacum
    C4-HSL, C8-HSL, 3-oxo-C6-HSL/
    粘质沙雷氏菌
    C4-HSL, C8-HSL, 3-oxo-C6-HSL/
    Serratia marcescens
    诱导植物系统抗性
    Induce systemic resistance (ISR)
    [73]
    地黄
    Rehmannia glutinosa
    AHL/假单胞菌属, 肠杆菌属
    AHL/Pseudomonas, Enterobacteriaceae
    对植物病原体具有拮抗活性, 引起地黄组培苗枯萎病
    Antagonistic activity against plant pathogen, cause severe wilt disease in the tissue culture seedlings of R. glutinosa
    [74]
    人参
    Panax ginseng
    C8-HSL, C10-HSL, C12-HSL改变土壤微生物群落结构
    Alter the soil microbial community structure
    [75]
    碱蓬
    Suaeda glauca
    芦苇
    Phragmites australis
    C6-HSL, C8-HSL/红细菌目
    C6-HSL, C8-HSL/Rhodobacterales
    形成生物膜, 降解二甲基巯基丙酸内盐和油
    Form bioflms, degrade Dimethylsulfoniopropionate and oil
    [76]
    洋葱
    Allium cepa
    C6-HSL, 3-oxo-C6-HSL/菠萝泛菌 SK-1
    C6-HSL, 3-oxo-C6-HSL/Pantoea ananatis SK-1
    引起洋葱中心腐烂病
    Cause center rot disease of A. cepa
    [77]
    太子参
    Pseudostellaria heterophylla
    AHL/粘质沙雷氏菌
    AHL/S. marcescens
    导致太子参枯萎病
    Cause P. heterophylla wilt disease
    [78]
    下载: 导出CSV 
    | 显示表格

    AHLs还可以提高植物的抗胁迫能力, 增强其自身的防御能力。据报道, AHLs可以缓解拟南芥幼苗受到的盐胁迫, 降低拟南芥丙二醛(MDA)含量, 增加抗氧化酶活性, 并促进与保护作用、光合作用、信号传导和细胞壁生物合成相关的97种蛋白质的积累, 表明植物对盐胁迫的耐受性与蛋白质数量和功能的变化密切相关[46]。接种产生AHLs的禾谷伯克霍尔德菌 M12和M14 (Burkholderia graminis M12和M14)对野生型番茄(Lycopersicum esculentum)植株的盐胁迫具有显著的保护作用, 表达YenI (短链AHL生产者)和LasI (长链AHL生产者)的转基因番茄植株对盐胁迫的耐受性增加[56]。Zhao等[47]发现用3-oxo-C6-HSL处理植物根部可以增强拟南芥和小麦的耐盐性。在盐胁迫条件下, 3-oxo-C6-HSL显著改善了拟南芥和小麦的根长、芽长和鲜重的生长抑制表型, 使叶绿素和脯氨酸含量增加, MDA和Na+含量以及Na+和K+的比值降低。分子实验分析显示, 在盐胁迫条件下, 3-oxo-C6-HSL显著上调拟南芥的盐响应基因表达, 包括脱落酸依赖与脱落酸非依赖的渗透胁迫响应基因和离子稳态调控基因[47]。以上这些结果表明, AHLs能够增强植物的耐逆境胁迫能力。

    AHLs除了促进植物生长发育和提高逆境耐受性外, 还可以增强植物的抗病性。根际受AHLs介导的QS调控驱动对植物病原体的抑制, 可作为替代化学物质的生物防治剂[83]。Schikora等[84]研究结果表明, 经过3-oxo-C14-HSL处理后, 拟南芥对病原菌的抗性明显增强。Schuhegger等[54]在番茄根部接种产生AHLs的菌株液化沙雷氏菌 MG1 (Serratia liquefaciens MG1)和恶臭假单胞菌 IsoF (Pseudomonas putida IsoF)后, 增强了番茄植株对病原体交链格孢(Alternaria alternata)的系统抗性。从油菜(Brassica napus)根际分离的普城沙雷氏菌 HRO-C48 (Serratia plymuthica HRO-C48)是由AHLs介导的QS调控, 可以诱导大豆(Glycine max)和番茄植株对灰霉病的抗性[85]。为了更好地研究根际情况, Shrestha等[58]分析了植物与多个 AHLs信号分子(3-oxo-C6-HSL、3-oxo-C8-HSL、3-oxo-C12-HSL和3-oxo-C14-HSL)之间的相互作用, 结果显示不同AHLs的组合增强了番茄对病原菌丁香假单胞菌(Pseudomonas syringae)的抗性, 这表明诱导抗性是AHLs多重感应的结果。Gahoi等[60]开发了一种轻质纳米复合生物肥料(NCB), 该肥料由C4-HSL包覆的铁碳纳米纤维和固定在活性炭珠中的细菌混合物组成, 并发现在鹰嘴豆(Cicer arietinum)和小麦种植过程中添加NCB后, 植物的生物量、根长、叶绿素和蛋白质含量均显著增加。此外, 将植物培养在NCB中21 d后, 鹰嘴豆和小麦分别对枯萎病和根腐病表现出显著的抗性潜力。这些结果表明该材料在促进植物生长活性和防治常见真菌病害方面具有良好的适用性[60]。另外, Ibal等[75]发现C8-HSL、C10-HSL和C12-HSL的添加均能促进盆栽人参(Panax ginseng)的生长和发育, 提高植物的生物量, 并改变土壤根际微生物群落的组成, 其中C10-HSL的处理效果最佳, 这为解决连作人参生长不良和易受病害影响等问题提供了参考。De Maeyer等[69]从千年芋(Xanthosoma sagittifolium)根际分离的假单胞菌CMR12a (Pseudomonas CMR12a), 对千年芋根腐病病原体群结腐霉(Pythium myriotylum)具有拮抗作用。外源信号分子3-oxo-C14-HSL添加至黄瓜幼苗水培液中, 能够增强黄瓜对病原菌古巴假霜霉菌(Pseudoperonospora cubensis)和细菌性叶斑病菌(Pseudomonas syringae pv. lachrymans)的防御反应[63]。由此可见, AHLs能够增强植物对病原菌的抵抗能力, 而这种影响是通过调节植物的免疫反应和信号传导通路实现的。

    对土壤根际细菌的研究显示, QS是根际细菌的主要特征之一[86]。植物和其他微生物群落也可以通过QS的信号分子直接或间接地改变根际细菌的作用[87]。由AHLs介导的植物相关细菌的通信在病原体和宿主植物之间的相互作用中至关重要。一旦根际细菌感知到信号分子, 通信和相互作用随之展开[88]。许多广泛存在于土壤和根际环境中的细菌可以利用QS系统感知信号分子来影响植物[36-37]。近年来的研究还显示, 许多致病菌利用QS引起植物病害[40,89-90]表1中列出了AHLs介导的群体感应与植物病害的相关例子。AHLs介导的QS调节了根际和植物致病菌之间的多种行为[91]。黑腐果胶杆菌(Pectobacterium atrosepticum)和胡萝卜果胶杆菌(Pectobacterium carotovorum)是引起马铃薯(Solanum tuberosum)黑胫病和胡萝卜(Daucus carota)、甜瓜(Cucumis melo)软腐病的植物致病菌。果胶杆菌属(Pectobacterium)的毒力因子受AHL依赖的QS系统控制, 其主要信号分子为3-oxo-C6-HSL或C8-HSL[40,92]。据报道, 植物病原体菠萝泛菌(Pantoea ananatis)通过QS产生的C6-HSL和3-oxo-C6-HSL可以引起洋葱(Allium cepa)中心腐烂病[77]。研究表明, 太子参(Pseudostellaria heterophylla)连作障碍导致根际QS菌的数量显著增加, 这些菌均为粘质沙雷氏菌(Serratia marcescens), 将其接种到太子参根部, 会引起太子参幼苗枯萎病的发生[78]。随后, Li等[74]探讨了AHLs介导的QS细菌动态与地黄(Rehmannia glutinosa)再植病害的关系, 研究结果显示, 重茬发病土壤中的QS菌主要为肠杆菌属(Enterobacteriaceae sp.), 并且对地黄组培苗具有较强的致病性。由此可见, AHLs介导的QS系统通过调控根际微生物数量和动态, 在植物-根际微生物相互作用中对植物产生不利的影响。

    有效抑制病原菌的QS和干扰QS系统的过程被称为群体淬灭(QQ), 这种作用是一种可以有效防治微生物病害且不易引发抗药性的方法, 因此可以作为控制植物致病菌的一种潜在策略[93-98]。近年来, 对QQ的研究引起了越来越多学者的高度重视。QQ通过抑制或干扰细胞间的QS系统, 阻断细胞间的“信息交流”, 从而抑制病原菌的QS现象。开发针对QS信号通路相关蛋白或其分泌的信号小分子物质的抑制剂, 即群体感应抑制剂(QSI), 可以实现QQ, 为定向分子调控植物根际病原菌群体提供了有效途径。微生物可以通过产生降解酶或信号分子的结构类似物来减轻QS细菌的致病性[89]

    许多天然来源的QSI已经被广泛报道, 其中最有效的是细菌源的酶促QSI。QQ系统的作用是抑制AHLs合成, 与AHLs结合受体蛋白竞争, 从而减少受QS控制的基因表达[99-101]。不同类型的AHL降解酶, 即QQ酶, 已被描述为能够影响QS信号分子[102]。根据QQ酶的作用机制, 可将其分为3种主要类型: AHL内酯酶、AHL酰化酶、AHL氧化酶和还原酶[103]。AHL内酯酶属于金属-β-内酰胺酶家族, 编码具有内酯酶活性的aiiA蛋白, 是从芽孢杆菌 240B1(Bacillus sp. 240B1)中首次分离得到的,该蛋白通过水解打开内酯环, 使AHL信号分子失活[93]。此外, 农杆菌属(Agrobacterium)、节杆菌属(Arthobacter)、芽孢杆菌属(Bacillus)和克雷伯氏菌属(Klebsiella)的细菌可以通过水解内酯环产生内酯酶来降解AHL信号分子[104-106]。Shevate等[107]采集了36种不同植物的根际土壤, 根际分离菌株中阿氏芽孢杆菌 J1D (Priestia aryabhattai J1D)和蜡样芽孢杆菌 G (Bacillus cereus G)产生AHL内酯酶作为QQ分子, QQ分子水解AHL信号分子C6-HSL, 从而阻断QS系统。此外, 在罗尔斯通氏菌 XJ12B (Ralstonia sp. XJ12B)中发现一种具有酰化酶活性的酶, 它可以水解AHL中的酰胺键, 释放高丝氨酸内酯和脂肪酸[103]。链霉菌属(Streptomyces)的细菌可以产生AHL酰化酶, 通过裂解分子的酰基侧链来使AHL信号分子失活[95]。也有研究表明, 农杆菌属(Agrobacterium)和假单胞菌属(Pseudomonas)细菌能够产生不同类型的AHL自诱导物, 通过内酯酶或酰化酶降解AHL信号分子[108-109]。另一方面, AHL氧化酶和还原酶通过修饰酰基链使AHL失活[103]。土壤、根际和其他来源的一些细菌能够产生AHL酰化酶、AHL内酯酶或氧化还原酶使AHL信号分子降解[110-112]。有研究表明, 固氮共生细菌Ensifer sp. NGR234具有多个N-酰基高丝氨酸内酯的群体淬灭位点[113]

    据报道, 植物具有降解AHLs的酶促机制[114-115]。植物根系能产生QS信号拟态物质, 导致QQ[116]。植物代谢物与AHL受体相互作用, 激活靶基因表达, 并通过与受体蛋白相互作用来取代AHLs[117]。植物源AHL拟态物质是一种安全有效的QS抑制物质来源, 因此备受关注[118-119]。有研究发现水稻(Oryza sativa)、大豆和番茄等作物能够分泌AHL拟态物质[117,120-121]。AHL拟态物质在植物和致病微生物相互作用中发挥重要作用。此外, 在不同植物中发现的黄烷酮柚皮素、圣草酚、花旗松素、山奈酚、槲皮素和芹菜素也表现出QS拟态物质的活性[122-123]。植物根际细菌分泌的QS信号分子激活了AHL拟态物质的合成[124]。在水稻和菜豆(Phaseolus vulgaris)中检测到了AHL拟态物质, 这些物质可以特异性改变两种QS细菌费氏中华根瘤菌 SMH12 (Sinorhizobium fredii SMH12)和菠萝泛菌 AMG501 (Pantoea ananatis AMG501)的生物膜形成, 这说明植物能够通过增强或抑制细菌的QS系统影响细菌的生长[125]。AHL类似物己内酯刺激了能够降解AHLs的红平红球菌(Rhodococcus erythropolis)种群, 并将其定殖在植物根际[126]。此外, 红平红球菌可以保护作物免受植物病原体果胶杆菌的侵害[127]

    在根际中, 能够降解AHLs的细菌(即QQ细菌)可被应用于防治产生AHLs的植物致病菌。许多从土壤和根际中分离出的革兰氏阴性菌和革兰氏阳性菌都具有AHLs降解活性[128]。植物根际QS化合物的降解是最常见的生物防治方式, 可以有效防止病原体的出现, 并改良根际土壤[129]。QQ细菌广泛存在于土壤和根际环境中(表2), 其种群数量的失衡可能是影响植物生长的关键[137]。此前有报道称, 许多根际细菌的aiiA内酯酶基因具有QQ活性, 且内酯酶基因对AHLs的水解特性对植物病原体具有生物防治作用[135]。据报道, 革兰氏阳性芽孢杆菌属细菌可分泌大量的AHL内酯酶(如AiiA), 从而减弱植物病原体欧文氏菌(Erwinia carotovora)的毒性[93]。Park等[131]将苏云金芽孢杆菌(Bacillus thuringiensis)添加至辣椒(Capsicum annuum)根际, 并对辣椒根际的苏云金芽孢杆菌种群动态进行评价, 发现其能保护植物免受欧文氏菌所引起的根腐病的影响。D’Angelo-Picard等[36-37]研究了土壤和烟草根际土壤中AHLs降解细菌的数量, 结果表明有5%~10%的细菌具有降解AHLs的能力。Mahmoudi等[130]则研究了马铃薯根际土壤中使AHL信号分子失活的细菌的多样性, 并分离出了18株AHLs降解菌株, 为芽孢杆菌属、节杆菌属、中慢生根瘤菌属(Mesorhizobium)、假单胞菌属和链霉菌属。这些菌株能够降解由黑腐果胶杆菌(Pectobacterium atrosepticum) SM1产生的AHLs。在淬灭试验中, 芽孢杆菌 EM84显著降低了马铃薯块茎中黑腐果胶杆菌 SM1的致病性[130]。前人很多研究揭示了不动杆菌属(Acinetobacter sp.)的AHLs降解活性[132-133]。最近的研究表明, 巴西固氮螺(Azospirillum brasilense) Az39能够降解未取代的C4-C12以及被羟基或酮基取代的AHLs[138]。可以推测, 这种AHL降解活性支持了巴西固氮螺菌 Az39在根系定殖中的竞争力, 并可能有助于控制具有AHL活性的植物病原体。因此, 通过中断根际群落内的QS通信, 包括竞争的根际细菌和植物病原体, 可以通过植物促生长细菌(如巴西固氮螺菌Az39)来支持植物生长刺激活性。Li等[74]研究表明地黄连作下根际土壤中淬灭油菜假单胞菌的特异性QQ菌的种类和数量均发生显著变化, 在重茬土壤和重茬病土中的数量都远高于头茬土壤, 并且主要以不动杆菌属为主, 进一步研究还发现筛选的QQ菌对地黄组培苗有较强的致病性。Zhang等[78]从太子参根际土壤中分离出1株QQ菌株, 鉴定为苏云金芽孢杆菌, 它分泌内酯酶降解QS信号分子, 可缓解太子参枯萎病。Chankhamhaengdecha等[135]从泰国不同地区的根际土壤中分离得到链霉菌, 该菌株能够裂解AHL底物中酰基侧链的酰胺键, 有效抑制了由胡萝卜果胶杆菌引起的马铃薯软腐病。Kachhadia等[134]从根际土壤中分离的蜡样芽孢杆菌RC1的提取物能缓解胡萝卜、马铃薯和黄瓜中由河生肠杆菌(Lelliottia amnigena)引起的软腐病, 该研究有助于利用细菌的代谢物来控制病原体, 同时降低病原体的致病性。

    表  2  植物根际土壤或土壤中存在的群体淬灭细菌及作用
    Table  2.  The quorum-quenching bacteria and their effects present in the plant rhizosphere soil or soil
    相关植物或土壤来源
    Associated plants or soil source
    群体淬灭细菌
    Quorum quenching bacteria
    主要作用
    Major effect
    参考文献
    Reference
    烟草
    Nicotiana tabacum
    芽孢杆菌、变形杆菌、鞘氨醇单胞菌和博斯氏菌
    Bacillus, Proteobacteria, Sphingomonas, Bosea
    降解 AHLs Degrade AHLs[37]
    地黄
    Rehmannia glutinosa
    不动杆菌属 Acinetobacter sp.破坏有益菌的群体感应系统
    Disrupt the quorum sensing system of the beneficial bacteria
    [74]
    太子参
    Pseudostellaria heterophylla
    苏云金芽孢杆菌 Bacillus thuringiensis缓解由粘质沙雷氏菌引起的枯萎病
    Alleviate wilt disease caused by Serratia marcescens
    [78]
    马铃薯
    Solanum tuberosum
    红平红球菌 Rhodococcus erythropolis保护马铃薯免受果胶杆菌属(Pectobacterium)细菌的侵害
    Protect S. tuberosum against the pathogen Pectobacterium
    [126]
    短小芽孢杆菌、荧光假单胞菌、假单胞菌属
    Bacillus pumilus, Pseudomonas fluorescens, Pseudomonas
    对软腐病原体具有生物防治活性
    Have a biocontrol activity against soft-rot pathogens
    [128]
    芽孢杆菌属 EM84 Bacillus EM84抑制病原菌生长, 降低马铃薯块茎中黑腐果胶杆菌 SM1 (Pectobacterium atrosepticum SM1)的致病性
    Inhibit growth of pathogen, reduce the pathogenicity of P. atrosepticum SM1 in S. tuberosum tubers
    [130]
    辣椒
    Capsicum annuum
    苏云金芽孢杆菌 B. thuringiensis保护植物免受由欧文氏菌(Erwinia carotovora)所造成的根腐病的侵害
    Protect the plant from root rot caused by E. carotovora
    [131]
    黄瓜
    Cucumis sativus
    不动杆菌属 C1010 Acinetobacter sp. C1010降解AHLs, 减轻由欧文氏菌引起的软腐病
    Degrade AHLs, attenuate soft rot symptom caused by E. carotovora
    [132]
    生姜
    Zingiber officinale
    不动杆菌 GG2、克雷伯氏菌 Se14
    Acinetobacter GG2, Klebsiella Se14
    降低植物病原体中毒力因子的产生
    Attenuate virulence factor production in plant pathogens
    [133]
    胡萝卜、马铃薯和黄瓜
    Daucus carota, Solanum tuberosum and Cucumis sativus
    蜡样芽孢杆菌 RC1 Bacillus cereus RC1缓解由河生肠杆菌(Lelliottia amnigena)引起的
    软腐病
    Alleviate soft rot caused by L. amnigena
    [134]
    印度36种不同植物根际土壤
    Rhizosphere soil of 36 different plant species in India
    阿氏芽孢杆菌 J1D、蜡样芽孢杆菌 G
    Priestia aryabhattai J1D, B. cereus G
    水解AHL信号分子, 阻断群体感应系统
    Hydrolyse AHL signalling molecules, and block the quorum sensing system
    [107]
    泰国不同省份的根际土壤
    Rhizosphere soils in different provinces of Thailand
    链霉菌 Streptomyces抑制马铃薯软腐病
    Inhibit soft rot of S. tuberosum
    [135]
    农业污染土壤
    Agricultural contaminated soil
    不动杆菌属 XN-10
    Acinetobacter sp. XN-10
    降低胡萝卜果胶杆菌(Pectobacterium carotovorum)的致病性
    Attenuate the pathogenicity of P. carotovorum
    [136]
    下载: 导出CSV 
    | 显示表格

    综上所述, QQ可被视为一种新的生物防治策略, 用于防治植物病原体[116]。然而, 在产生AHLs的菌株中, 也发现了AHL失活酶, 它们很可能利用这些酶来调节自身的QS系统[91]。因此, QQ策略也可能阻止植物根际有益菌的QS调节功能[129]

    根际微生物形成了一个复杂结构的动态群落。植物与根际微生物互作中, AHLs介导的根际微生物群体感应是一个重要过程, 对植物健康具有不可忽视的作用。AHLs在植物和根际微生物中起到十分重要的作用, 这些化合物在研究保护机制和诱导遗传抗性方面具有潜在的应用价值。因此, 本文综述了AHLs介导的群体感应机制, 以及AHLs介导的群体感应对植物和根际微生物相互作用的调控作用, 并探讨了基于AHLs的群体淬灭对植物和根际微生物的影响。AHLs介导的群体感应调控了根际微生物的定殖、土壤生态系统的维持以及植物的生长发育和抗病性。深入了解AHLs介导的群体感应机制对于促进农业生产、提高植物健康和推动可持续发展具有重要意义。与此同时, 基于AHLs的群体淬灭为改良QS系统活性提供了新的见解, 这有助于更好地了解QS分子和QQ过程, 推动开发新的农业策略。通过开发AHL化合物和传递AHL信号分子的有益细菌, 可以促进植物生长和胁迫耐受性, 同时对抗植物病原体。借助基于群体淬灭的QS抑制剂, 还能积极开发针对植物病原菌的农药替代品, 减少对农药的依赖。因此, 利用这些知识开发新型的生物农药和植物保护措施, 有助于提高农作物产量和品质, 并为植物健康与农业生产提供新的思路和方法, 从而推动可持续农业的发展。

    尽管AHLs介导的群体感应在植物根际微生物互作中的作用已经得到初步认识, 但由于根际和植物微生物群落之间的复杂关联以及各种协同或抑制的相互作用, 仍存在许多未解决的问题。因此, 未来的研究应重点关注AHLs的合成和感应机制及其调控网络的探索。目前, 已经测序的根际细菌基因组数量仍然较少。更深入地了解根际的宏基因组学, 将有助于进一步了解根际细菌与宿主植物之间的相互作用。通过运用系统生物学方法和多组学技术, 可以深入了解植物-根际微生物相互作用的网络系统和机制。此外, 基于AHLs的群体感应和群体淬灭的生态意义有待进一步探索。

  • 表  1   不同类型N-酰基高丝氨酸内酯(AHLs)和分泌AHLs的根际细菌对植物的影响

    Table  1   The effects of different types of N-acyl-homoserine lactones (AHLs) and AHLs-producing rhizosphere bacteria on plants

    相关植物
    Associated plant
    AHLs/分泌AHLs的细菌
    AHLs/AHLs-secreting bacteria
    主要影响
    Major effect
    参考文献
    Reference
    拟南芥
    Arabidopsis thaliana
    3-oxo-C6-HSL增强拟南芥的耐盐性
    Enhance salt tolerance in A. thaliana
    [47]
    3-oxo-C6-HSL, 3-oxo-C8-HSL激发GCR1/GPA1基因, 促进根系生长
    Stimulate the GCR1/GPA1 genes, promote root growth
    [48]
    C6-HSL改变植物激素平衡
    Change the balance of phytohormone
    [50]
    C4-HSL诱导根细胞细胞内钙离子升高
    Induce intracellular calcium elevation in root cells
    [51]
    蒺藜苜蓿
    Medicago truncatula
    3-oxo-C12-HSL, 3-oxo-C16:1-HSL诱导生长素反应蛋白和类黄酮合成蛋白, 分泌群体感应拟态物质
    Induce auxin-responsive and flavonoid synthesis proteins, secrete mimetics of quorum sensing
    [52]
    3-oxo-C14-HSL增加根系结瘤数量
    Increase the number of nodules formed on root systems
    [53]
    番茄
    Solanum lycopersicum
    AHL/液化沙雷氏菌 MG1和
    恶臭假单胞菌 IsoF
    AHL/Serratia liquefaciens MG1 and
    Pseudomonas putida IsoF
    增加植物系统抗性, 增加水杨酸含量, 诱导防御基因的表达发生变化
    Increase systemic resistance of plants, increase salicylic acid content, induce changes in the expression of defense genes
    [54]
    AHL/恶臭假单胞菌
    AHL/P. putida
    促进细胞间的有效交流
    Promote efficient communication between the cells
    [55]
    3-oxo-C12-HSL, 3-oxo-C14-HSL/
    禾谷伯克霍尔德菌 M12和M14
    3-oxo-C12-HSL, 3-oxo-C14-HSL/
    Burkholderia graminis M12 and M14
    促进植物生长, 诱导抗盐胁迫
    Promote plant growth, induce protection against salt stress
    [56]
    3-oxo-C14-HSL保护番茄免受晚疫病
    Protect S. lycopersicum from late blight disease
    [57]
    3-oxo-C6-HSL, 3-oxo-C8-HSL,
    3-oxo-C12-HSL, 3-oxo-C14-HSL
    促进植物生长, 诱导对植物病原体的抗性
    Promote plant growth, induce resistance to plant pathogens
    [58]
    小麦
    Triticum aestivum
    3-oxo-C6-HSL增强小麦的耐盐性
    Enhance salt tolerance in T. aestivum
    [47]
    AHL/恶臭假单胞菌
    AHL/P. putida
    促进细胞间的有效交流
    Promote efficient communication between the cells
    [55]
    AHL/致黄假单胞菌
    AHL/Pseudomonas aureofaciens
    AHL介导的交流
    AHL-mediated communication
    [59]
    C4-HSL提高植物对真菌病原体的防御能力
    Improve plant defense against the fungal pathogens
    [60]
    油菜
    Brassica napus
    C4-HSL, C6-HSL, 3-oxo-C6-HSL/
    普城沙雷氏菌 HRO-C48
    C4-HSL, C6-HSL, 3-oxo-C6-HSL/
    Serratia plymuthica HRO-C48
    降低大丽轮枝菌对作物的致病性, 保护作物免受黄萎病的危害,
    诱导产生抗真菌挥发物和水解酶
    Reduce the pathogenicity of Verticillium dahliae to crops, protect crops against Verticillium wilt, and induce the production of antifungal volatiles and hydrolytic enzymes
    [61-62]
    黄瓜
    Cucumis sativus
    C6-HSL, 3-oxo-C10-HSL促进主根伸长, 促进植物生长
    Promote primary root elongation, enhance plant growth
    [63]
    3-oxo-C14-HSL增强植株对病原体的防御能力
    Enhance the plant’s defense against pathogens
    [63]
    鹰嘴豆
    Cicer arietinum
    C4-HSL提高植物的生长能力和植物对真菌病原体的防御能力
    Improve the plant growth and plant defense against the fungal pathogens
    [60]
    大麦
    Hordeum vulgare
    3-OH-C10-HSL/食酸菌 N35
    3-OH-C10-HSL/Acidovorax radicis N35
    诱导有益菌根际定植, 提高幼苗防御能力
    Induce beneficial mycorrhizal colonization, improve seedling defense
    [64]
    燕麦
    Avena sativa
    AHL/变形菌门
    AHL/Proteobacteria
    控制细胞外酶活性
    Control extracellular enzyme activity
    [65]
    玉米
    Zea mays
    C4-HSL, C6-HSL, 3-oxo-C6-HSL/
    绿针假单胞菌 449
    C4-HSL, C6-HSL, 3-oxo-C6-HSL/
    Pseudomonas chlororaphis 449
    对植物病原真菌具有拮抗活性
    Antagonistic activity against phytopathogenic fungi
    [66]
    芝麻
    Sesamum indicum
    C6-HSL, C8-HSL/沙雷氏菌属 GS2
    C6-HSL, C8-HSL/Serratia glossinae GS2
    形成生物膜, 促进植物生长
    Form biofilms, promote plant growth
    [67]
    水稻
    Oryza sativa
    C4-HSL/气单胞菌属, 肠杆菌属, 肺炎克雷伯菌, 考氏科萨克氏菌, 水性鞘氨醇单胞菌, 斯惠假单胞菌和Providentia rettigeri
    C4-HSL/Aeromonas sp., Enterobacter sp., Klebsiella pneumoniae, Kosakonia cowanii, Sphingomonas aquatilis, Pseudomonas sihuiensis and Providentia rettigeri
    形成生物膜
    Form biofilms
    [68]
    千年芋
    Xanthosoma sagittifolium
    AHL/假单胞菌 CMR12a
    AHL/Pseudomonas CMR12a
    对群结腐霉(Pythium myriotylum)具有拮抗活性
    Antagonistic activity against P. myriotylum
    [69]
    绿豆
    Vigna radiata
    3-oxo-C10-HSL促进根系分枝, 改变根系结构
    Promote root formation, change the root architecture
    [70]
    菜豆
    Phaseolus vulgaris
    3O-C7-HSL, 3OH-C7-HSL/
    苍白杆菌属 Pv2Z2
    3O-C7-HSL, 3OH-C7-HSL/
    Ochrobactrum sp. Pv2Z2
    促进植物生长和生物降解潜力
    Promote plant growth and biodegradation potential
    [71]
    马铃薯
    Solanum tuberosum
    3-oxo-C6-HSL, 3-oxo-C8-HSL/
    欧文氏菌
    3-oxo-C6-HSL, 3-oxo-C8-HSL/
    Erwinia carotovora
    抑制毒力因子
    Inhibit virulence factor
    [72]
    烟草
    Nicotiana tabacum
    C4-HSL, C8-HSL, 3-oxo-C6-HSL/
    粘质沙雷氏菌
    C4-HSL, C8-HSL, 3-oxo-C6-HSL/
    Serratia marcescens
    诱导植物系统抗性
    Induce systemic resistance (ISR)
    [73]
    地黄
    Rehmannia glutinosa
    AHL/假单胞菌属, 肠杆菌属
    AHL/Pseudomonas, Enterobacteriaceae
    对植物病原体具有拮抗活性, 引起地黄组培苗枯萎病
    Antagonistic activity against plant pathogen, cause severe wilt disease in the tissue culture seedlings of R. glutinosa
    [74]
    人参
    Panax ginseng
    C8-HSL, C10-HSL, C12-HSL改变土壤微生物群落结构
    Alter the soil microbial community structure
    [75]
    碱蓬
    Suaeda glauca
    芦苇
    Phragmites australis
    C6-HSL, C8-HSL/红细菌目
    C6-HSL, C8-HSL/Rhodobacterales
    形成生物膜, 降解二甲基巯基丙酸内盐和油
    Form bioflms, degrade Dimethylsulfoniopropionate and oil
    [76]
    洋葱
    Allium cepa
    C6-HSL, 3-oxo-C6-HSL/菠萝泛菌 SK-1
    C6-HSL, 3-oxo-C6-HSL/Pantoea ananatis SK-1
    引起洋葱中心腐烂病
    Cause center rot disease of A. cepa
    [77]
    太子参
    Pseudostellaria heterophylla
    AHL/粘质沙雷氏菌
    AHL/S. marcescens
    导致太子参枯萎病
    Cause P. heterophylla wilt disease
    [78]
    下载: 导出CSV

    表  2   植物根际土壤或土壤中存在的群体淬灭细菌及作用

    Table  2   The quorum-quenching bacteria and their effects present in the plant rhizosphere soil or soil

    相关植物或土壤来源
    Associated plants or soil source
    群体淬灭细菌
    Quorum quenching bacteria
    主要作用
    Major effect
    参考文献
    Reference
    烟草
    Nicotiana tabacum
    芽孢杆菌、变形杆菌、鞘氨醇单胞菌和博斯氏菌
    Bacillus, Proteobacteria, Sphingomonas, Bosea
    降解 AHLs Degrade AHLs[37]
    地黄
    Rehmannia glutinosa
    不动杆菌属 Acinetobacter sp.破坏有益菌的群体感应系统
    Disrupt the quorum sensing system of the beneficial bacteria
    [74]
    太子参
    Pseudostellaria heterophylla
    苏云金芽孢杆菌 Bacillus thuringiensis缓解由粘质沙雷氏菌引起的枯萎病
    Alleviate wilt disease caused by Serratia marcescens
    [78]
    马铃薯
    Solanum tuberosum
    红平红球菌 Rhodococcus erythropolis保护马铃薯免受果胶杆菌属(Pectobacterium)细菌的侵害
    Protect S. tuberosum against the pathogen Pectobacterium
    [126]
    短小芽孢杆菌、荧光假单胞菌、假单胞菌属
    Bacillus pumilus, Pseudomonas fluorescens, Pseudomonas
    对软腐病原体具有生物防治活性
    Have a biocontrol activity against soft-rot pathogens
    [128]
    芽孢杆菌属 EM84 Bacillus EM84抑制病原菌生长, 降低马铃薯块茎中黑腐果胶杆菌 SM1 (Pectobacterium atrosepticum SM1)的致病性
    Inhibit growth of pathogen, reduce the pathogenicity of P. atrosepticum SM1 in S. tuberosum tubers
    [130]
    辣椒
    Capsicum annuum
    苏云金芽孢杆菌 B. thuringiensis保护植物免受由欧文氏菌(Erwinia carotovora)所造成的根腐病的侵害
    Protect the plant from root rot caused by E. carotovora
    [131]
    黄瓜
    Cucumis sativus
    不动杆菌属 C1010 Acinetobacter sp. C1010降解AHLs, 减轻由欧文氏菌引起的软腐病
    Degrade AHLs, attenuate soft rot symptom caused by E. carotovora
    [132]
    生姜
    Zingiber officinale
    不动杆菌 GG2、克雷伯氏菌 Se14
    Acinetobacter GG2, Klebsiella Se14
    降低植物病原体中毒力因子的产生
    Attenuate virulence factor production in plant pathogens
    [133]
    胡萝卜、马铃薯和黄瓜
    Daucus carota, Solanum tuberosum and Cucumis sativus
    蜡样芽孢杆菌 RC1 Bacillus cereus RC1缓解由河生肠杆菌(Lelliottia amnigena)引起的
    软腐病
    Alleviate soft rot caused by L. amnigena
    [134]
    印度36种不同植物根际土壤
    Rhizosphere soil of 36 different plant species in India
    阿氏芽孢杆菌 J1D、蜡样芽孢杆菌 G
    Priestia aryabhattai J1D, B. cereus G
    水解AHL信号分子, 阻断群体感应系统
    Hydrolyse AHL signalling molecules, and block the quorum sensing system
    [107]
    泰国不同省份的根际土壤
    Rhizosphere soils in different provinces of Thailand
    链霉菌 Streptomyces抑制马铃薯软腐病
    Inhibit soft rot of S. tuberosum
    [135]
    农业污染土壤
    Agricultural contaminated soil
    不动杆菌属 XN-10
    Acinetobacter sp. XN-10
    降低胡萝卜果胶杆菌(Pectobacterium carotovorum)的致病性
    Attenuate the pathogenicity of P. carotovorum
    [136]
    下载: 导出CSV
  • [1]

    KAŠTOVSKÁ E, CARDENAS-HERNANDEZ J, KUZYAKOV Y. Priming effects in the rhizosphere and root detritusphere of two wet-grassland graminoids[J]. Plant and Soil, 2022, 472(1): 105−126

    [2]

    BENITEZ M S, EWING P M, OSBORNE S L, et al. Rhizosphere microbial communities explain positive effects of diverse crop rotations on maize and soybean performance[J]. Soil Biology and Biochemistry, 2021, 159: 108309 doi: 10.1016/j.soilbio.2021.108309

    [3]

    BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478−486 doi: 10.1016/j.tplants.2012.04.001

    [4]

    SINGH R N, SINGH R P, SHARMA A, et al. Modeling of PrnD protein from Pseudomonas fluorescens RajNB11 and its comparative structural analysis with PrnD proteins expressed in Burkholderia and Serratia[J]. Turkish Journal of Biology, 2016, 40: 623−633 doi: 10.3906/biy-1501-4

    [5]

    PRAJAKTA B M, SUVARNA P P, RAGHVENDRA S P, et al. Potential biocontrol and superlative plant growth promoting activity of indigenous Bacillus mojavensis PB-35(R11) of soybean (Glycine max) rhizosphere[J]. SN Applied Sciences, 2019, 1(10): 1−11

    [6]

    ALTAF M M, AHMAD KHAN M S, ABULREESH H H, et al. Quorum sensing in plant growth-promoting rhizobacteria and its impact on plant-microbe interaction[M]// Plant-Microbe Interactions in Agro-Ecological Perspectives. Singapore: Springer, 2017: 311–331

    [7]

    VENTURI V, KEEL C. Signaling in the rhizosphere[J]. Trends in Plant Science, 2016, 21(3): 187−198 doi: 10.1016/j.tplants.2016.01.005

    [8]

    SINGH K, CHANDRA R, PURCHASE D. Unraveling the secrets of rhizobacteria signaling in rhizosphere[J]. Rhizosphere, 2022, 21: 100484 doi: 10.1016/j.rhisph.2022.100484

    [9]

    FUQUA W C, WINANS S C, GREENBERG E P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators[J]. Journal of Bacteriology, 1994, 176(2): 269−275 doi: 10.1128/jb.176.2.269-275.1994

    [10]

    GONZÁLEZ J E, MARKETON M M. Quorum sensing in nitrogen-fixing rhizobia[J]. Microbiology and Molecular Biology Reviews: MMBR, 2003, 67(4): 574−592 doi: 10.1128/MMBR.67.4.574-592.2003

    [11]

    LUPP C, RUBY E G. Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors[J]. Journal of Bacteriology, 2005, 187(11): 3620−3629 doi: 10.1128/JB.187.11.3620-3629.2005

    [12]

    NAZZARO F, FRATIANNI F, COPPOLA R. Quorum sensing and phytochemicals[J]. International Journal of Molecular Sciences, 2013, 14(6): 12607−12619 doi: 10.3390/ijms140612607

    [13]

    JAMIL F, MUKHTAR H, FOUILLAUD M, et al. Rhizosphere signaling: insights into plant-rhizomicrobiome interactions for sustainable agronomy[J]. Microorganisms, 2022, 10(5): 899 doi: 10.3390/microorganisms10050899

    [14]

    BESSET-MANZONI Y, RIEUSSET L, JOLY P, et al. Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies[J]. Environmental Science and Pollution Research, 2018, 25(30): 29953−29970 doi: 10.1007/s11356-017-1152-2

    [15]

    BURNS R G, DEFOREST J L, MARXSEN J, et al. Soil enzymes in a changing environment: Current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58: 216−234 doi: 10.1016/j.soilbio.2012.11.009

    [16]

    WILLIAMS P, WINZER K, CHAN W C, et al. Look who’s talking: communication and quorum sensing in the bacterial world[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2007, 362(1483): 1119−1134 doi: 10.1098/rstb.2007.2039

    [17]

    OSTROUMOVA O S, EFIMOVA S S, MALEV V V. Modifiers of membrane dipole potentials as tools for investigating ion channel formation and functioning[J]. International Review of Cell and Molecular Biology, 2015, 315: 245−297

    [18]

    BUKHAT S, IMRAN A, JAVAID S, et al. Communication of plants with microbial world: exploring the regulatory networks for PGPR mediated defense signaling[J]. Microbiological Research, 2020, 238: 126486 doi: 10.1016/j.micres.2020.126486

    [19]

    HAQUE M, ISLAM S, SHEIKH M A, et al. Quorum sensing: a new prospect for the management of antimicrobial-resistant infectious diseases[J]. Expert Review of Anti-Infective Therapy, 2021, 19(5): 571−586 doi: 10.1080/14787210.2021.1843427

    [20]

    WILLIAMS P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world[J]. Microbiology, 2007, 153(12): 3923−3938

    [21]

    WATERS C M, BASSLER B L. Quorum sensing: cell-to-cell communication in bacteria[J]. Annual Review of Cell and Developmental Biology, 2005, 21: 319−346 doi: 10.1146/annurev.cellbio.21.012704.131001

    [22]

    KALIA V C. Quorum sensing inhibitors: an overview[J]. Biotechnology Advances, 2013, 31(2): 224−245 doi: 10.1016/j.biotechadv.2012.10.004

    [23]

    SCHENK S T, HERNÁNDEZ-REYES C, SAMANS B, et al. N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway[J]. The Plant Cell, 2014, 26(6): 2708−2723 doi: 10.1105/tpc.114.126763

    [24]

    SCHIKORA A, SCHENK S T, HARTMANN A. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group[J]. Plant Molecular Biology, 2016, 90(6): 605−612 doi: 10.1007/s11103-016-0457-8

    [25]

    VERBEKE F, DE CRAEMER S, DEBUNNE N, et al. Peptides as quorum sensing molecules: measurement techniques and obtained levels In vitro and In vivo[J]. Frontiers in Neuroscience, 2017, 11: 183

    [26]

    CHENG F F, MA A Z, ZHUANG G Q, et al. Exogenous N-acyl-homoserine lactones enhance the expression of flagella of Pseudomonas syringae and activate defence responses in plants[J]. Molecular Plant Pathology, 2018, 19(1): 104−115 doi: 10.1111/mpp.12502

    [27]

    MIDDLETON B, RODGERS H C, CÁMARA M, et al. Direct detection of N-acylhomoserine lactones in cystic fibrosis sputum[J]. FEMS Microbiology Letters, 2002, 207(1): 1−7 doi: 10.1111/j.1574-6968.2002.tb11019.x

    [28]

    ZAITSEVA Y V, POPOVA A A, KHMEL I A. Quorum sensing regulation in bacteria of the family Enterobacteriaceae[J]. Russian Journal of Genetics, 2014, 50(4): 323−340 doi: 10.1134/S1022795414030120

    [29]

    CHURCHILL M E A, CHEN L L. Structural basis of acyl-homoserine lactone-dependent signaling[J]. Chemical Reviews, 2011, 111(1): 68−85 doi: 10.1021/cr1000817

    [30]

    DIGGLE S P, GRIFFIN A S, CAMPBELL G S, et al. Cooperation and conflict in quorum-sensing bacterial populations[J]. Nature, 2007, 450(7168): 411−414 doi: 10.1038/nature06279

    [31]

    LI X, JIN J, ZHANG X C, et al. Quantifying the optimal strategy of population control of quorum sensing network in Escherichia coli[J]. NPJ Systems Biology and Applications, 2021, 7: 35 doi: 10.1038/s41540-021-00196-4

    [32]

    URVOY M, LAMI R, DREANNO C, et al. Quorum sensing regulates the hydrolytic enzyme production and community composition of heterotrophic bacteria in coastal waters[J]. Frontiers in Microbiology, 2021, 12: 780759 doi: 10.3389/fmicb.2021.780759

    [33]

    GE C, RUN S Q, JIA H K, et al. Leveraging quorum sensing system for automatic coordination of Escherichia coli growth and lactic acid biosynthesis[J]. Annals of Microbiology, 2022, 72(1): 4 doi: 10.1186/s13213-022-01663-x

    [34]

    WHITEHEAD N A, BARNARD A M L, SLATER H, et al. Quorum-sensing in gram-negative bacteria[J]. FEMS Microbiology Reviews, 2001, 25(4): 365−404 doi: 10.1111/j.1574-6976.2001.tb00583.x

    [35]

    AHLGREN N A, HARWOOD C S, SCHAEFER A L, et al. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(17): 7183−7188

    [36]

    D’ANGELO-PICARD C, FAURE D, CARLIER A, et al. Bacterial populations in the rhizosphere of tobacco plants producing the quorum-sensing signals hexanoyl-homoserine lactone and 3-oxo-hexanoyl-homoserine lactone[J]. FEMS Microbiology Ecology, 2004, 51(1): 19−29 doi: 10.1016/j.femsec.2004.07.008

    [37]

    D’ANGELO-PICARD C, FAURE D, PENOT I, et al. Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere[J]. Environmental Microbiology, 2005, 7(11): 1796−1808 doi: 10.1111/j.1462-2920.2005.00886.x

    [38]

    STEIDLE A, SIGL K, SCHUHEGGER R, et al. Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere[J]. Applied and Environmental Microbiology, 2001, 67(12): 5761−5770 doi: 10.1128/AEM.67.12.5761-5770.2001

    [39]

    WHITELEY M, DIGGLE S P, GREENBERG E P. Progress in and promise of bacterial quorum sensing research[J]. Nature, 2017, 551(7680): 313−320 doi: 10.1038/nature24624

    [40]

    VON BODMAN S B, BAUER W D, COPLIN D L. Quorum sensing in plant-pathogenic bacteria[J]. Annual Review of Phytopathology, 2003, 41: 455−482 doi: 10.1146/annurev.phyto.41.052002.095652

    [41]

    ZHANG R F, VIVANCO J M, SHEN Q R. The unseen rhizosphere root-soil-microbe interactions for crop production[J]. Current Opinion in Microbiology, 2017, 37: 8−14 doi: 10.1016/j.mib.2017.03.008

    [42]

    LOH J, PIERSON E A, PIERSON L S, et al. Quorum sensing in plant-associated bacteria[J]. Current Opinion in Plant Biology, 2002, 5(4): 285−290 doi: 10.1016/S1369-5266(02)00274-1

    [43]

    KHAN M, BHARGAVA P, GOEL R. Quorum sensing molecules of rhizobacteria: a trigger for developing systemic resistance in plants[M]//Plant Growth Promoting Rhizobacteria for Sustainable Stress Management. Singapore: Springer, 2019: 117–138

    [44]

    BABENKO L M. Acyl-homoserine lactones for crop production and stress tolerance of agricultural plants (review)[J]. Sel’skokhozyaistvennaya Biologiya [Agricultural Biology], 2021, 56(1): 3−19

    [45]

    BASU S, RABARA R, NEGI S. Towards a better greener future—An alternative strategy using biofertilizers. Ⅰ: Plant growth promoting bacteria[J]. Plant Gene, 2017, 12: 43−49 doi: 10.1016/j.plgene.2017.07.004

    [46]

    DING L N, CAO J, DUAN Y F, et al. Proteomic and physiological responses of Arabidopsis thaliana exposed to salinity stress and N-acyl-homoserine lactone[J]. Physiologia Plantarum, 2016, 158(4): 414−434 doi: 10.1111/ppl.12476

    [47]

    ZHAO Q, YANG X Y, LI Y, et al. N-3-oxo-hexanoyl-homoserine lactone, a bacterial quorum sensing signal, enhances salt tolerance in Arabidopsis and wheat[J]. Botanical Studies, 2020, 61(1): 8 doi: 10.1186/s40529-020-00283-5

    [48]

    LIU F, BIAN Z, JIA Z H, et al. The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals[J]. Molecular Plant-Microbe Interactions, 2012, 25(5): 677−683 doi: 10.1094/MPMI-10-11-0274

    [49]

    SHRESTHA A, SCHIKORA A. AHL-priming for enhanced resistance as a tool in sustainable agriculture[J]. FEMS Microbiology Ecology, 2020, 96(12): fiaa226 doi: 10.1093/femsec/fiaa226

    [50]

    VON RAD U, KLEIN I, DOBREV P I, et al. Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere[J]. Planta, 2008, 229(1): 73−85 doi: 10.1007/s00425-008-0811-4

    [51]

    SONG S S, JIA Z H, XU J Z, et al. N-butyryl-homoserine lactone, a bacterial quorum-sensing signaling molecule, induces intracellular calcium elevation in Arabidopsis root cells[J]. Biochemical and Biophysical Research Communications, 2011, 414(2): 355−360 doi: 10.1016/j.bbrc.2011.09.076

    [52]

    MATHESIUS U, MULDERS S, GAO M S, et al. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(3): 1444−1449

    [53]

    VELIZ-VALLEJOS D F, VAN NOORDEN G E, YUAN M Q, et al. A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation[J]. Frontiers in Plant Science, 2014, 5: 551

    [54]

    SCHUHEGGER R, IHRING A, GANTNER S, et al. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria[J]. Plant, Cell & Environment, 2006, 29(5): 909−918

    [55]

    GANTNER S, SCHMID M, DÜRR C, et al. In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots[J]. FEMS Microbiology Ecology, 2006, 56(2): 188−194 doi: 10.1111/j.1574-6941.2005.00037.x

    [56]

    BARRIUSO J, RAMOS SOLANO B, FRAY R G, et al. Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria[J]. Plant Biotechnology Journal, 2008, 6(5): 442−452 doi: 10.1111/j.1467-7652.2008.00331.x

    [57]

    HERNÁNDEZ-REYES C, SCHENK S T, NEUMANN C, et al. N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens[J]. Microbial Biotechnology, 2014, 7(6): 580−588 doi: 10.1111/1751-7915.12177

    [58]

    SHRESTHA A, GRIMM M, OJIRO I, et al. Impact of quorum sensing molecules on plant growth and immune system[J]. Frontiers in Microbiology, 2020, 11: 1545 doi: 10.3389/fmicb.2020.01545

    [59]

    PIERSON E A, WOOD D W, CANNON J A, et al. Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere[J]. Molecular Plant-Microbe Interactions, 1998, 11(11): 1078−1084

    [60]

    GAHOI P, OMAR R A, VERMA N, et al. Rhizobacteria and acylated homoserine lactone-based nanobiofertilizer to improve growth and pathogen defense in Cicer arietinum and Triticum aestivum plants[J]. ACS Agricultural Science & Technology, 2021, 1(3): 240−252

    [61]

    LIU X G, BIMEREW M, MA Y X, et al. Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica[J]. FEMS Microbiology Letters, 2007, 270(2): 299−305 doi: 10.1111/j.1574-6968.2007.00681.x

    [62]

    MÜLLER H, WESTENDORF C, LEITNER E, et al. Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48[J]. FEMS Microbiology Ecology, 2009, 67(3): 468−478 doi: 10.1111/j.1574-6941.2008.00635.x

    [63]

    PAZARLAR S, CETINKAYA N, BOR M, et al. N-acyl homoserine lactone-mediated modulation of plant growth and defense against Pseudoperonospora cubensis in cucumber[J]. Journal of Experimental Botany, 2020, 71(20): 6638−6654 doi: 10.1093/jxb/eraa384

    [64]

    HAN S C, LI D, TROST E, et al. Systemic responses of barley to the 3-hydroxy-decanoyl-homoserine lactone producing plant beneficial endophyte Acidovorax radicis N35[J]. Frontiers in Plant Science, 2016, 7: 1868

    [65]

    DEANGELIS K M, LINDOW S E, FIRESTONE M K. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil[J]. FEMS Microbiology Ecology, 2008, 66(2): 197−207 doi: 10.1111/j.1574-6941.2008.00550.x

    [66]

    VESELOVA M A, KLEIN S, BASS I A, et al. Quorum sensing systems of regulation, synthesis of phenazine antibiotics, and antifungal activity in rhizospheric bacterium Pseudomonas chlororaphis 449[J]. Russian Journal of Genetics, 2008, 44(12): 1400−1408 doi: 10.1134/S102279540812003X

    [67]

    JUNG B K, KHAN A R, HONG S J, et al. Quorum sensing activity of the plant growth-promoting rhizobacterium Serratia glossinae GS2 isolated from the sesame (Sesamum indicum L.) rhizosphere[J]. Annals of Microbiology, 2017, 67(9): 623−632 doi: 10.1007/s13213-017-1291-1

    [68]

    BALASUNDARARAJAN V, DANANJEYAN B. Occurrence of diversified N-acyl homoserine lactone mediated biofilm-forming bacteria in rice rhizoplane[J]. Journal of Basic Microbiology, 2019, 59(10): 1031−1039 doi: 10.1002/jobm.201900202

    [69]

    DE MAEYER K, D'AES J, HUA G K H, et al. N-Acylhomoserine lactone quorum-sensing signalling in antagonistic phenazine-producing Pseudomonas isolates from the red cocoyam rhizosphere[J]. Microbiology, 2011, 157(2): 459−472

    [70]

    BAI X G, TODD C D, DESIKAN R, et al. N-3-oxo-decanoyl-L-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean[J]. Plant Physiology, 2012, 158(2): 725−736 doi: 10.1104/pp.111.185769

    [71]

    IMRAN A, SAADALLA M J A, KHAN S U, et al. Ochrobactrum sp. Pv2Z2 exhibits multiple traits of plant growth promotion, biodegradation and N-acyl-homoserine-lactone quorum sensing[J]. Annals of Microbiology, 2014, 64(4): 1797−1806 doi: 10.1007/s13213-014-0824-0

    [72]

    SJÖBLOM S, BRADER G, KOCH G, et al. Cooperation of two distinct ExpR regulators controls quorum sensing specificity and virulence in the plant pathogen Erwinia carotovora[J]. Molecular Microbiology, 2006, 60(6): 1474−1489 doi: 10.1111/j.1365-2958.2006.05210.x

    [73]

    RYU C M, CHOI H K, LEE C H, et al. Modulation of quorum sensing in acylhomoserine lactone-producing or -degrading tobacco plants leads to alteration of induced systemic resistance elicited by the rhizobacterium Serratia marcescens 90-166[J]. The Plant Pathology Journal, 2013, 29(2): 182−192 doi: 10.5423/PPJ.SI.11.2012.0173

    [74]

    LI Q, WU Y H, WANG J Y, et al. Linking short-chain N-acyl homoserine lactone-mediated quorum sensing and replant disease: a case study of Rehmannia glutinosa[J]. Frontiers in Plant Science, 2020, 11: 787 doi: 10.3389/fpls.2020.00787

    [75]

    IBAL J C, PARK M K, PARK G S, et al. Use of acyl-homoserine lactones leads to improved growth of ginseng seedlings and shifts in soil microbiome structure[J]. Agronomy, 2021, 11(11): 2177 doi: 10.3390/agronomy11112177

    [76]

    HE C F, ZHENG L, GAO W, et al. Diversity and functions of quorum sensing bacteria in the root environment of the Suaeda glauca and Phragmites australis coastal wetlands[J]. Environmental Science and Pollution Research International, 2022, 29(36): 54619−54631 doi: 10.1007/s11356-022-19564-6

    [77]

    MOROHOSHI T, NAKAMURA Y, YAMAZAKI G, et al. The plant pathogen Pantoea ananatis produces N-acylhomoserine lactone and causes center rot disease of onion by quorum sensing[J]. Journal of Bacteriology, 2007, 189(22): 8333−8338 doi: 10.1128/JB.01054-07

    [78]

    ZHANG L Y, GUO Z W, GAO H F, et al. Interaction of Pseudostellaria heterophylla with quorum sensing and quorum quenching bacteria mediated by root exudates in a consecutive monoculture system[J]. Journal of Microbiology and Biotechnology, 2016, 26(12): 2159−2170 doi: 10.4014/jmb.1607.07073

    [79]

    MIAO C J, LIU F, ZHAO Q, et al. A proteomic analysis of Arabidopsis thaliana seedling responses to 3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing signal[J]. Biochemical and Biophysical Research Communications, 2012, 427(2): 293−298 doi: 10.1016/j.bbrc.2012.09.044

    [80]

    GÖTZ-RÖSCH C, SIEPER T, FEKETE A, et al. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase Ⅱ detoxification enzymes in barley and yam bean[J]. Frontiers in Plant Science, 2015, 6: 205

    [81]

    RANKL S, GUNSÉ B, SIEPER T, et al. Microbial homoserine lactones (AHLs) are effectors of root morphological changes in barley[J]. Plant Science, 2016, 253: 130−140

    [82]

    MOSHYNETS O V, BABENKO L M, ROGALSKY S P, et al. Priming winter wheat seeds with the bacterial quorum sensing signal N-hexanoyl-L-homoserine lactone (C6-HSL) shows potential to improve plant growth and seed yield[J]. PLoS One, 2019, 14(2): e0209460 doi: 10.1371/journal.pone.0209460

    [83]

    HARJAI K, SABHARWAL N. Biofilm formation and quorum sensing in rhizosphere[J]. Biofilms in Plant and Soil Health, 2017: 111−130

    [84]

    SCHIKORA A, SCHENK S T, STEIN E, et al. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6[J]. Plant Physiology, 2011, 157(3): 1407−1418 doi: 10.1104/pp.111.180604

    [85]

    PANG Y D, LIU X G, MA Y X, et al. Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones[J]. European Journal of Plant Pathology, 2009, 124(2): 261−268 doi: 10.1007/s10658-008-9411-1

    [86]

    ELASRI M, DELORME S, LEMANCEAU P, et al. Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp.[J]. Applied and Environmental Microbiology, 2001, 67(3): 1198−1209 doi: 10.1128/AEM.67.3.1198-1209.2001

    [87]

    PODILE A R, VUKANTI R R, SRAVANI A, et al. Root colonization and quorum sensing are the driving forces of plant growth promoting rhizobacteria (PGPR) for growth promotion[J]. Proceedings of the Indian National Science Academy, 2014, 80(2): 407 doi: 10.16943/ptinsa/2014/v80i2/55117

    [88]

    BHATTACHARYA A, SOOD P, CITOVSKY V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection[J]. Molecular Plant Pathology, 2010, 11(5): 705−719

    [89]

    HELMAN Y, CHERNIN L. Silencing the mob: disrupting quorum sensing as a means to fight plant disease[J]. Molecular Plant Pathology, 2015, 16(3): 316−329 doi: 10.1111/mpp.12180

    [90]

    PIQUÉ N, MIÑANA-GALBIS D, MERINO S, et al. Virulence factors of Erwinia amylovora: a review[J]. International Journal of Molecular Sciences, 2015, 16(12): 12836−12854 doi: 10.3390/ijms160612836

    [91]

    ZAYTSEVA Y V, SIDOROV A V, MARAKAEV O A, et al. Plant-microbial interactions involving quorum sensing regulation[J]. Microbiology, 2019, 88(5): 523−533 doi: 10.1134/S0026261719040131

    [92]

    BARNARD A M L, SALMOND G P C. Quorum sensing in Erwinia species[J]. Analytical and Bioanalytical Chemistry, 2007, 387(2): 415−423 doi: 10.1007/s00216-006-0701-1

    [93]

    DONG Y H, XU J L, LI X Z, et al. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7): 3526−3531

    [94]

    MOROHOSHI T, NAKAZAWA S, EBATA A, et al. Identification and characterization of N-acylhomoserine lactone-acylase from the fish intestinal Shewanella sp. strain MIB015[J]. Bioscience, Biotechnology, and Biochemistry, 2008, 72(7): 1887−1893 doi: 10.1271/bbb.80139

    [95]

    PARK S Y, KANG H O, JANG H S, et al. Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching[J]. Applied and Environmental Microbiology, 2005, 71(5): 2632−2641 doi: 10.1128/AEM.71.5.2632-2641.2005

    [96]

    UROZ S, OGER P, CHHABRA S R, et al. N-acyl homoserine lactones are degraded via an amidolytic activity in Comamonas sp. strain D1[J]. Archives of Microbiology, 2007, 187(3): 249−256 doi: 10.1007/s00203-006-0186-5

    [97]

    GRANDCLÉMENT C, TANNIÈRES M, MORÉRA S, et al. Quorum quenching: role in nature and applied developments[J]. FEMS Microbiology Reviews, 2016, 40(1): 86−116 doi: 10.1093/femsre/fuv038

    [98]

    MOURA-ALVES P, PUYSKENS A, STINN A, et al. Host monitoring of quorum sensing during Pseudomonas aeruginosa infection[J]. Science, 2019, 366(6472): eaaw1629 doi: 10.1126/science.aaw1629

    [99]

    OUYANG J, SUN F, FENG W, et al. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa[J]. Journal of Applied Microbiology, 2016, 120(4): 966−974 doi: 10.1111/jam.13073

    [100]

    SARKAR R, MONDAL C, BERA R, et al. Antimicrobial properties of Kalanchoe blossfeldiana: a focus on drug resistance with particular reference to quorum sensing-mediated bacterial biofilm formation[J]. The Journal of Pharmacy and Pharmacology, 2015, 67(7): 951−962 doi: 10.1111/jphp.12397

    [101]

    ZHU H, SUN S J. Inhibition of bacterial quorum sensing-regulated behaviors by Tremella fuciformis extract[J]. Current Microbiology, 2008, 57(5): 418−422 doi: 10.1007/s00284-008-9215-8

    [102]

    TUROVSKIY Y, KASHTANOV D, PASKHOVER B, et al. Quorum sensing: fact, fiction, and everything in between[J]. Advances in Applied Microbiology, 2007, 62: 191−234

    [103]

    LIN Y H, XU J L, HU J Y, et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes[J]. Molecular Microbiology, 2003, 47(3): 849−860 doi: 10.1046/j.1365-2958.2003.03351.x

    [104]

    CHAN K G, WONG C S, YIN W F, et al. Rapid degradation of N-3-oxo-acylhomoserine lactones by a Bacillus cereus isolate from Malaysian rainforest soil[J]. Antonie Van Leeuwenhoek, 2010, 98(3): 299−305 doi: 10.1007/s10482-010-9438-0

    [105]

    DONG Y H, WANG L Y, ZHANG L H. Quorum-quenching microbial infections: mechanisms and implications[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2007, 362(1483): 1201−1211 doi: 10.1098/rstb.2007.2045

    [106]

    CZAJKOWSKI R, JAFRA S. Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules[J]. Acta Biochimica Polonica, 2009, 56(1): 1−16

    [107]

    SHEVATE S N, SHINDE S S, BANKAR A V, et al. Identification of quorum quenching N-acyl homoserine lactonases from Priestia aryabhattai J1D and Bacillus cereus G isolated from the rhizosphere[J]. Current Microbiology, 2023, 80(3): 86 doi: 10.1007/s00284-023-03186-3

    [108]

    ZHANG H B, WANG L H, ZHANG L H. Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(7): 4638−4643

    [109]

    WAHJUDI M, MURUGAPPAN S, VAN MERKERK R, et al. Development of a dry, stable and inhalable acyl-homoserine-lactone-acylase powder formulation for the treatment of pulmonary Pseudomonas aeruginosa infections[J]. European Journal of Pharmaceutical Sciences, 2013, 48(4/5): 637−643

    [110]

    CRÉPIN A, BARBEY C, CIROU A, et al. Biological control of pathogen communication in the rhizosphere: A novel approach applied to potato soft rot due to Pectobacterium atrosepticum[J]. Plant and Soil, 2012, 358(1): 27−37

    [111]

    HASSAN R, SHAABAN M I, ABDEL BAR F M, et al. Quorum sensing inhibiting activity of Streptomyces coelicoflavus isolated from soil[J]. Frontiers in Microbiology, 2016, 7: 659

    [112]

    MILLER M B, BASSLER B L. Quorum sensing in bacteria[J]. Annual Review of Microbiology, 2001, 55: 165−199 doi: 10.1146/annurev.micro.55.1.165

    [113]

    KRYSCIAK D, SCHMEISSER C, PREUSS S, et al. Involvement of multiple loci in quorum quenching of autoinducer Ⅰ molecules in the nitrogen-fixing symbiont Rhizobium (Sinorhizobium) sp. strain NGR234[J]. Applied and Environmental Microbiology, 2011, 77(15): 5089−5099 doi: 10.1128/AEM.00112-11

    [114]

    AZIZ M, CHAPMAN K D. Fatty acid amide hydrolases: an expanded capacity for chemical communication?[J]. Trends in Plant Science, 2020, 25(3): 236−249 doi: 10.1016/j.tplants.2019.11.002

    [115]

    BILLOT R, PLENER L, JACQUET P, et al. Engineering acyl-homoserine lactone-interfering enzymes toward bacterial control[J]. Journal of Biological Chemistry, 2020, 295(37): 12993−13007 doi: 10.1074/jbc.REV120.013531

    [116]

    DONG Y H, WANG L H, XU J L, et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase[J]. Nature, 2001, 411(6839): 813−817 doi: 10.1038/35081101

    [117]

    TEPLITSKI M, ROBINSON J B, BAUER W D. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria[J]. Molecular Plant-Microbe Interactions, 2000, 13(6): 637−648 doi: 10.1094/MPMI.2000.13.6.637

    [118]

    KOH C L, SAM C K, YIN W F, et al. Plant-derived natural products as sources of anti-quorum sensing compounds[J]. Sensors, 2013, 13(5): 6217−6228 doi: 10.3390/s130506217

    [119]

    ASFOUR H Z. Anti-quorum sensing natural compounds[J]. Journal of Microscopy and Ultrastructure, 2018, 6(1): 1−10 doi: 10.4103/JMAU.JMAU_10_18

    [120]

    RASMUSSEN T B, SKINDERSOE M E, BJARNSHOLT T, et al. Identity and effects of quorum-sensing inhibitors produced by Penicillium species[J]. Microbiology, 2005, 151(5): 1325−1340

    [121]

    MCDOUGALD D, RICE S A, KJELLEBERG S. Bacterial quorum sensing and interference by naturally occurring biomimics[J]. Analytical and Bioanalytical Chemistry, 2007, 387(2): 445−453 doi: 10.1007/s00216-006-0761-2

    [122]

    VANDEPUTTE O M, KIENDREBEOGO M, RASAMIRAVAKA T, et al. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1[J]. Microbiology, 2011, 157(Pt 7): 2120−2132

    [123]

    VIKRAM A, JAYAPRAKASHA G K, JESUDHASAN P R, et al. Suppression of bacterial cell-cell signalling, biofilm formation and type Ⅲ secretion system by citrus flavonoids[J]. Journal of Applied Microbiology, 2010, 109(2): 515−527 doi: 10.1111/j.1365-2672.2010.04677.x

    [124]

    BABENKO L M, KOSAKIVSKA I V, ROMANENKO К О. Molecular mechanisms of N-acyl homoserine lactone signals perception by plants[J]. Cell Biology International, 2022, 46(4): 523−534 doi: 10.1002/cbin.11749

    [125]

    PÉREZ-MONTAÑO F, JIMÉNEZ-GUERRERO I, SÁNCHEZ-MATAMOROS R C, et al. Rice and bean AHL-mimic quorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria[J]. Research in Microbiology, 2013, 164(7): 749−760 doi: 10.1016/j.resmic.2013.04.001

    [126]

    CIROU A, MONDY S, AN S, et al. Efficient biostimulation of native and introduced quorum-quenching Rhodococcus erythropolis populations is revealed by a combination of analytical chemistry, microbiology, and pyrosequencing[J]. Applied and Environmental Microbiology, 2012, 78(2): 481−492 doi: 10.1128/AEM.06159-11

    [127]

    BARBEY C, CRÉPIN A, BERGEAU D, et al. In planta biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis involves silencing of pathogen communication by the rhodococcal gamma-lactone catabolic pathway[J]. PLoS One, 2013, 8(6): e66642 doi: 10.1371/journal.pone.0066642

    [128]

    ALINEJAD F, SHAHRYARI F, EINI O, et al. Screening of quorum-quenching bacteria associated with rhizosphere as biocontrol agents of Pectobacterium carotovorum subsp. carotovorum[J]. Archives of Phytopathology and Plant Protection, 2020, 53(11/12): 509−523

    [129]

    MOLINA L, CONSTANTINESCU F, MICHEL L, et al. Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism[J]. FEMS Microbiology Ecology, 2003, 45(1): 71−81 doi: 10.1016/S0168-6496(03)00125-9

    [130]

    MAHMOUDI E, HASANZADEH N, TABATABAEI B E S, et al. Isolation and identification of N-acylhomoserin lactone degrading bacteria from potato rhizosphere[J]. Advanced Journal of Microbiology Research, 2019, 13(3): 1−8

    [131]

    PARK S J, PARK S Y, RYU C M, et al. The role of AiiA, a quorum-quenching enzyme from Bacillus thuringiensis, on the rhizosphere competence[J]. Journal of Microbiology and Biotechnology, 2008, 18(9): 1518−1521

    [132]

    KANG B R, LEE J H, KO S J, et al. Degradation of acyl-homoserine lactone molecules by Acinetobacter sp. strain C1010[J]. Canadian Journal of Microbiology, 2004, 50(11): 935−941 doi: 10.1139/w04-083

    [133]

    CHAN K G, ATKINSON S, MATHEE K, et al. Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia[J]. BMC Microbiology, 2011, 11: 51 doi: 10.1186/1471-2180-11-51

    [134]

    KACHHADIA R, KAPADIA C, SINGH S, et al. Quorum sensing inhibitory and quenching activity of Bacillus cereus RC1 extracts on soft rot-causing bacteria Lelliottia amnigena[J]. ACS Omega, 2022, 7(29): 25291−25308 doi: 10.1021/acsomega.2c02202

    [135]

    CHANKHAMHAENGDECHA S, HONGVIJIT S, SRICHAISUPAKIT A, et al. Endophytic actinomycetes: a novel source of potential acyl homoserine lactone degrading enzymes[J]. BioMed Research International, 2013, 2013: 782847

    [136]

    ZHANG W P, LUO Q Q, ZHANG Y Y, et al. Quorum quenching in a novel Acinetobacter sp. XN-10 bacterial strain against Pectobacterium carotovorum subsp. carotovorum[J]. Microorganisms, 2020, 8(8): 1100 doi: 10.3390/microorganisms8081100

    [137]

    REIMMANN C, GINET N, MICHEL L, et al. Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1[J]. Microbiology, 2002, 148(Pt 4): 923−932

    [138]

    GUALPA J, LOPEZ G, NIEVAS S, et al. Azospirillum brasilense Az39, a model rhizobacterium with AHL quorum-quenching capacity[J]. Journal of Applied Microbiology, 2019, 126(6): 1850−1860 doi: 10.1111/jam.14269

表(2)
计量
  • 文章访问数:  514
  • HTML全文浏览量:  94
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-29
  • 录用日期:  2023-08-24
  • 网络出版日期:  2023-09-21
  • 刊出日期:  2024-01-15

目录

/

返回文章
返回